两体系统几何相位和纠缠性质的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着量子信息和量子计算的快速发展,量子理论被当作一种重要的物理资源引起越来越多的关注。量子纠缠,几何相位和量子反馈控制不仅从理论上在量子信息理论中得到广泛研究,并且相应的实验研究已经深入到物理学的各个领域。本文主要通过研究两体系统中几何相以及量子纠缠的物理性质,有助我们理解几何相和量子纠缠的物理涵义,并思考如何将之应用到量子信息处理过程中,具有积极的意义。论文共包括六章,其中我们的工作主要是第三章至第六章。
     第一章和第二章简单介绍了本文的研究背景,研究的重要性,回顾了量子纠缠,几何相以及开放体系反馈控制的研究现状。详细介绍了几何相在非绝热,非循环,非幺正条件下的定义。
     第三章首先介绍了处于经典场中的粒子与自由粒子相互耦合构成的复合体系几何相的性质,而后分别考虑两个粒子各自构成的子体系几何相的性质。通过比较子体系与复合体系的几何相,我们发现,二者在几何相变化趋势上有相同之处。另外我们又计算了不同种几何相位定义对子体系几何相位的影响,这给我们提供了通过经典场控制体系几何相的理论基础。
     第四章研究了Bose-Einstein凝聚体(BECs)体系与经典粒子组成的双粒子体系的纠缠性质,利用并发度von-Neumann熵作为纠缠度量给出纠缠度与表征BECs体系参量——非线性系数之间的函数关系。在非线性系数与能级差系数成一定比例关系时,纠缠度发生突变,由有序的周期性振荡变成混乱无序的。该性质提供了一种通过经典粒子诱导BECs粒子在双势阱中隧穿的实验方法。
     第五章我们提出利用量子反馈控制控制二能级开放体系几何相位,结果表明体系即使在不能从任意初始态演化到另一个任意态情况下,我们也可以构造适当的反馈控制来调节开放体系的几何相。当开放体系的衰减率相对磁场强度很大或者很小的时候,几何相都是反馈系数的周期性函数。然后我们又给出了反馈效率对体系几何相的影响,这在实验上是需要考虑的因素。这个结果为研究如何控制开放体系提供了新的方法。
     第六章介绍单个二能级原子束缚于腔壁作周期性运动的微腔中,腔壁的快速振荡导致原子和腔场的非线性耦合。通过分析原子内部自由度随时间的变化,反映动壁腔效应对原子的影响。另一方面,由于场和原子相互作用在不断变化,对原子的质心运动和腔壁振动产生了一个额外的势,导致了腔与原予的纠缠。我们利用数值模拟计算出体系的von-Neumann熵,发现纠缠不受耦合参量变化的影响,纠缠随时间的演化是无序的,只有在特殊情况下纠缠随时间的演化呈现周期性变化规律。最后为全文的总结与展望。
With the rapid development of quantum information and quantum computation,the quantum theory has attracted more and more attention as an important physical resource. Quantum entanglement,geometric phase and quantum feedback control have been studied extensively in theory.Furthermore,their wide applications were rediscovered as a new resource to manipulate the quantum system in various physical research field.In this thesis, the geometric phase and entanglement properties in a bipartite system have been discussed, respectively.This discussions lead to some interesting results,which shed light on understanding the physical implications of geometric phase and quantum entanglement,it also inspires us how they can be applied in quantum information experiment.The dissertation consists of seven chapters,and the main contents are given in Chapters 3 through 6.
     In Chapter 1 and Chapter 2,the background of our study and the importance of the investigation are introduced,the general situation of quantification of quantum information theory,entanglement,geometric phase,as well as quantum feedback control are briefly described. The geometric phase in a nonunitary,nonadiabatic,noncyclic system are described in detail.
     In Chapter 3,a detailed investigation on the Berry phase in a bipartite system which consists of two coupled spin-1/2 particles with an X-X-Z term coupling is introduced.The Berry phase acquired by the bipartite system as well as the geometric phase gained by each subsystem are calculated.The results show that the Berry phase of the bipartite system is a weighted sum of the geometric phases of the subsystems.And with the coupling constants tend to infinity the phases go to zero,this confirms the prediction given by Yi previously (Phys.Rev.Lett.92,150406(2004)) with a specific subsystem-subsystem coupling.
     In Chapter 4,a few features of entanglement of two types of particles coupled through a nonlinear interaction are presented.It is shown that the entanglement created by the nonlinear interaction can reflect nonlinearity of the system.Possible observation of our prediction in a double-well trapped Bose-Einstein condensates is discussed.
     In Chapter 5,the effect of feedback control on geometric phase in a two-level dissipative system is studied.The dependence of the phase on the feed-back parameters are calculated and discussed.The results suggested that we can manipulate the phase by a properly designed feedback control.For small and large atomic dissipative rates with respect to the amplitude of the driving magnetic fieldμB_0,the geometric phase is a periodic function of the feedback parameters,the physics behind these features is also presented.
     In Chapter 6,the dynamics and entanglement of a two-level atom trapped in a cavity with a movable mirror is studied.The fast vibrating mirror induces nonlinear couplings between the cavity field and the atom.This optical effect by showing the population of the atom in its internal degrees of freedom as a function of time is studied.On the other side,fast atom-field variables result in an additional potential for the atomic center-of-mass motion and the mirror vibration,leading to entanglement in the motion and the vibration. The entanglement has been numerically simulated and discussed.
     Finally,the conclusions and discussions are presented.
引文
[1]曾谨言,量子力学导论[M].北京:北京大学出版社,1998.
    [2]Einstein A,Podolsky B,Rosen N,Can quantum mechanical description of physical reality be considered complete[J]? Phys.Rev.1935,47:777-780.
    [3]Schr(o|¨)dinger E,Probability relations between separated systems[J].Proc.Cambridge.Philos.Soc.,1936,32:446-452.
    [4]Bell J,On the Einstein-Podolsky-Rosen paradox[J].Physics,1964,1:195-200.
    [5]Bohm D,A suggested interpretation of the quantum theory in terms of 'hidden' variables[J].Phys.Rev.1952,85:166-193.
    [6]Nielson M A,Chuang I L,quantum computation and quantum information[M].2000,Cambridge University Press.
    [7]Bennett C H,Wiesner S J,Communication via 1- and 2-Particle Operators on Einstein-Podolsky-Rosen States[J].Phys.Rev.Lett.1992,69:2881-2884;Bennett C H,Quantum cryptography using any two nonorthogonal states[J].Phys.Rev.Lett.1992,68:3121-3124;Bennett C H,Brassard G,Crepeau C,Jozsa R,Peres A,Wootters W.K,Teleportating an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels[J].Phys.Rev.Lett,1993,70:1895.
    [8]Shor P W,Algorithms for quantum computation:Discrete logarithms and factoring[C].1994 Proc.35th Annual symposium on the Foundations of Computer Science,124.
    [9]Grover L K,Quantum Mechanics helps in searching for a needle in a haystack[J].Phys.Rev.Lett.1997,78:325.
    [10]Bouwmeester D,Pan J W,Mattle K,Eibl M,Weinfrurter H,Zeilinger A,Expreimental quantum teleportion[J].Nature,1997,390:575-579.
    [11]Berry M V,Quantal phase factors accompanying adiabatic changes[J].Proc.Roy.Soc.London.Ser.A,1984,392:45.
    [12]Simon B,Holonomy,The auantum adiabatic theorem,and Berry's Phase[J].Phys.Rev.Lett.1984,51:2167-2170.
    [13]Bohm A,Mostafazadeh A,Koizumi H,Niu Q,and Zwanziger J,The geometric phase in quantum systems[M].2003,Springer,New York.
    [14]Yang C N,Square root of minus one,Complex phases and Erwin Schr(o|¨)dinger[C].In:Kilmister C W ed.,Schir(o|¨)dinger Centenary Celebration of a Polymath,1987,New York,Cambridge Univ.Press.
    [15]Dirac P A M,Fields & Quanta[M].1972(3):139.
    [16]Pancharatnam S,Generalized theory of interference and its applications[J].Proc.Indian Aca.Sci.,1956,5:247-262.
    [17]Aharonov A,Bohm D,Significance of electromagnetic potential in the quantum theory[J].Phys.Rev.1959,115:485-491.
    [18]Geometric phase in physics[M].Edited by Shapere A and Wilczek F,1989,Singapore,World Sci-entific.
    [19]Aharonov Y,Anandan J,Phase charge during a cyclic quantum evolution[J].Phys.Rev.Lett.1987,58:1593.
    [20]Anandan J,Aharonov Y,Geometric quantum phase and angles[J].Phys.Rev.D,1988,38:1863.
    [21]Samuel J,Bhandari R,General Setting for Berry's Phase[J].Phys.Rev.Lett.1988,60:2339.
    [22]Zanardi P,Rasetti M,Holonomic quantum computation[J].Phys.Lett.A,1999,264:94.
    [23]Ekert A,Ericsson M,Hayden P,Inamori H,Jones J A,Oi D K L,Vedral V,Geometric quantum computation[J].J.Mod.Opt.2000,47:2051.
    [24]Jones J A,Vedral V,Ekert A,Castagnoli G,Geometric quantum computation using nuclear magnetic resonance[J].Nature,1999,403:869.
    [25]Falci G,Fazio R,Palma G M,Siewert J,Vedral V,Detection of geometric phases in superconducting nanocircuits[J].Nature(London),2000,407:355.
    [26]Duan L M,Cirac J I,Zoller P,Geometric Manipulation of Trapped Ions for Quantum Computation[J].Science,2001,292:1695.
    [27]Zhu S L,Wang Z D,Unconventional Geometric Quantum Computation[J].Phys.Rev.Lett.2003,91:187902.Zhu S L,Wang Z D,Zanardi P,Geometric Quantum Computation and Multiqubit Entanglement with Superconducting Qubits inside a Cavity[J].Phys.Rev.Lett.2005,94:100502.
    [28]Wang X B,Keiji M,Nonadiabatic Conditional Geometric Phase Shift with NMR[J].Phys.Rev.Lett.2001,87:097901;ibid.Erratum:Nonadiabatic Conditional Geometric Phase Shift with NMR[J].[Phys.Rev.Lett.87,097901(2001)],2002,88:179901(E).
    [29]Wootters William K,Entanglement of formation of an arbitrary state of two qubits[J].Phys.Rev.Lett.1998,80:2245-2248.
    [30]Bennett C H,Brassard G,Cr(?)peau C,et al.Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels[J].Phys.Rev.Lett.1993,70:1895-1899.
    [31]Bennett C H,Brassard G.Proceedings of the IEEE international conference on computers,systems,and signal processing[M].Bangalore,India(IEEE,New York,1984).
    [32]Beige A,Englert B-G,Kurtsiefer C,et al.Secure communication with a publicly known key[J].Acta Phys.Pol.A,2002,101:357.
    [33]Rauschenbeutel A,Nogues G,Osnaghi S,et al.Step-by-step engineered multiparticle entanglement[J].Science,2000,288:2024-2028.
    [34]DeVoe R G,Brewer R G,Observation of superradiant and subradiant spontaneous emission of two trapped ions[J].Phys.Rev.Lett.1996,76:2049-2052.
    [35]Riesch D,Abich K,Neuhauser W,et al.Raman cooling and heating of two trapped Ba~+ ions[J].Phys.Rev.A,2002,65:053401.
    [36][21]Cirac I J,Zoller P,Quantum computations with cold trapped ions[J].Phys.Rev.Lett.1991,74:4091-4094.
    [37]Gershefeld N,Chuang I L,Bulk spin-resonance quantum computation[J].Science,1997,275:350-356.
    [38]Pu H,Meystre P,Creating macroscopic atomic Einstein-Podolsky-Rosen states from Bose-Einstein condensates[J].Phys.Rev.Lett.2000,85:3987-3990.
    [39]Duan L M,Sorensen A,Cirac J I,et al.Squeezing and entanglement of atomic Beams[J].Phys.Rev.Lett.2000,85:3991-3994.
    [40]Huang G M and Tarn J T,On the congrollability of quantum mechanical system[J].Math Phys,1983,11:2608-2618.
    [41]Ong C K,Huang G M,Tarn J T,et al.Invertibility of quantum mechanical control system[J].Mathematical System Theory,1984,17:335-350.
    [42]Clark J W,Ong C K,Tarn J T,et al.Quantum nondemolition filters[J].Mathematical System Theory,1985,18:33-35.
    [43]D'Alessandro D,Dahleh M,Optimal control of two-level quantum systems[J].Trans.Automat Contr,2001,46:866-876.
    [44]Wu R B,et al.Explicitly solvable extremals of time optimal control for 2-level quantum systems[J].Phys.Lett.A,2002,295:20-24.
    [45]Schirmer S G,Pullen I C H,Solomon A I,Controllability of quantum systems[J].2003,Arxiv quant-ph/030201,1-6.
    [46]Yanagisawa M,Kimra H,Transfer function approach to quantum control-part Ⅰ Dvnamics of quantum feedback systems[J].Trans.Automat.Contr,2003,48:2107-2120.
    [47]Doherty A C,Habib S,Jacobs K,et al.Quantum feedback control and calssical control theory[J].Phys.Rev.A,2000,62:012105.
    [48]Lloyd S,Coherent quantum feedback[J].Phys.Rev.A,2000,62:022108.
    [49]Wiseman H,Quantum theory of continuous feedback[J].Phys.Rev.A,1994,49:2133-2150.
    [50]Wiseman M H,Toombes G E,Quantum jumps in a two-level atom:Simple theories versus quantum trajectories[J].Phys.Rev.A,1999,60:2474.
    [51]Doherty A C and Jacobs K,Feedback control of quantum systems using contiuous state estimation [J].Phys.Rev.A,1999,60:2700-2711.
    [52]Giovannetti V,Tombesi P and Vitali D,Non-Markovian quantum feedback from homodyne measurements:the effect of a nonzero feedback delay time[J].Phys.Rev.A,1999,60:1549-1561.
    [53]Warren W S,Rabitz H and Dahleh M,Coherent control of quantum dynamics:The dream is alive[J].Science,1993,259:1981-1585.
    [64]Thomsen L K,Wiseman H M,Atom-laser coherence and its control via feedback[J].Phys.Rev.A,2002,65:063607.
    [55]Vitali D,Tombesi P,Milburn G J,Controlling the Decoherence of a "Meter" via Stroboscopic Feedback[J].Phys.Rev.Lett.1997,79:2442-2445.
    [56]Hofmann H F,Mahler G,Hess o,Quantum control of atomic systems by homodyne detection and feedback[J].Phys.Rev.A,1998,'57:4877-4888.
    [57]Tombesi P,Vitali D,Macroscopic coherence via quantum feedback[J].Phys.Rev.A,1995,51:4913-4917.
    [58]Horoshko D B and Kilin S Ya,Direct Detection Feedback for Preserving Quantum Coherence in an Open Cavity[J].Phys.Rev.Lett.1997,78:840-842.
    [59]Weinacht T C,Becksbaum P H,Using feedback for coherent control of quantum systems[J].J Opt B,2002,4:R35-R52.
    [60]Haus H A,Yamamoto Y,Theory of feedback-generated states[J].Phys.Rev.A,1986,34:270-292.
    [61]Yamamoto Y,Imoto X,Machida S,Amplitude squeezing in a semiconductor laser using quantum nondemolition measurement and negative feedback[J].Phys.Rev.A,1986,33:3243-3261.
    [62]LIebman A,Milburn G J,Quantum-noise reduction on a driven cavity with feedback[J].Phys.Rev.A,1993,47:634-638.
    [63]Tombesi P,Vitali D,Physical realization of an environment with squeezed quantum fluctuations via quantum-nondemolition-mediated feedback[J].Phys.Rev.A,1994,50:4253-4257.
    [64]Thomsen L K,Mancini S,Wiseman H M,Spin squeezing via quantum feedback[J].Phys.Rev.A,2002,65:061801.
    [69]Liebman A,Milburn G J,Creating number states in the micromaser using feedback[J].Phys.Rev.A,1995,51:736-751.
    [66]Wiseman H M,Milburn G J,Reduction in laser-intensity fluctuations by a feedback output mirror [J].Phys.Rev.A,1992,46:2853-2858.
    [67]Ahn C,Wiseman H M,Milburn G J,Quantum error correction for continuously detected errors[J].Phys.Rev.A,2003,67:052310.
    [68]D'Urso B,Odom B,Gabrielse G,Feedback cooling of a one-electron oscillator[J].Phys.Rev.Lett.2003,90:043001.
    [69]Liebman A,and Milburn G J,Creating number states in the micromaser using feedback[J].Phys.Rev.A,1995,51:736-751.
    [70]张永德,量子信息物理原理[M].北京:科学出版社,2006.
    [71]Weisskopf V F and Wigner E,Berechnung der nat(u|¨)rlichen Linienbreite auf Grund der Diracschen Lichttheorie[J].Z.Physik,1930,63:54.
    [72]Ellinas D,Barnett S M,Dupertuis M A,Berry's in optical resonance[J].Phys.Rev.A,1989,39:3228-3237.
    [73]Carollo A,Fuentes-Guridi I,Franca Santos M,and Vedral V,Geometric Phase in Open Systems[J].Phys.Rev.Lett.2003,90:160402.
    [74]Yi X X,Wang L C,and Zheng T Y,Berry phase in a composite system[J].2004,Phys.Rev.Lett.92:150406.Yi X X,Wang L C,and Zheng T Y,Erratum:Berry phase in a composite system[J].[Phys.Rev.Lett.92,150406(2004)],2007,Phys.Rev.Lett.99:139903.
    [75]Messiah A,Quantum Mechanics[M].Volume 2,1961,North-land,Amsterdam.
    [76]孙昌璞,张芃,量子绝热近似与Berry相因子:推广和应用[M].《量子力学新进展(第二辑)》,曾谨言等编,北京大学出版社,2001.
    [77]Wilzek F,Zee A,Appearance of gauge structure in simple dynamical systems[J].Phys.Rev.Lett.1984,52:2111-2114.
    [78]J.H.Hannay,Angle variable holonomy in adiabatic excursion of an integrable Hamiltonian[J].J.Phys.A,1985,18:221-230.
    [79]Tong D M,Singh K,Kwek L C,and Oh C H,Sufficiency criterion for the validity of the adiabatic approximation[J].Phys.Rev.Lett.98,2007,150402.
    [80]Uhlmann A,Parallel transport and quantum holonomy along density operators,Rep.Math.Phys.1986,24:229-240;Uhlmann A,A gauge field governing parallel transport along mixed states[J].Lett.Math.Phys.1991,21:229-236.
    [81]Sj(?)qvist E,Pati A K,Ekert A,Anandan J S,Ericsson M,Oi Daniel K L,Vedral V,Geometric phases for mixed states in interferometry[J].Phys.Rev.Lett.2000,85:2845-2849.
    [82]Pati A K,Geometric aspects of noncyclic quantum evolutions,Phys.Rev.A,1995,52:2576;Pati A K,Gauge-invariant reference section and geometric phase[J].J.Phys.A,1995,28:2087.
    [83]Anandan J S,Geometric angles in quantum and classical physics[J].Phys.Lett.A,1988,129:201;Anandan J S,The geometric phase[J].Nature,1992,360:307-313.
    [84]Tong D M,Sjoqvist E,Kwek L C,and Oh C H,Kinematic approach to the mixed state geometric phase in nonunitary evolution[J].2004,Phys.Rev.Lett.93:080405.
    [85]Vedral V,Plenio M B,Rippin M A,et al.Quantifying entanglement[J].Phys.Rev Letts.1997,78:2275-2279.
    [86]Bennett C H,DiVincenzo D P,Smolin J,et al.Mixed-state entanglement and quantum error correction[J].Phys.Rev.A,1996,54:3824-3851.
    [87]Horodecki M.Entanglement measures.Quantum Information and Computation[J].2001,1:3-26.
    [88]Christandl M,Winter A.“Squashed Entanglement”-An additive entanglement measure[J].J.Math.Phys.2004,45:829-840.
    [89]Hessmo B,Sj(?)qvist E,Quantal phase for nonmaximally entangled photons[J].Phys.Rev.A,2000,62:062301.
    [90]Tong D M,Kwek L C,Oh C H,Geometric phase for entangled states of two spin-1/2 particles in rotating magnetic field[J].J.Phys.A,2003,36:1149;Tong D M,Sjoqvist E,Kwek L C,Oh C H,M.Ericsson,Relation between geometric phases of entangled bipartite systems and their subsystems[J].Phys.Rev.A,2003,68:022106.
    [91]Sjoqvist E,Yi X X,Aberg Johan,Adiabatic geometric phases in hydrogenlike atoms[J].Phys.Rev.A,2005,72:054101.
    [92]Yi X X,Sjoqvist Erik,Effect of intersubsystem coupling on the geometric phase in a bipartite system[J].Phys.Rev.A,2004,70:042104.
    [93]Du Jiangfeng,Zou Ping,Shi Mingjun,Kwek Leong Chuan,Pan Jian Wei,Oh C H,Ekert Artur,Oi Daniel K L,and Ericsson Marie,Observation of geometric phases for mixed states using NMR interferometry[J].Phys.Rev.Lett.2003,91:100403.
    [94]Du Jiangfeng,Zhu Jing,Shi Mingjun,Peng Xinhua,and Suter Dieter,Experimental observation of a topological phase in the maximally entangled state of a pair of qubits[J].Phys.Rev.A,2007,76:042121.
    [95]Izmalkov A,Grajcar M,Il'ichev E,Oukhanski N,Wagner T,Meyer H-G,Krech W,Amin M H S,Maassen van den Brink A,Zagoskin A M,Observation of macroscopic Landau-Zener transitions in a superconducting device[J].Europhys.Lett.2004,65:844.
    [96]Oliver W D,Yu Y,Lee J C,Berggren K K,Levitov L S,Orlando T P,Mach-Zehnder Interferometry in a Strongly Driven Superconducting Qubit[J].Science,2005,310:1653.
    [97]Sillanp(a|¨)(a|¨) M,Lehtinen T,Paila A,Makhlin Y,Hakonen P,Continuons-Time Monitoring of Landau-Zener Interference in a Cooper-Pair Box[J].Phys.Rev.Lett.2006,96:187002.
    [98]Landau L D,Zur Theorie der Energieubertragung Ⅱ[J].Phys.Z.Sowjetunion,1932,2:46.
    [99]Zener C,Nonadiabatic crossing of energy levels[J].Proc.R.Soc.A,1932,137:696.
    [100]Stueckelberg E C G,Theorie der unelastischen St(o|¨)sse zwischen Atomen[J].Helv Phys Acta,1932(5):369.
    [101]Ankerhold J,Grabert H,Enhancement of macroscopic quantum tunneling by Landau-Zener transitions [J].Phys.Rev.Lett.2003,91:016803.
    [102]Saito K,Kayanuma Y,Nonadiabatic electron manipulation in quantum dot arrays[J].Phys.Rev.B,2004,70:201304(R).
    [103]Saito K,Wubs M,Kohler S,H(a|¨)nggi P,Kayanuma Y,Quantum state preparation in circuit QED via LandauoZener tunneling[J].Europhys.Lett.2006,76:22.
    [104]Hicke C,Santos L F,Dykman M I,Fault-tolerant Landau-Zener quantum gates[J].Phys.Rev.A,2006,73:012342.
    [105]Wubs M,Kohler S,H(a|¨)nggi P,Entanglement creation in circuit QED via Landau-Zener sweeps[J].arXiv:cond-mat/0703425.
    [106]Andrews M R,Townsend C G,Miesner H J,Durfee D S,Kurn D M,and Ketterle W,Observation of interference between two Bose condensates[J].Science,1997,275:637.
    [107]Smerzi A,Fantoni S,Giovannazzi S,and Shenoy S R,Quantum coherent atomic tunneling between two trapped Bose-Einstein condensates[J].Phys.Rev.Lett.1997,79:4950-4953;Milburn G J et al.Quantum dynamics of an atomic Bose-Einstein condensate in a double-well potential[J].Phys.Rev.A,1997,55:4318.
    [108]Mewes M O,Andrews M R,Kurn D M,Durfee D S,Townsend C G,and Ketterle W,Output coupler for Bose-Einstein condensed atoms[J].Phys.Rev.Lett.1997,78:582.
    [109]Anderson M H,Matthews M R,Wieman C E,and Cornell E A,Observation of Bose-Einstein condensation in a dilute atomic vapor[J].Science,1995,269:198.
    [110]Choi Dae-Ⅱ and Niu Q,Bose-Einstein condensates in an optical lattice[J].Phys.Rev.Lett.1999,82:2022.
    [111]Wernsdofer W,Sessoli R,Caneechi A,et al.Landau—Zener method to study quantum phase interference of Fe8 molecular nanomagnets[J].J.Appl.Phys.2000,87:481.
    [112]Liu Jie,Wu Biao,Fu Libin,et al.Quantum setp heights in hysteresis loops of molecular magnets[J].Phys.Rev.B,2000,65:224401.
    [113]Wu Biao and Niu Qian,Nonlinear Landau-Zener tunneling[J].Phys.Rev.A,2000,61:023402.
    [114]Liu Jie,Fu Libin,Ou Bi-Yiao,Chen Shi-Gang,Choi Dae-Ⅱ,Wu Biao,Niu Qian,Theory of nonlinear Landau-Zener tunneling[J].Phys.Rev.A,2002,66:023404.
    [115]吴飙,非线性朗道-基纳隧穿[J].大学物理,2006,25:12.
    [116]Jona-Lasinio M,Morsch O,Cristiani M,Malossi N,M(u|¨)ller J H,Courtade E,Anderlini M,and Arimondo E,Asymmetric Landau-Zener tunneling in a periodic potential[J].Phys.Rev.Lett.2003,91:230406.
    [117]Wernsdofer W,Sessoli R,Caneschi A,et al.Landau- Zener method to study quantum phase interference of Fes molecular nanomagnets[J].J.Appl.Phys,2000,87:5481.
    [118]Liu Jie,Wu Biao,Niu Qian,Nonlinear evolution of quantum states in the adiabatic regime[J].Phys.Rev.Lett.2003,90:170404.
    [119]Yi X X,Huang X L,and Wang W,Loschmidt echo and Berry phase around degeneracies in nonlinear systems[J].Phys.Rev.A,2007,77:052115.
    [120]Wang Guan-Fang,Ye Di-Fa,Fu Li-Bin,Chen Xu-Zong,and Liu Jie,Landau-Zener tunneling in a nonlinear three-level system[J].Phys.Rev.A,2006,74:033414.
    [121]Hines.Andrew P,McKenzie.Ross H,Milburn.Gerard J,Entanglement of two-mode Bose-Einstein condensates[J].Phys Rev A,2003,67:013609.
    [122]Graefe E M,Korsch H J,and Witthaut D,Mean-field dynamics of a Bose-Einstein condensate in a time-dependent triple-well trap:Nonlinear eigenstates,Landau-Zener models,and stimulated Raman adiabatic passage[J].Phys.Rev.A,2006,73:013617.
    [123]Nielsen M A and Chuang I L,Quantum Computation and Quantum Information[M].Cambridge University Press,Cambridge,2000.
    [124]Hines Andrew P,McKenzie Ross H,and Milburn Gerard J,Entanglement of two-mode Bose-Einstein condensates[J].Phys.Rev.A,2003,67:013609.
    [125]Fischer Uwe R,Iniotakis Christian,and Posazhennikova Anna,Coherent single atom shuttle between two Bose-Einstein condensates[J].Phys.Rev.A,2008,77:031602(R).
    [126]Neumann yon J,Mathematical Foundations of Quantum Mechanics[M].Princeton:Princeton Univer-sity Press,1955.
    [127]Collett M J,Exact density-matrix calculations for simple open systems[J].Phys.Rev.A,1988,38:2233-2247.
    [128]Wang Jin,Wiseman H M,and Milburn G J,Dynamical creation of entanglement by homodyne-mediated feedback[J].Phys.Rev.A,2005,71:042309.
    [129]Wiseman H M and Milburn G J,Interpretation of quantum jump and diffusion processes illustrated on the Bloch sphere[J].Phys.Rev.A,1993,47:1652.
    [130]Agarwal G S,Quantum statistical theories of spontaneous emission and their relation to other approaches[M].Berlin,Springer Tracts in Modern Physics,vol 70,1974.
    [131]Carvalho A R R,Reid A J S and Hope J J,Controlling entanglement by direct quantum feedback [J].Phys.Rev.A,2008,78:012334.
    [132]Cohadon P F,Heidmann A,and Pinard M,Cooling of a mirror by radiation pressure[J].Phys.Rev.Lett.1999,83:3174.
    [133]Kleckner D and Bouwmeester D,Sub-kelvin optical cooling of a micromechanical resonator[J].Nature,2006,444:75.
    [134]Gigan S,B(o|¨)hm R H,Paternostro M,Blaser F,Langer G,Hertzberg J B,Schwab K C,B(a|¨)uerle D,Aspelmeyer M,Zeilinger A,Self-cooling of a micromirror by radiation pressure[J].Nature,2006,444:67.
    [135]Arcizet O,Cohadon P F,Briant T,Pinaxd M,and Heidmann A,Radiation-pressure cooling and optomechanical instability of a micromirror[J].Nature,2006,444:71.
    [136]Schliesser A,Del'Haye P,Nooshi N,Vahala K J,and Kippenberg T J,Radiation pressure cooling of a micromechanical oscillator using dynamical baackaction[J].Phys.Rev.Lett.2006,97:243905.
    [137]Corbitt T,Chert Y,Innerhofer E,M(u|¨)ller-Ebhardt H,Ottawa),D,Rehbein H,Sigg D,Whitcomb S,Wipf C,and Mavalvala N,An all-optical trap for a Gram-scale mirror[J].Phys.Rev.Lett.2007,98:150802.
    [138]Yang Y T,Callegari C,Feng X L,Ekinci K L,Ronkes M L,Zeptogram-scale nanomechanical mass sensing[J].Nano Letters,2006,6:583.
    [139]Courty J M,Heidmann A,and Pinard M,Quantum locking of mirrors in interferometers[J].Phys.Rev.Lett.2003,90:083601.
    [140]Mancini S,Vitali D and Tombesi P,Scheme for teleportation of quantum states onto a mechanical resonator[J].Phys.Rev.Lett.2003,90:137901.
    [141]Meiser D and Meystre P,Coupled dynamics of atoms and radiation-pressure-driven interferometers [J].Phys.Rev.A,2006,73:033417;Meiser D and Meystre P,Superstrong coupling regime of cavity quantum electrodynamics[J].Phys.Rev.A,2006,74:065801.
    [142]Asb(?)th J K and Domokos P,Comment on "Coupled dynamics of atoms and radiation-pressure-driven intefferometers" and "Superstrong coupling regime of cavity quantum electrodynamics"[J].Phys.Rev.A,2007,76:057801;Meiser D and Meystre P,Reply to "Comment on 'Coupled dynamics of atoms and radiation-pressure-driven interferometers' and 'Superstrong coupling regime of cavity quantum electrodynamics' "[J].Phys.Rey.A,2007,76:057802.
    [143]Ian H,Gong Z R,Liu Y X,Sun C P,and Nori F,Cavity optomechanical coupling assisted by an atomic gas[J].2008,ar Xiv:0803.0776.
    [144]Schliesser A,Riviere R,Anetsberger G,Arcizet O,Kippenberg T J,Resolved-sideband cooling of a micromechanical oscillator[J].Nature Physics,2008,4:415.
    [145]Mancini S,Giovannetti V,Vitali D,Tombesi P,Entangling macroscopic oscillators exploiting radiation pressure[J].Phys.Rev.Lett.2002,88:120401;Pinard M,Dantan A,Vitali D,Arcizet O,Briant T,Heidmann A,Entangling movable mirrors in a double-cavity system[J].Europhys.Lett.2005,72:747.
    [146]Vitali D,Gigan S,Ferreira A,B(o|¨)hm H R,Tombesi P,Guerreixo A,Vedral V,Zeilinger A,and Aspelmeyer M,Optomechanical entanglement between a movable mirror and a cavity field[J].Phys.Rev.Lett.2007,98:030405.
    [147]Hartmann M J and Plenio M B,Steady state entanglement in the mechanical vibrations of two dielectric membranes[J].Phys.Rev.Lett.2008,10h 200503.
    [148]Pinard M,Hadjar Y,Heidmann A,Stationary entanglement between macroscopic mechanical oscillators[J].Euro.Phys.J.D,1999,7:107.
    [149]Bhattacharya M and Meystre P,Trapping and cooling a mirror to its quantum mechanical ground state[J].Phys.Rev.Lett.2007,99:073601.
    [150]Bouwmeester D,Ekert A,and Zeilinger A,The physics of quantum information[M].Berlin,Springer,2000.
    [151]Est(?)ve D,Raimond J M,and Dalibard J,Quantum entanglement and information processing[M].Amsterdam,Elsevier,2003.
    [152]Vitali D,Mancini S,and Tombesi P,Stationary entanglement between two movable mirrors in a classically driven Fabry-Perot cavity[J].J.Phys.A,2007,40:8055.
    [153]Gong Z R,Inn H,Liu Y X,Sun C P,and Nori F,Kerr nonlinearity induced by an oscillating mirror in an optical cavity[J].2008,ar Xiv:0805.4102.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700