复杂量子动力学系统的量子计算鲁棒性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
量子计算利用量子态的相干叠加性实现并行的量子计算,从而达到经典计算无法比拟的信息处理功能。尽管在过去的十几年内量子计算的理论研究和物理实现都取得了巨大的进步,但是到目前为止还没有大规模量子信息处理装置出现。其中的一个主要原因在于量子信息处理系统内部近距离的相互作用以及量子系统与外部环境之间不可避免的耦合等严重影响了量子计算的可控性和可操作性,成为制约量子计算技术发展的重要障碍。因此分析量子信息处理系统在各种干扰下的演化规律,研究干扰对量子计算鲁棒性的影响,将非常有助于设计高可靠性的容错量子计算系统。
     首先简要总结了量子计算的发展历程及其鲁棒性研究的最新进展;然后介绍了一种具有复杂动力学行为的周期驱动的量子Harper模型(Quantum Kicked Harper,QKH)及其量子仿真算法;随后利用随机矩阵理论(Random Matrix Theory)和Husimi分布函数分析了量子Harper模型在规则运动和混沌运动时Floquet算子的能谱统计特性和本征态的统计遍历性,并且运用保真度摄动分析、量子轨迹、量子Monte Carlo仿真等方法分别研究了理想环境和开放环境中QKH量子仿真算法的鲁棒性,以及随机噪声干扰、静态干扰和耗散干扰对量子计算可信计算时间尺度、保真度和动态局域化因子等特征物理量的影响。在干扰强度大于某一阈值时,QKH量子计算将产生混沌行为,产生不可信的计算结果。采用数值仿真的方法得出静态干扰导致量子混沌的干扰强度阈值远小于随机噪声干扰的阈值,而且随机噪声干扰时的保真度随系统演化呈指数衰减,静态干扰时为高斯衰减。相位阻尼信道噪声模型的仿真结果表明耗散干扰将破坏QKH本征态的动态局域化以及相空间的随机网结构,但是QKH的动力学特性对耗散干扰下量子计算的鲁棒性没有影响。由于耗散干扰破坏了QKH模型的酉演化性质,耗散干扰下的量子计算不再具有可逆性。在分析动态解耦法抑制退相干原理的基础上,利用随机动态解耦法提高量子计算的抗静态干扰能力,最后将量子计算鲁棒性的研究结果应用于提高二能级量子构造控制系统的稳定性。
A quantum computer could perform certain computations much more efficient than its classical counterpart by exploiting the superposition principle and the interferences of quantum mechanics. Although the advances in the field of quantum computation were great in the last two decades, there is no scalable quantum information processors yet come into existence. One of the major reasons of this fact is the noise and imperfections, arising due to the interactions among the qubits or the couplings with the environment, destroy the operationality of quantum computation severely. Thus exploring the robustness features of quantum information processing system in presence of various imperfections will be very helpful to design fault-tolerant quantum information processor.
     A historical overview of quantum computation and the recent development on the research of its robustness are summarized firstly in this paper. Then the quantum kicked Harper model, which behaves a complex quantum dynamics, as well as its simulation algorithm are presented. Based on the random matrix theory and the Husimi function approach, the statistical properties of the quasi-energy and the eigenstates of the quantum kicked Harper, both in regular and chaotic regime, were studied. After that, the effects of various imperfections on the quantum computation which are indicated by several important physical quantities, such as fidelity, the timescales for reliable quantum computation and dynamical localization length etc., were analyzed using the fidelity perturbation method and the quantum trajectory approach. Once the strength of imperfections above a certain threshold, quantum chaos sets in and leads to unreliable quantum computation. It was demonstrated that the threshold for static imperfections are much smaller than that of the random noise in quantum gate operations. The fidelity drops exponentially in the presence of random noise, while it is Gaussian decrease in the case of static imperfections. Taking the phase damping channel as the dissipative model, it was shown that the dynamical localization for the quantum kicked Harper and the stochastic web in phase space are destroyed by moderate levels of dissipation. And the robustness of the quantum computation under dissipative imperfections is independent of the integrable or chaotic nature of the underlying dynamics. Since the unitary evolution is destroyed by the dissipative imperfections, the quantum computation of the open QKH model is no longer reversible. Furthermore, the random dynamical decoupling methods which are originally proposed to suppress the dissipative imperfections are used to combat the static imperfections in the quantum computation. Applications of the theory of robust quantum computation to the quantum constructive control of quantum two-level systems are described in the end.
引文
[1]Nielsen M.A.Chuang I.L.量子计算和量子信息(一)-量子计算部分[M].赵千川译,北京:清华大学出版社,2003.
    [2]周正威,黄运锋,张永生,等.量子计算的研究进展[J].物理学进展,2005,25:368-385.
    [3]Feynman R.P.Simulating physics with computers[J].Int J Theor Phys,1982,21:467-488.
    [4]Feynman R.P.Quantum mechanical computers[J].Found Phys,1986,16:507-531.
    [5]Steane A.Quantum computing[J].Rep Prog Phys,1998,61:117-173.
    [6]Shor P.W.Algorithms for quantum computation:Discrete logarithms and factoring[C].Proceedings of 35th Annual Symposium on the Foundations of Computer Science,Los Alamitos,CA,1994.
    [7]Grover L.K.Quantum mechanics helps in searching for a needle in a haystack[J].Phys Rev Lett,1997,79(10):325-328.
    [8]The Quantum Information Science and Technology Experts Panel.A quantum information science and technology roadmap[R].Technical report,April 2,2004.http://qist.lanl.gov.
    [9]夏培肃.量子计算[J].计算机研究与发展,2001,38(10):1153-1171.
    [10]Duan L.M,Guo G.C.Reducing decoherence in quantum-computer memory with all quantum bits coupling to the same environment[J].Phys Rev A,1998,57(2):737-741.
    [11]苏晓琴,郭光灿.量子通信与量子计算[J].量子电子学报.2004,21(6):706-718.
    [12]Shor P.W.Progress in quantum algorithms[J].Quantum Information Processing,2004,3:5-13.
    [13]Baritompa W.P,Bulger D.W,Wood G.R.Grover's quantum algorithm applied to global optimization [J].SIAM Journal on Optimization,2005,15(4):1170-1184.
    [14]龙桂鲁,李岩松,肖丽,等.Grover量子搜索算法及改进[J].原子核物理评论,2004,21(1):114-116.
    [15]Singh A,Bharadwaj L.M,Harpreet S.DNA and quantum based algorithms for VLSI circuits testing [J].Nat Comput,2005,4:53-72.
    [16]Schack R.Using a quantum computer to investigate quantum chaos[J].Phys Rev A,1998,57:1634-1635.
    [17]Georgeot B,Shepelyansky D.L.Exponential gain in quantum computing of quantum chaos and localization[J].Phys Rev Lett,2001,86:2890-2893.
    [18]Levi B,Gcorgcot B,Shepelyansky D.L.Quantum computing of quantum chaos in the kicked rotator model[J].Phys Rev E,2003,67:046220-046229.
    [19]Levi B,Georgcot B.Quantum computation of a complex system:the kicked Harper model[J].Phys Rev E,2004,70:056218-056236.
    [20]Svore K.M,Aho A.V,Cross A.W,et al.A layered software architecture for quantum computing design tools[J].Computer,2006,39:74-83.
    [21]吴楠,宋方敏.量子计算与量子计算机[J].计算机科学与探索,2007,1(1):1-16.
    [22]Deng Z.J,Feng M,Gao K.L.Simple scheme for the two-qubit Grover search in cavity QED[J].Phys Rev A,2005,72:034306-034309.
    [23]Fujiwara S,S H.General method for realizing the conditional phase-shift gate and a simulation of Grover's algorithm in an ion-trap system[J].Phys Rev A,2005,71:012337-012342.
    [24]Yamaguchi F,Milman P,Brune M,et al.Quantum search with two-atom collisions in cavity QED[J].Phys Rev A,2002,66:010302-010305.
    [25]冯芒,蒋玉蓉,高克林,等.量子离散Fourier变换在离子阱中的实现方案[J].原子与分子物理学报,2000,17(3):436-440.
    [26]Lee J.S,Kim J,Cheong Y,et al.Implementation of phase estimation and quantum counting algorithms on an NMR quantum-information processor[J].Phys Rev A,2002,66:042316-042320.
    [27]Weinstcin Y.S,Lloyd S,Emerson J.V,et al.Experimental implementation of the quantum baker's map[J].Phys Rev Lett,2002,89:157902-157905.
    [28]Shor P.W.Scheme for reducing decoherence in quantum computer memory[J].Phys Rev A,1995,89:2493-2496.
    [29]Unruh W.G.Maintaining coherence in quantum computers[J].Phys Rev A,1995,51:992-997.
    [30]张登玉.自发发射与量子计算机存储单元的相干脱散[J].物理学报,1997,46(4):656-660.
    [31]Ekert A,Macchiavello C.Quantum Error Correction for Communication[J].Phys Rev Lett,1996,77:2585-2588.
    [32]Bennett C.H,DiVincenzo D.P,Smolin J.A,et al.Mixed-state entanglement and quantum error correction[J].Phys Rev A,1996,54:3824-3851.
    [33]Knill E,Laflamme R.Theory of quantum error-correcting codes[J].Phys Rev A,1997,55:900-911.
    [34]Gottesman D.Class of quantum error-correcting codes saturating the quantum Hamming bound[J].Phys Rev A,1996,54:1862-1868.
    [35]Nielsen M.A,Chuang I.L.最子计算和量子信息(二)-量子信息部分[M].郑大钟,赵千川译,北京:清华大学出版社,2005.
    [36]Gottesman D.Theory of fault-tolerant quantum computation[J].Phys Rev A,1998,57:127-137.
    [37]Knill E.Quantum computing with realistically noisy devices[J].Nature,2005,434:39-44.
    [38]Duan L.M,Guo G.C.Preserving coherence in quantum computation by pairing quantum bits[J].Phys Rev Lett,1997,79:1953-1956.
    [39]张权,张尔扬,唐朝京.基于无消相干子空间的量子避错码设计[J].物理学报,2002,51(8):1675-1683.
    [40]Zanardi P,Rasetti M.Noiseless quantum codes[J].Phys Rev Lett,1997,79:3306-3309.
    [41]Lidar D.A,Bacon D,Whaley K.B.Concatenating Decoherence-Free Subspaces with Quantum Error Correcting Codes[J].Phys Rev Lett,1999,82:4556-4559.
    [42]Alber G,Beth T,Chames C,et al.Detected-jump-error-correcting quantum codes,quantum error designs,and quantum computation[J].Phys Rev A,2003,68:012316-012325.
    [43]Kempe J,Bacon D,Lidar D.A,et al.Theory of decoherence-free fault-tolerant universal quantum computation[J].Phys Rev A,2001,63:042307-042326.
    [44]Kwiat P.G,Berglund A.J,Altepeter J.B,et al.Experimental verification of decoherence-free subspaces [J].Science,2000,290:498-501.
    [45]Kielpinski D,Meyer V,Rowe M.A,et al.A decoherence-free quantum memory using trapped ions [J].Science,2001,291:1013-1015.
    [46]Viola L,Knill E,Lloyd S.Dynamical decoupling of open quantum systems[J].Phys Rev Lett,1999,82:2417-2421.
    [47]Viola L,Lloyd S.Dynamical suppression of decoherence in two-state quantum systems[J].Phys Rev A,1998,58:2733-2744.
    [48] Facchi P, Tasaki S, Pascazio S, et al. Control of decohcrence: Analysis and comparison of three different strategies [J]. Phys Rev A. 2005, 71:022302-022323.
    [49] Georgeot B, Shepelyansky D. L. Quantum chaos border for quantum computing [J]. Phys Rev E, 2000, 62:3504-3507.
    [50] Georgeot B, Shepelyansky D. L. Emergence of quantum chaos in the quantum computer core and how to manage it [J]. Phys Rev E, 2000, 62:6366-6375.
    [51] Peres A. Stability of quantum motion in chaotic and regular systems [J]. Phys Rev A, 1984,30:1610-1615.
    [52] Znidaric M. Stability of quantum dynamics [D]: [PhD Thesis]. Ljubljana: Physics Department, University of Ljubljana, 2004.
    [53] Prosen T, Znidaric M. Stability of quantum motion and correlation decay [J]. J Phys A: Math Gen, 2002,35:1455-1481.
    [54] Rossini D, Benenti G, Casati G. Classical versus quantum errors in quantum computation of dynamical systems [J]. Phys Rev E, 2004, 70:056216-056222.
    [55] Benenti G, Casati G, Montangero S, et al. Statistical properties of eigenvalues for an operating quantum computer with static imperfections [J]. The European Physical Journal D, 2003, 22:285-293.
    [56] Benenti G, Casati G, Montangero S, et al. Eigenstates of an operating quantum computer: hypersensi-tivity to static imperfections [J]. The European Physical Journal D, 2002, 20:293-296.
    [57] Georgeot B, Shepelyansky D. L. Stable quantum computation of unstable classical chaos [J]. Phys Rev Lett, 2001, 86:5393-5396.
    [58] Benenti G, Casati G, Shepelyansky D. L. Emergence of Fermi-Dirac thermalization in the quantum computer core [J]. The European Physical Journal D, 2001, 17:265-272.
    [59] Pomeransky A. A, Shepelyansky D. L. Quantum computation of the Anderson transition in the presence of imperfections [J]. Phys Rev A, 2004, 69:014302-014305.
    [60] Pomeransky A. A, Zhirov O. V, Shepelyansky D. L. Phase diagram for the Grover algorithm with static imperfections [J]. The European Physical Journal D, 2004, 31:131-135.
    [61] Song P. H, Kim 1. Computational leakage: Graver's algorithm with imperfections [J]. The European Physical Journal D, 2003, 23:299-303.
    [62] Maity K, Lakshminarayan A. Quantum chaos in the spectrum of operators used in Shor's algorithm [J]. Phys Rev E, 2006, 74:035203-035206.
    [63] Terraneo M, Shepelyansky D. L. Imperfection effects for multiple applications of the quantum wavelet transform [J]. Phys Rev Lett, 2003, 90:257902-257905.
    [64] Braun D. Quantum chaos and quantum algorithms [J]. Phys Rev A, 2002, 65:042317-042322.
    [65] Berman G. P, Borgonovi F, Izrailev F. M, et al. Delocalization border and onset of chaos in a model of quantum computation [J]. Phys Rev E, 2001, 64:056226-056239.
    [66] Berman G. P, Borgonovi F, Celardo G, et al. Dynamical fidelity of a solid-state quantum computation [J]. Phys Rev E, 2002, 66:056206-056214.
    [67] Celardo G, Pineda C, Znidaric M. Stability of the quantum Fourier transformation on the Ising quantum computer [J]. Int J Quant Inform, 2005, 3:441-462.
    [68] Bettelli S, Shepelyansky D. L. Entanglement versus relaxation and decoherence in a quantum algorithm for quantum chaos [J]. Phys Rev A, 2003, 67:054303-054306.
    [69] Montangcro S, Bcncnti G, Fazio R. Dynamics of entanglement in quantum computers with imperfections [J]. Phys Rev Lett, 2003, 91:187901-187904.
    [70] Wang X. G, Ghose S, Sanders B. C, et al. Entanglement as a signature of quantum chaos [J]. Phys Rev E, 2004, 70:016217-016225.
    [71] Carlo G. G, Bencnti G, Casati G. Teleportation in a noisy environment: a quantum trajectories approach [J]. Phys Rev Lett, 2003, 91:257903-257906.
    [72] Carlo G. G, Benenti G, Casati G, et al. Simulating noisy quantum protocols with quantum trajectories [J]. Phys Rev A, 2004, 69:062317-062327.
    [73] Zhirov O. V, Shepelyansky D. L. Dissipative decoherence in the Grover algorithm [J]. The European Physical Journal D, 2006, 46:1-4.
    [74] Harrow A. W, Nielsen M. A. Robustness of quantum gates in the presence of noise [J]. Phys Rev A, 2003,68:012308-012321.
    [75] Keun A. K, Hyegeun M, O S. D, et al. Decoherence effects on the entangled states in a noisy quantum channel [J]. Journal of the Korean Physical Society, 2004, 45:273-280.
    [76] Carlo G. G, Benenti G, Shepelyansky D. L. Dissipative quantum chaos: Transition from wave packet collapse to explosion [J]. Phys Rev Lett, 2005, 95:164101-164104.
    [77] Kern O, Alber G, Shepelyansky D. L. Quantum error correction of coherent errors by randomization [J]. The European Physical Journal D, 2005, 32:153-156.
    [78] Viola L, Knill E. Random decoupling schemes for quantum dynamical control and error suppression [J]. Phys Rev Lett, 2005, 94:060502-060505.
    [79] Santos L. F, Viola L. Dynamical control of qubit coherence: Random versus deterministic schemes [J]. Phys Rev A, 2005, 72:062303-062322.
    [80] Santos L. F, Viola L. Enhanced convergence and robust performance of randomized dynamical decoupling [J]. Phys Rev Lett, 2006, 97:150501-150504.
    [81] Kern O, Alber G. Controlling quantum systems by embedded dynamical decoupling schemes [J]. Phys Rev Lett, 2005, 95:250501-250504.
    [82] Zhang Y, Zhou Z. W, Yu B, et al. Concatenating dynamical decoupling with decohcrence-free sub-spaces for quantum computation [J]. Phys Rev A, 2004, 69:042315-042320.
    [83] Gorin T. Prosen T, Seligman T. H, et al. Dynamics of Loschmidt echoes and fidelity decay [J]. Phys Rep, 2006, 435:33-156.
    [84] Weinstein Y. S, Hellberg C. S. Scalable architecture for coherence-preserving qubits [J]. Phys Rev Lett, 2007, 98:110501-110504.
    [85] Lovric M, Krojanski H. G, Suter D. Decoherence in large quantum registers under variable interaction with the environment [J]. Phys Rev A, 2007, 75:042305-042312.
    [86] Li X, Jones J. A. Robust logic gates and realistic quantum computation [J]. Phys Rev A, 2006, 73:032334-032339.
    [87] Stockmann H. J. Quantum Chao: an Introduction [M]. Cambridge: Cambridge University Press, 1999.
    [88] Harper P. G. Single band motion of conduction electrons in a uniform magnetic field [J]. Proc Phys Soc A, 1955,68:874-878.
    [89] Artuso R, Casati G, Shepelyansky D. Fractal spectrum and anomalous diffusion in the kicked Harper model [J]. Phys Rev Lett, 1992, 68:3826-3829.
    [90]Lima R,Shepelyansky D.Fast dclocalization in a model of quantum kicked rotator[J].Phys Rev Lett,1991,67:1377-1380.
    [91]Artuso R.Borgonovi F,Guarneri I,et al.Phase diagram in the kicked Harper model[J].Phys Rev Lett,1992,69:3302-3305.
    [92]Izrailev F.M.Simple models of quantum chaos:spectrum and eigenfunctions[J].Phys Rep,1990,196:299-392.
    [93]Barenco A,Bennett C.H,Cleve R,et al.Elementary gates for quantum computation[J].Phys Rev A,1995,52:3457-3467.
    [94]Wigner E.P.On the statistical distribution of the widths and spacings of nuclear resonance levels[J].Proc Camb Phil Soc,1951,47:790-798.
    [95]Wigner E.P.Characteristic vectors of bordered matrices with infinite dimensions[J].Ann Math,1955,62:548-564.
    [96]Forrester P.J,Snaith N.C,Verbaarschot J.J.M.Developments in random matrix theory[J].Journal of Physics A:Mathematical and General,2003,36:R1-R10.
    [97]Mehta M.L.Random Matrices,3rd edition[M].New York:Academic Press,2004.
    [98]吴锡真,李祝霞,张英逊,等.原子核量子能谱的统计性质[J].中国科学(A辑),2001,31:350-357.
    [99]Geisel T,Ketzmerick R,Petschel G.Metamorphosis of a Cantor spectrum due to classical chaos[J].Phys Rev Lett.1991,67:3635-3638.
    [100]Terraneo M,Gcorgeot B,Shepelyansky D.L.Quantum computation and analysis of Wigner and Husimi functions:Toward a quantum image treatment[J].Phys Rev E,2005,71:066215-066228.
    [101]徐躬耦.量子混沌运动[M].上海:上海科学技术出版社,1995.
    [102]Benenti G,Casati G,Montangero S,et al.Efficient quantum computing of complex dynamics[J].Phys Rev Lett,2001,87:227901-227904.
    [103]Gorin T,Prosen T.Seligman T.H.A random matrix formulation of fidelity decay[J].New Journal of Physics,2004,6:1-29.
    [104]Lindblad G.On the generators of quantum dynamical semigroups[J].Communications in Mathematical Physics,1976,48:119-130.
    [105]刘晓曙.量子退相干中的量子控制问题研究[D]:[博士学位论文].北京:清华大学物理系,2005.
    [106]张勇.量子计算机中量子噪声控制的理论研究[D]:[博士学位论文].安徽合肥:中国科学技术大学,2004.
    [107]Brun T.A.A simple model of quantum trajectories[J].Am J Phys,2002,70:719-737.
    [108]Molmer K,Castin Y.Monte Carlo wavcfunctions in quantum optics[J].Quantum Semiclass Opt,1996,8:49-72.
    [109]Wehrl A.General properties of entropy[J].Rev Mod Phys,1978,50:221-260.
    [110]Lee J.W.Shepclyansky D.L.Quantum chaos algorithms and dissipative decohcrcnce with quantum trajectories[J].Phys Rev E,2005,71:056202-056207.
    [111]叶宾,谷瑞军,须文波.周期驱动的Harper模型的量子计算鲁棒性与量子混沌[J].物理学报,2007,56:3709-3718.
    [112]Frahm K.M,Fleckinger R,Shepelyansky D.L.Quantum chaos and random matrix theory for fidelity decay in quantum computations with static imperfections[J].Eur Phys J D,2004,29:139-155.
    [113]Zanardi P.Symmetrizing evolutions[J].Phys Lett A,1999,258:77-82.
    [114]Ticozzi F,Ferrante A.Dynamical decoupling in quantum control:a system theoretic approach[J].Syst Control Lett,2006,55:578-584.
    [115]Viola L,Knill E.Robust dynamical decoupling of quantum systems with bounded controls[J].Phys Rev Lett,2003,90:037901-037904.
    [116]Khodjasteh K,Lidar D.A.Fault-tolerant quantum dynamical decoupling J].Phys Rev Lett,2005,95:180501-180504.
    [117]Saraceno M.Classical structures in the quantized baker transformation[J].Annals of Physics,1990,199:37-60.
    [118]Balazs N.L,Voros A.The quantized baker's transformation[J].Europhys Lett,1987,4:1089-1094.
    [119]Howell J.C,Yeazell J.A.Linear optics simulations of the quantum baker's map[J].Phys Rev A,2000,61:123041-123046.
    [120]Romulo F.A,Raul O.V.Entangling power of the baker's map:Role of symmetries[J].Phys Rev A,2006,73:052327-052332.
    [121]董道毅.量子控制策略与学习控制算法研究[D]:[博士学化论文].安徽合肥:中国科学技术大学,2006.
    [122]Huang G.M,Tarn T.J,Clark J.W.On the controllability of quantum-mechanical systems[J].J Math Phys,1983,24:2608-2618.
    [123]丛爽,郑毅松,姬北辰,等.量子系统控制发展综述[J].量子电子学报,2003,20:1-9.
    [124]Warren W.S,Rabitz H,Dahleh M.Coherent control of quantum dynamics:the dream is alive[J].Science,1993,259:1581-1589.
    [125]Peirce A.P,Dahleh M,Rabitz H.Optimal control of quantum-mechanical systems:Existence,numerical approximation and applications[J].Phys Rev A,1988,37:4950-4964.
    [126]Wiseman H.M,Miburn G.J.Quantum theory of optical feedback via homodyne detection[J].Phys Rev Lett,1993,70:548-551.
    [127]Doherty A.C,Jacobs K.Feedback control of quantum systems using continuous state estimation[J].Phys Rev A,1999,60:2700-2711.
    [128]Doherty A.C,Habib S,Jacobs K,et al.Quantum feedback control and classical control theory[J].Phys Rev A,2000,62:012105-012118.
    [129]Lloyd S.Coherent quantum feedback[J].Phys Rev A,2000,62:022108-022120.
    [130]程代展.量子控制-一个全新的学科领域[J].控制与决策,2002,17:513-516.
    [131]Schirmcr S.G,Solomon A.I,Leahy J.V.Degrees of controllability for quantum systems and application to atomic systems[J].J Phys A:Math Gen,2002,35:4125-4141.
    [132]张靖,李春文,吴热冰.开放环境下多比特量子计算机的相干控制模型[J].自动化学报,2005,31:759-764.
    [133]Grivopoulos S,Bamieh B.Lyapunov-based control of quantum systems[C].Proceedings of IEEE Conference on Decision and Control,Sydney,NSW,2000.
    [134]Yanagisawa M,Kimura H.Transfer function approach to quantum control[J].IEEE Transactions on Automatic Control,2003,48:2107-2132.
    [135]Doherty A,Doyle J,Mabuchi H,et al.Robust control in the quantum domain[C].Proceedings of IEEE Conference on Decision and Control,Maui,Hawaii USA,2003.
    [136]Pravia M.A,Boulant N,Emerson J,et al.Robust control of quantum information[J].J Chem Phys,2003,119:9993-10001.
    [137] D'Helon C, James M. R. Stability, gain, and robustness in quantum feedback networks [J]. Phys Rev A, 2006, 73:053803-053816.
    [138] Ticozzi F, Ferrante A, Pavon M. Robust steering of n-levcl quantum systems [J]. IEEE Transactions on Automatic Control, 2004, 49:1742-1745.
    [139] Andreas D. V. Global stability criterion for a quantum feedback control process on a single qubit and exponential stability in case of perfect detection efficiency [J]. Phys Rev A, 2007, 75:032101-032107.
    
    [140] Khaneja N, Glaser S. J. Cartan decomposition of SU(2") and control of spin systems [J]. Chem Phys, 2001,267:11-23.
    [141] Schirmer S. G, Greentree A. D, Ramakrishna V, et al. Constructive control of quantum systems using factorization of unitary operators [J]. J Phys A: Math Gen, 2002, 35:8315-8339.
    [142] Ramakrishna V, Flores K. L, Rabitz H. et al. Quantum control by decompositions of SU(2) [J]. Phys Rev A, 2000, 62:053409-053420.
    [143] Schirmer S. G. Quantum control using Lie group decompositions [C]. Proceedings of IEEE Conference on Decision and Control, Orlando, Florida USA, 2001.
    [144] D'Alessandro D, Dahleh M. Optimal control of two-level quantum systems [J]. IEEE Transactions on Automatic Control, 2001, 46:866-876.
    [145] Ramakrishna V, Ober R, Sun X. B. et al. Explicit generation of unitary transformations in a single atom or molecule [J]. Phys Rev A. 2000, 61:032106-032112.
    [146] Ramakrishna V. Control of molecular systems with very few phases [J]. Chem Phys, 2001,267:25-32.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700