废水处理过程中溶解性微生物产物的特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物处理是目前废水处理的重要手段之一。微生物在降解废水基质的同时,会产生一类大分子物质—溶解性微生物产物(soluble microbial products,SMP),是运行良好的生物处理系统出水中残留的化学需氧量(chemical oxygen demand,COD)的主要组分,它的存在决定了系统对COD的去除效率,直接关系着出水能否达到排放标准。本论文系统研究了废水处理过程中SMP的形成规律及影响因素,深入探讨了SMP的螯合特性,探索了活性污泥及其胞外多聚物(Extracellular polymeric substances , EPS)对典型药物及个人护理品(pharmaceuticals and personal care products,PPCPs)的吸附作用。主要研究内容和研究结果如下:
     1.应用响应曲面方法(response surface methodology,RSM)结合灰关联分析(grey relational analysis,GRA)研究进水底物浓度,氨氮浓度,温度和曝气速率对SMP生成的影响。研究结果表明:当在优化的操作条件下(碳源浓度654.8mgCOD/L,氨氮浓度23.9mg/L,温度13.7℃,曝气速率0.1m3/h),可以得到较小的SMP产出量为7.5mg/L。这四个因素对SMP产出的影响权重遵循:温度>碳源浓度>曝气速率>氨氮浓度。多糖是出水SMP的主要组成部分。
     2.用三维激发发射矩阵(Three-dimensional excitation-emission matrix,EEM)荧光猝灭结合自加权交替三线性分析(self-weighted alternating trilinear decomposition,SWATLD)研究了SMP与三种常见金属(Cu2+,Al3+,Fe3+)间的相互作用。结果表明:SMP中的蛋白和腐殖类物质对于这三种金属都有很强的络合作用,且对Cu2+>Al3+>Fe3+。相比较腐殖质,蛋白对这几种金属有更强的亲和性;SMP与金属的络合反应受溶液pH值影响明显。在偏中性条件下SMP的络合性能较强,而在过酸过碱条件下,均不利于络合反应的进行。离子强度对SMP的络合性能影响较为复杂,在不同的离子强度区域内产生不同的影响。
     3.从热力学和动力学角度研究了污泥絮体及其EPS对三氯生(Triclosan,TCS)的吸附作用,并初步探索了三氯生对微生物体系的影响。研究发现:活性污泥絮体对三氯生的吸附过程符合Lagergren动力学模型和Freundlich吸附模型;EPS通过疏水性作用吸附三氯生,属于物理吸附范畴;LB(Loosely bound)-EPS,TB(Tightly bound)-EPS与三氯生发生疏水性作用的基团有所不同,TB对于三氯生的结合能力略强于LB,结合作用受pH的影响不明显;三氯生在短时间内对微生物毒性不明显,一定程度上能够提高新陈代谢,同时会刺激微生物分泌更多的SMP。
Biological treatment is one of the most widely used wastewater treatment processes. Soluble microbial products (SMP) are produced by the microorganisms in wastewater treatment bioreactors when organic materials presented in wastewater are consumed. SMP constitute a major part of the residual chemical oxygen demand (COD) in effluent for most well-operated biological treatment system. Hence, the presence of SMP is a matter of great interest not only because they effectively control the removal efficiency for COD, but also in terms of achieving current discharge standards. In this paper, the formation rule and influencing factors of SMP were explored. Cheating characteristics of SMP were also studied in depth. The preliminary research on the adsorption characteristics of typical pharmaceuticals and personal care products (PPCPs) on activated sludge and EPS was developed as well. Main contents and results are as follows:
     1. RSM coupled with GRA were used to evaluate both the individual and interactive effects of substrate concentration, NH4+-N concentration, temperature and aeration rate on SMP production. Results show that a minimum SMP production of 7.5 mg/L was obtained under the optimum conditions: substrate concentration 654.8 mg COD/L, NH4+-N concentration 23.9 mg/L, temperature 13.7oC, aeration rate 0.1 m3/h. GRA analysis results show that the influential priority of the four factors on the SMP production is: temperature> substrate concentration> aeration rate> NH4+-N concentration. Carbonhydrates were found to be the major component of SMP in SBR system.
     2. The interactions between three metals and SMP of the effluent from wastewater biological treatment plant were investigated by fluorescence quenching combined with EEM fluorescence spectroscopy and SWATLD analysis. The main conclusions are as follows: Both protein- and humic-like substances in SMP were strong ligands for the three metals, with an order of Cu2+>Al3+>Fe3+. All the three metals had a better affinity to protein-like substance compared to humic-like substance in SMP; The complexation between metals and SMP could be significantly affected by solution pH values. SMP had relatively higher affinity to the metals at neutral condition than those at acidic or alkaline conditions. However, ionic strength influenced the complexation of SMP by a complicated mechanism. Different effects occurred at various ionic strength region.
     3. The adsorption characteristics of triclosan on activated sludge and EPS were studied mainly based on thermodynamics and dynamics. In addition, some preliminary explorations on biotoxiacity of TCS to the biological wastewater treatment were carried out. It was found out that the adsorption process of activated sludge floc tailed with Lagergren dynamical model and Freundlich adsorption model. The adsorption of TCS on EPS is physical adsorption attributed to the interaction between hydrophobic functional groups. The functional groups which interacted with TCS vary between LB and TB, and TB has a relatively higher affinity to TCS compared with LB. This interaction is slightly influenced by the pH of the solution. Biotoxiacity of TCS to microorganisms is not clear, however, the metabolism of the activated sludge is enhanced to a certain degree. At the same time, more SMP is produced reflecting a response to the outside pressure.
引文
曹光群,陈忠良,宋启军. 2008.三氯生的光降解产物分析及相关日化产品的安全性研究.分析试验室,27(8):58-61.
    刘凡岩,郝吉明. 2003.氯酚为前生体生成二噁英类的研究进展.化学通报,2:78-84.
    周世兵,周雪飞,张亚雷等.2008.三氯生在水环境中的存在行为及迁移转化规律研究进展. 环境污染与防治,30(10):71-74.
    Adolfsson Erici M, Pettersson M, Parkkonen J, et al. 2002. Triclosan, a commonly used bactericide found in human milk and in the aquatic environment in Sweden. Chemosphere,46:1485 -1489
    Amy GL, Bryant Jr. CW, Belyani M. 1987a. Molecular weight distributions of soluble organic matter in various secondary and tertiary effluents. Water Sci. Technol.,19:529-538.
    Amy GL, Collins MR, Kuo CJ, et al.1987b. Comparing gel permeation and ultrafiltration for the molecular weight characterization of aquatic organic matter. AWWA.,79(1):43-49.
    Andersen CM, Bro R. 2003. Practical aspects of PARAFAC modeling of fluorescence excitation-emission data. J. Chemom.,17:200-215.
    Aqino SFD. 2004. Formation of soluble microbial products (SMP) in anaerobic digesters during stress conditions. Ph.D. Thesis, Imperial College, London.
    Aquino SF, Stuckey DC. 2003. Production of soluble microbial products (smp) in anaerobic chemostats under nutrient deficiency. J. Environ. Eng.,129(11):1007–1014.
    Aquino SF, Stuckey DC. 2004. Soluble microbial products formation in anaerobic chemostats in the presence of toxic compounds. Water Res.,38(2):255–266.
    Aranami K, Readman JW. 2007. Photolytic degradation of triclosan in freshwater and seawater. Chemosphere, 66:1052-1056
    Arancibia JA, Escandar GM. 2003. Two different strategies for the fluorimetric determination of piroxicam in serum. Talanta,60:1113-1121.
    Artan N, Orhon D, Baykal BB. 1990. Implications of the task group model. I. The effect of initial substrate concentration. Water Res.,24(10):1259-1268.
    Artan N, Orhon D. 1989. The effect of reactor hydraulics on the performance of activated sludge systems. II. The formation of microbial products. Water Res.,23(12):1519-1525.
    Baker A. 2001. Fluorescence excitation-emission matrix characterization of some sewage-impacted rivers. Environ. Sci. Technol.,35:948-953.
    Balmer ME, Poiger T, Droz C, et al. 2004. Occurrence of Methyl Triclosan, a TransformationProduct of the Bactericide Triclosan, in Fish from Various Lakes in Switzerland. Environ. Sci. Technol., 38:390-395
    Barker DJ, Mannucchi GA, Salvi SML, et al. 1999. Characterisation of soluble residual chemical oxygen demand (COD) in anaerobic wastewater treatment effluents. Water Res.,33(11):2499-2510
    Barker DJ, Salvi, SML, Stuckey DC, et al. 2000. Soluble microbial products in ABR treating low-strength wastewater. J. Environ. Eng.,126:239-249.
    Barker DJ, Stuckey DC. 1999. A review of soluble microbial products (SMP) in wastewater treatment systems. Water Res.,33:3063-3082.
    Baskir CI, Hansford GS. 1980. Product formation in the continuous culture of microbial populations grown on carbohydrates. Biotech. Bioeng,22(9):1857-1875.
    Bender ME, Matson WR, Jordan RA. 1970. On the significance of metal complexing agents in secondary sewage effluents. Environ. Sci. Technol.,4(6):520-521.
    Berkeley, CA, Emery T. 1982. Iron metabolism in humans and plants. Am. Sci.,70:626-632.
    Bester K. 2003. Triclosan in a sewage treatment process balances and monitoring data. Water Res., 37:3891-3896
    Boero VJ, Eckenfelder Jr WW. Bowers AR. 1991. Soluble microbial product formation in biological systems. Water Sci. Technol.,23:1067-1076.
    Boero VJ, Eckenfelder Jr.WW. Bowers AR. 1996 Molecular weight distribution of soluble microbial products in biological systems. Water Sci. Technol.,34(56):241-248.
    Bolton H, Girvin DC. 1996. Effect of adsorption on the biodegradation of nitrilotriacetate by Chelatobacter heintzii. Environ. Sci. Technol.,30:2057-2065
    Boylen CW, Ensign JC. 1970. Intracellular substrates for endogenous metabolism during long-term starvation of rod and spherical cells of arthrobacter crustallopoietes. J. Bact.,103:578-587.
    Bro 1997. RPARAFAC. Tutorial and applications. Chemometrics and Intelligent Laboratory Systems,38:1491-71
    Bunch RL, Barth EF, Ettinger MB. 1961. Organic materials in secondary effluents. J. WPCF.,33(2):122-126.
    Burleigh IG, Dawes EA. 1967. Studies on the endogenous metabolism and senescence of starved sarcinlutea. Biochem. J.,102:236-250.
    Callender IJ, Barford JP. 1983a. Precipitation, chelation and the availability of metals as nutrients in anaerobic digestion. I. Methodology. Biotech. Bioeng.,XXV:1947-1957.
    Callender IJ, Barford JP. 1983b. Precipitation, chelation and the availability of metals as nutrientsin anaerobic digestion. II. Applications. Biotech. Bioeng.,XXV:1959-1972.
    Celik D, Bayraktar E, Mehmetoglu U, 2004. Biotransformation of 2-phenylethanol to phenylacetaldehyde in a two-phase fed-batch system. Biochemical Engineering Journal,17:5–13.
    Chang SI, Gray KA. 2003. Chemical composition and Cu complexation characteristics of the extracellular polymeric substances from Pseudomonas aeruginosa biofilms. Extended Abstracts. Metal–organic Interactions in Environmental Systems. 23, American Chemical Society, Washington, DC.
    Chen MY, Syu MJ. 2003. Film analysis of activated sludge microbial discs by the Taguchi method and grey relational analysis. Bioprocess and Biosystems Engineering,26(2):83-92.
    Chen ZP, Wu HL, Yu RQ, et al. 2000. A novel trilinear decomposition algorithm for second-order linear. Calibration Chemometrics and Intelligent Laboratory Systems,52:75–86.
    Chen, ZP, Wu HL, Yu RQ. 2001. On the self-weighted alternating trilinear decomposition algorithm - the property of being insensitive to excess factors used in calculation. Journal of Chemometrics,15:439-453.
    Chiou CT, Kile DE, Rutherford DW. 2000. Sorption of selected organic compounds from water to a peal soil and humic-acid and humin fraction: Potential sources of the sorption nonlinearity. Environ. Sci. Technol., 34(7):1254-1258.
    Chiou CT, McGroddy SE, Kile DE. 1998. Partition characteristic of polycyclic aromatic hydrocarbons on soils and sediments. Environ. Sci. Technol., 32(2):264-269.
    Chou JR, Tsai HC. 2009. On-line learning performance and computer anxiety measure for unemployed adult novices using a grey relation entropy method. Information Processing & Management,45(2):200-215.
    Christensen HN. 1975. Biological Transport, 2nd ed. W.A. Benjamin, Reading. MA.Chudoba J. 1967 Residual organic matter in activated sludge process effluents. I. Degradation of saccharides, fatty acids and amino acids under batch conditions. Scientific Papers of the Institute of Chemical Technology (Czech). Technol. Water,F12:39-75.
    Chudoba J, Nemec M, Nemcova B. 1968a. Residual organic matter in activated sludge process e.uents. II. Degradation of saccharides, fatty acids and amino acids under continuous conditions. Scientific Papers of the Institute of Chemical Technology (Czech). Technol. Water,F13:27-43.
    Chudoba J, Prasil M, Emmerova H. 1968b. Residual organic matter in activated sludge process effluents. III. Degradation of amino acids and phenols under continuous conditions. Scientific Papers of the Institute of Chemical Technology (Czech). Technol. Water,F13:45-61.
    Chudoba J. 1985a. Inhibitory e.ect of refractory organic compounds produced by activated sludge micro-organisms on microbial activity and flocculation. Water Res.,19(2):197-200.
    Chudoba J. 1985b Quantitative estimation in COD units of refractory organic compounds produced by activated sludge microorganisms. Water Res.,19(1):37-43.
    Confer DR, Logan BE. 1997a. Molecular weight distribution of hydrolysis products during biodegradation of model macromolecules in suspended and biofilm cultures I. Bovine serum albumin. Water Res.,31(9):2127-2136.
    Confer DR, Logan BE. 1997b. Molecular weight distribution of hydrolysis products during biodegradation of model macromolecules in suspended and biofilm cultures II. Dextran and dextrin. Water Res.,31(9):2137-2145.
    Confer DR, Logan BE., 1998. A conceptual model describing macromolecule degradation by suspended cultures and biofilms. Water Sci. Technol.,37(4-5):231-234.
    Daigger GT, Grady Jr. CPL. 1977a. Factors affecting effluent quality from fill-and-draw activated sludge reactors. J.WPCF.,49:2390-2396.
    Daigger GT, Grady Jr. CPL. 1977b. A model for the bio-oxidation process based on product formation concepts. Water Res.,11:1049-1057.
    Dawes EA, Ribbins DW. 1964. Some aspects of the endogenous metabolism of bacteria. Bact. Rev.,28:126-149.
    Demain AL, Burg RW, Hendlin D. 1965. Excretion and degradation of ribonucleic acids by Bacillus subtilis. J. Bact.,89:640-646.
    Dencan J, Barker, David CS et al. 1976a. Adsorption of organic compounds by synthetic resins. J. WPCF,48(1):120-133.
    Deng JL. 1982. Control problems of grey systems. Systems & Control Letters,1(5):288–294.
    Deng JL. 1989. Introduction to Grey system theory. The Journal of Grey System,1(1):1–24.
    DeWalle FB, Chian ESK. 1974a. Kinetics of formation of humic substances in activated sludge systems and their effect on flocculation. Biotech. Bioeng.,XVI:739-755. DeWalle FB., Chian ESK. 1974b. Removal of organic matter by activated carbon columns. J. Environ. Eng. Div. ASCE,100(EE5):1089-1104.
    Diaz TG, Espinosa-Mansilla A, Murillo BR, et al. 2003. Voltammetric behavior and determination of nordihydroguaiaretic acid in presence of other antioxidants using PLS calibration. Electroanalysis,15:646-651.
    Draper N, John JA. 1988. Response-surface designs for quantitative and qualitative variables. Technometrics,30:423-428.
    Eckenfelder Jr. WW. 1988. Point toxics control for industrial wastewaters. Civil Eng.Pract.,3:98-112.
    Eckenfelder Jr. WW. 1994. Alternative strategies for meeting stringent effluent guidelines. Water Sci. Technol.,29(8):1-7.
    Eckenfelder Jr. WW. 1995. Biological treatability studies: new regulations require a new approach. Environ. Prog.,14(3):172-175.
    Eckho. DW, Jenkins D. 1967. Activated Sludge Systems Kinetics of the Steady and Transient States.SERL Report, No. 67-12.
    Esparza-Soto M, Westerhoff P. 2003. Biosorption of humic and fulvic acids to live activated sludge biomass. Water Res., 37:2301-2310
    Esteves Da Silva JCG, Machado AASC, Oliveira CJS, et al. 1998. Fluorescence quenching of anthropogenic fulvic acids by Cu(II), Fe(III) and UO22+. Talanta,45:1155-1165.
    Feng HJ, Hu LF, Shan D, et al. 2008. Effects of operational factors on soluble microbial products in a carrier anaerobic baffled reactor treating dilute wastewater. Journal of Environmental Sciences,20(6):690–695.
    Fernandez N, Forster CF. 1993. An evaluation of the options for secondary treatment of e.uents produced from the anaerobic digestion of simulated coffee wastewaters. Environ. Technol.,14:485-490.
    Franta J, Helmreich B, Pribyl M. et al. 1994. Advanced biological treatment of papermill wastewaters; effects of operation conditions on COD removal and production of soluble organic compounds in activated sludge systems. Water Sci. Technol.,30(3):199-207.
    Frolund B, Palmgren R, Keiding K, Nielsen PH. 1996. Extraction of extracellular polymers from activated sludge using a cation exchange resin. Water Res.,30(8):1749-1758.
    Furumai H, Rittmann BE. 1992. Advanced modelling of mixed populations of heterotrophs and nitrifiers considering the formation and exchange of soluble microbial products. Water Sci. Technol.,26(3-4):493-502.
    Gaffney PE, Heukelekian H. 1961. Biochemical oxidation of the lower fatty acids. J. WPCF.,11:1169-1184.
    Gaudy Jr. AF, Blachly TR. 1985. A study of the biodegradability of residual COD. J. WPCF.,57(4):332-338.
    Germirli F, Orhon D, Artan N. 1991. Assessment of the initial inert soluble COD in industrial wastewaters.Water Sci. Technol.,23:1077-1086.
    Germirli F, Orhon D, Artan N. et al. 1993. Effect of two-stage treatment on the biological treatability of strong industrial wastes. Water Sci. Technol.,28(2):145-154.
    Grady Jr CPL, Daigger GT, Lim HC. 1999. Biological Wastewater Treatment, second ed. MarcelDekker, New York.
    Grady Jr. CPL, Harlow LJ, Riesing RR. 1972. Effects of growth rate and influent substrate concentration on effluent quality from chemostats containing bacteria in pure and mixed culture. Biotech. Bioeng.,XIV:391-410.
    Grady Jr. CPL, Kirsch EJ, Koczwara MK, et al. 1984. Molecular weight distributions in activated sludge effluents. Water Res.,18(2):239-246.
    Grady Jr. CPL, Williams DR. 1975. Effects of influent substrate concentration on the kinetics of natural microbial populations in continuous culture. Water Res.,9:171-180.
    Hao OJ, Lao AO. 1988. Kinetics of microbial by-product formation in chemostat pure cultures. J.Environ. Eng. Div. ASCE,114(5):1097-1115.
    Harold FM. 1972. Conservation and transformation of energy by bacterial membranes. Bact. Rev. 36, 172-230.
    Hart OO. 1980. Development and application of a technique for the determination of the molecular mass distribution of organic compounds in water. Prog. Water Tech.,12:525-536.
    Hejzlar J, Chudoba J. 1986a. Microbial polymers in the aquatic environment: I. Production by activated sludge microorganisms under di.erent conditions. Water Res.,20(10):1209-1216.
    Hejzlar J, Chudoba J. 1986b. Microbial polymers in the aquatic environment: II. Isolation from biologically non-purified and purified municipal waste water analysis. Water Res.,20(10):1217-1221.
    Henze M, Grady CPL, Jr Gujer W, et al. 1987. Activated Sludge Model No. 1.IAWPRC Scientific and Technical Report No. 1.Heppel L. (1967) Selective release of enzymes from bacteria. Science,156:1451-1455.
    Herbert H. 1961. The chemical composition of micro-organisms as a function of their environment. Symp.Soc. Gen. Microbiol.,11:391-416.
    Huang GT, Jin G, Wu JH, Liu YD. 2008. Effects of glucose and phenol on soluble microbial products (SMP) in sequencing batch reactor systems. International Biodeterioration and Biodegradation,62(2):104-108.
    Huang JYC, Cheng MD. 1987. Transient responses incorporating products formation. J. Environ.Eng.,113(4):868-880.
    Hutner SH. 1972. Inorganic nutrition. Ann. Rev.Microbiol.,26:313-346.
    Hwang SK, Lee YS, Yang KY. 2001. Maximization of acetic acid production in partial acidogenesis of swine wastewater. Biotech. Bioeng.,75(5):521–529.
    Jia XS, Furumai H, Fang HHP. 1996a. Extracellular polymers of hydrogen-utilising methanogenic and sulphate-reducing sludges. Water Res.,30(6):1439-1444.
    Jia XS, Furumai H, Fang HHP. 1996b. Yields of biomass and extracellular polymers in four anaerobic sludges. Environ. Technol.,17:283-291.
    Keiding K, Nielsen PH. 1997. Desorption of organic macromolecules from activated sludge: effect of ionic composition. Water Res., 31(7):1665-1672
    Keller JV, Leckie JO, McCarty PL. 1978. Investigation of soluble organic nitrogen compounds in municipal secondary effluent. J. WPCF,50:2522-2529.
    Kim BR, Anderson SG, Zemla JF. 1990. Effect of biological treatments on COD adsorption. Water Res.,24(4):457-461.
    Kim BR, Snoeyink VL, Saunders FM. 1976b. Influence of MCRT on adsorption. J. Environ. Eng. Div. ASCE,102(EE1):55-70.
    Knuutinen J, Virkki L, Mannila P. 1988. High-performance liquid chromatographic study of dissolved organic matter in natural waters. Water Res.,22(8):985-990.
    Kono T, Asai T. 1969. Kinetics of fermentation process. Biotech. Bioeng.,XI:293-321.
    Krasner SW, Westerhoff P, Chen B, et al. 2009. Impact of wastewater treatment processes on organic carbon, organic nitrogen, and DBP precursors in effluent organic matter. Environmental Science and Technology,43(8):2911–2918.
    Kunz A, Jardim WF. 2000. Complexation and adsorption of copper in raw sewage. Water Res.,34:2061-2068.
    Kuo WC, Parkin GF. 1996. Characterization of soluble microbial products from anaerobic treatment by molecular weight distribution and nickel-chelating properties. Water Res.,30(4):915-922.
    Kuo WC, Sneve MA, Parkin GF. 1996. Formation of soluble microbial products during anaerobic treatment. Water Environ. Res.,68:279-285.
    Kuo WC. 1993. Production of soluble microbial chelators and their impact on anaerobic treatment, Ph.D.thesis, University of Iowa, Iowa City.
    Kuo, WC, Parkin, GF. 1996. Characterization of soluble microbial products from anaerobic treatment by molecular weight distribution and nickel-chelating complexing properties. Water Res.,30:915-922.
    Levins PL. 1971 Characterization and separation of secondary effluent compounds by molecular weight. AD.Little, E.P.A. Project 16020 FEN 03/71.
    Li XY, Yang SF. 2007. Influence of loosely bound extracellular polymeric substances (EPS) on the flocculation, sedimentation and dewaterability of activated sludge. Water Res.,41:1022-1030
    Li, WH, Sheng, GP. 2008. Characterizing the extracellular and intracellular fluorescent productsof activated sludge in a sequencing batch reactor. Water Res.,42:3173-3181.
    Logan BE. Jiang Q. 1990. Molecular size distributions of dissolved organic matter. J. Environ. Eng. ASCE.,116(6), 1046-1062.
    Lucia SP, Maria L, Marta L, et a1. 2006. Monitoring the photochemical degradation of triclosan in wastewater by UV light and sunlight using solid—phase microextraction. Chemosphere,65(8):1338—1347.
    Luedeking R. Piret EC. 1959. A kinetic study of lactic acid fermentation batch process at controlled pH. J. Biochem. Microbiol. Tech. Eng.,1(4):393-412.
    Luster, J, Lloyd, T, Sposito, G. 1996. Multi-wavelength molecular fluorescence spectrometery for quantitative characterization of copper(II) and aluminum(III) complexation by dissolved organic matter. Environ. Sci. Technol.,30:1565-1574.
    Manka J, Rebhun M, Mandelbaum A, et al. 1974. Characterization of organics in secondary effluents. Environ. Sci. Technol.,8(12):1017-1020.
    Manka J, Rebhun M. 1982. Organic groups and molecular weight distribution in tertiary e.uents and renovated waters. Water Res.,16:399-403.
    Mateles RI, Chian SK. 1969. Kinetics of substrate uptake in pure and mixed cultures. Environ. Sci. Technol.,3:569-574.
    McGregor WC, Finn RK. 1969. Factors affecting the flocculation of bacteria by chemical additives. Biotech. Bioeng.,11:127-138.
    Miles CJ, Brezonik PL. 1983. High-performance size exclusion chromatography of aquatic humic substances. J. Chromatogr.,259:499-503.
    Moran J, Granada E, Miguez JL, et al. 2006. Use of grey relational analysis to assess and optimize small biomass boilers. Fuel Processing Technology,87(2):123-127.
    Morel FMM. 1983. Principles of Aquatic Chemistry.John Wiley Interscience, New York. Nachaiyasit S, Stuckey DC. 1997. Effect of low temperatures on the performance of an anaerobic baffled reactor (ABR). J. Chem. Tech. Biotech.,69:276-284.
    Namkung E, Rittmann BE. 1986 Soluble microbial products (SMP) formation kinetics by biofilms. Water Res.,20(6):795-806. Namkung E, Rittmann BE. 1988. Effects of SMP on biofilm-reactor performance. J. Environ. Eng. Div.ASCE.,114(1):199-210.
    Namour Ph, Muller MC. 1998. Fractionation of organic matter from wastewater treatment plants before and after a 21-day biodegradability test: a physical-chemical method for measurement of the refractory part of effluents. Water Res.,32(7):2224-2231.
    Neijssel OM, Tempest DW. 1976. The role of energy-spilling reactions in the growth of KlebsiellaAerogenes NCTC 418 in aerobic chemostat culture. Arch. Microbiol.,110:305-311.
    Neilands JB. 1967. Hydroxamic acids in nature. Science,156:1443-1447.
    Noguera DR., Araki N, Rittmann BE. 1994. Soluble microbial products (SMP) in anaerobic chemostats. Biotech. Bioeng.,44:1040-1047.
    Noorul HA, Marimuthu P, Jeyapaul R. 2008. Response optimization of machining parameters of drilling Al/SiC metal matrix composite using grey relational analysis in the Taguchi method. The International Journal of Advanced Manufacturing Technology,37(3-4):250–255.
    Nossal NG., Heppel LA. 1966. The release of enzymes by osmotic shock from E. coli in exponential phase. J. Biol. Chem.,241(13):3055-3062.
    Obayashi AW, Gaudy Jr. AF. 1973. Aerobic digestion of extracellular microbial polysaccharides. J.WPCF, 45:1584-1594.
    Oh S, Rheem S, Sim J, et al. 1995. Optimizing conditions for the growth of Lactobacillus casei YIT 9018 in tryptone–yeast extract-glucose medium by using response surface methodology. Applied and Environmental Microbiology,61(11):3809–3814.
    Ohno T, Amirbahman A, Bro R. 2008. Parallel factor analysis of excitation–emission matrix fluorescence spectra of water soluble soil organic matter as basis for the determination of conditional metal binding parameters. Environ. Sci. Technol.,42:186–192.
    Orhon D, Artan N, Buyukmurat S. et al. 1992. The effect of residual COD on the biological treatability of textile wastewaters. Water Sci. Technol.,26(3-4):815-825.
    Orhon D, Artan N, Cimcit Y. 1989. The concept of soluble residual product formation in the modelling of activated sludge. Water Sci. Technol.,21:339-350.
    Orhon D, Gorgun E, Germirli F, et al. 1993. Biological treatability of dairy wastewaters. Water Res.,27(4):625-633.
    Osterberg R, Wei, SQ 1999. Solution interaction of humic acids with calcium ions involves a two phase system. Acta Chemica Scand.,53:974-984.
    Owen WF, Stuckey DC, Healy Jr. JB, et al.1979. Bioassays for monitoring bio-chemical methane potential and anaerobic toxicity.Water Res.,13:485-492.
    Pace GW, Righelato RC. 1980. Production of extracellular microbial polysaccharides. Adv. Biol. Eng.,15:41-70.
    Painter HA. 1973 Organic compounds in solution in sewage effluents, Chem. Ind. September, 818-822.
    Parkin GF, McCarty PL. 1975. Characteristics and removal of soluble organic nitrogen in treated effluents. Prog. Water Tech.,7(3-4):435-445.
    Parkin GF, McCarty PL. 1981a A comparison of the characteristics of soluble nitrogen inuntreated and activated sludge treated wastewaters. Water Res.,15:139-149.
    Parkin GF, McCarty PL. 1981c. Sources of soluble organic nitrogen in activated sludge e.uents. J.WPCF.,53(1):89-98.
    Parkin GF. and McCarty PL. 1981b. Production of soluble organic nitrogen during activated sludge treatment. J. WPCF.,53(1):99-112.
    Pavoni JL, Tenney MW, Echelberger Jr. WF. 1972. Bacterial exocellular polymers and biological flocculation. J. WPCF.,44:414-431.
    Payne J. W. 1976. Peptides and microorganisms. Adv.Microb. Physiol.,13:55-113.
    Pirt S. J. 1969. Microbial growth and product formation. Symp. Soc. Gen. Microbiol.,19:199-221.
    Pirt SJ. 1975. Principles of Microbe and Cell Cultivation. Blackwell Scientific, Oxford. Plaza, C, Brunetti, G, Senesi, N. 2006. A Molecular and quantitative analysis of metal ion binding to humic acids from sewage sludge and sludge-amended soils by fluorescence spectroscopy. Environ. Sci. Technol.,40:917-923.
    Postgate JR, Hunter JR. 1964. Accelerated death of Aerobacter aerogenes starved in the presence of growth-limiting substrates. J. Gen. Microbiol.,34:459-473.
    Pribyl M, Tucek F, Wilderer PA. 1997. Amount and nature of soluble refractory organics produced by activated sludge micro-organisms in sequencing batch and continuous flow reactors. Water Science Technology,35(1):27-34.
    Randtke SJ, McCarty PL. 1979. Removal of soluble secondary effluent organics. J. Environ. Eng.,Div.ASCE.,105(EE4):727-743.
    Rappaport SM, Richard MG, Hollstein MC, et al. 1979. Mutagenic activity in organic Rebhun M., Manka J. 1971. Classification of organics in secondary effluents. Environ. Sci. Technol.,5(7):606-609.
    Rinnan A, Booksh KS, Bro R. 2005. First order Rayleigh scatter as a separate component in the decomposition of fluorescence landscapes. Anal. Chem. Acta.,537:349-358.
    Rittmann BE, Bae W, Namkung E, et al. 1987. A critical evaluation of microbial product formation in biological processes. Water Sci. Technol.,19:517-528.
    Rogers D. 1968 Osmotic pools in Escherichia coli. Science,159:531-532.
    Rosenberger S, Laabs C, Lesjean B, et al. 2006. Impact of colloidal and soluble organic material on membrane performance in membrane bioreactors for municipal wastewater treatment. Water Res.,40(4):710–719.
    Ross N, Deschenes L, Bureau J, et al. 1998. Ecotoxicological assessment and effects of physicochemical factors on biofilm development in groundwater conditions. Environ. Sci. Technol.,32:1105-1111.
    Ryan, DK, Weber JH. 1982. Fluorescence quenching titration for determination of complexing capacities and stability constants of fulvic acid. Anal. Chem.,54:986-990.
    Sabaliunas D, Webb SF, Hauk A, et al. 2003. Environmental fate of Triclosan in the River Aire Basin, UK. Water Res., 37:3145-3154
    Sachdev DR, Clesceri NL. 1978. Effects of organic fractions from secondary effluents on Selenastrum capricornutum (Kutz). J. WPCF.,50:1810-1820.
    Sachdev DR, Ferris JJ, Clesceri NL. 1976. Apparent molecular weights of organics in secondary effluents. J. WPCF.,48(3):570-579.
    Saier MH, Feucht BU, McCaman MT. 1975. Regulation of intracellular adenosine cyclic 3':5'-mono-phosphate levels in Escherichia coli and Salmonella typhimurium. J. Biol. Chem.,250(19):7593-7601.
    Saunders FM, Dick RI. 1981. Effect of mean-cell residence time on organic composition of activated sludge effluents. J. WPCF.,53(2):201-215.
    Schiener P, Nachaiyasit S, Stuckey DC. 1998. Production of soluble microbial products (SMP) in an anaerobic baffled reactor: composition, biodegradability and the effect of process parameters. Environ. Technol.,19:391-400.
    Schultz JR, Keinath TM. 1984. Powdered activated carbon treatment process mechanisms. J. WPCF.,56(2):143-151.
    Sheng GP, Yu HQ. 2006. Characterization of extracellular polymeric substances of aerobic and anaerobic sludge using three-dimensional excitation and emission matrix fluorescence spectroscopy. Water Res.,40:1233-1239.
    Siber S, Eckenfelder Jr. WW. 1980. Effluent quality variation from multicomponent substrates in the activated sludge process. Water Res.,14:471-476.
    Singer H, Müller S, Tixier C, et al. 2002. Triclosan: Occurrence and Fate of a Widely Used Biocide in the Aquatic Environment: Field Measurements in Wastewater Treatment Plants, Surface Waters, and Lake Sediments. Environ Sci Technol, 36:4998-5004
    Smeaton JR, Elliot WH. 1967. Selective release of ribonuclease inhibitor from B. subtilis cells by cold shock treatment. Biochem. Biophys. Res. Commun.,26(1):75-81.
    Smilde AK, Bro R., Geladi P., 2004. Applications in the Chemical Sciences.,Multi-way Analysis. Wiley, New York.
    Sollfrank U, Kappeler J, Gujer W. 1992. Temperature effects on wastewater characterization and the release of soluble inert organic material. Water Sci. Technol.,25(6):33-41.
    Spath R, Flemming HC, Wuertz S. 1998. Sorption properties of biofilms[J]. Water Sci Technol, 37:207-210
    Strange RE, Dark FA. 1965. Substrate-accelerated death of Aerobacter aerogenes. J. Gen. Microbiol.,39:215-228.
    Strange RE, Wade HE, Ness AG. 1963. The catabolism of proteins and nucleic acids in starved Aerobacter aerogenes. Biochem. J.,86:197-203.
    Sykes RM. 1981. Limiting nutrient concept in activated sludge models. J. WPCF.,53:1213-1218.
    Teszos M, Bell JP. 1991. A mechanistic study on the fate of malathion following interaction with microbial biomass. Water Res., 25(9):1039-1046
    Thomas TD, Batt RD. 1969. Degradation of cell constituents by starved Streptococcus lactis in relation to survival. J. Gen. Microbiol.,58:347-362.
    Thompson J. 1976. Characteristics and energy requirements of an A aminoisobutyric acid transport system in Streptococcus lactis. J. Bact.,127(2):719-730.
    Trgovcich B, Kirsch EJ, Grady Jr. CPL. 1983. Characteristics of activated sludge effluents before and after breakpoint chlorination. J. WPCF.55(7):966-976.
    Urano K, Katagiri K, Kawamoto K. 1980. Characteristics of gel chromatography using sephadex gel for fractionation of soluble organic pollutants. Water Res.,14:741-745.
    Urbain V, Mobarry B, De Silva V, et al. 1998. Integration of performance, molecular biology and modeling to describe the activated sludge process. Water Sci.Technol.,37:223-229.
    Van Steenderen RA, Malherbe A. 1982. The molecular mass distribution of organic compounds in activated sludge plant e.uent determined by means of gel permeation chromatography. Water Res.,16:745-748.
    Wang J, Qian Y, Horan N, et al. 2000. Bioadsorption of pentachlorophenol (PCP) from aqueous solution by activated sludge biomass. Bioresource Technology, 75:157-161
    Washington DR, Clesceri LS, Young JC, et al. 1970. Influence of microbial waste products on the metabolic activity of high solids activated sludge. In Proceedings of 24th Purdue Industrial Waste Conference.Purdue University, West Lafayette, IN, pp. 1103-1117.
    Watt RD, Kirsch EJ, Grady Jr. CPL. 1985. Characteristics of activated sludge e.uents before and after ozonation. J. WPCF.,57(2):157-166.
    Weissenfela WD, Klewer HJ, Langhoff J. 1992. Adsorption of polycyclic aromatic hydrocarbons (PAHs) by soil particles: influence on biodegradability and biotoxicity. Applied Microbiology Biotechnology,36:689-696
    Yang K, Yu Y, Hwang S. 2003. Selective optimization in thermophilic acidogenesis of cheese-whey wastewater to acetic and butyric acids: partial acidification and methanation. Water Res.,37(10):2467-2477.
    Yue ZB, Yu HQ, Harada H, et al. 2007. Optimization of anaerobic acidogenesis of an aquatic plant,Canna indica L., by rumen cultures. Water Res.,41(11):2361–2370.
    Zhu SH, Wu HL, Li BR, et al. 2008. Determination of pesticides in honey using excitation-emission matrix fluorescence coupled with second-order calibration and second-order standard addition methods. Anal. Chim. Acta.,619:165-172.
    Zuckerman MM, Molof AH. 1970. High quality reuse water by chemical-physical wastewater treatment. J. WPCF,42(3 (Part 1)): 437-456.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700