蛋白质组学相关技术及其在正常人肝组织和肝癌研究中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肝脏是人体最重要的器官之一,复杂程度仅次于脑,它是多种物质进行代谢的消化器官,并执行其它多种功能。肝脏疾病影响着超过全世界10%的人口,肝脏疾病的治疗也仍然困难重重,原因是缺乏有效诊断,分级和预后方法。由国际人类蛋白质组组织发起的人类肝脏蛋白质组计划已于2003年正式启动。
     肝脏蛋白质组的研究是一项系统而复杂的工程。首先肝脏具有非常复杂的蛋白质组成,如何将这些蛋白质分离鉴定本身就是一个挑战;其次,蛋白质组学研究的目的并不是简单的呈现蛋白质本身,而是要研究这些蛋白质在肝脏这一复杂系统中的功能,动态、整体、定量地考察肝脏疾病发生发展过程中蛋白质的变化,寻找疾病诊断的特异标志物和药物治疗的靶标。因此,肝脏蛋白质组的研究向蛋白质的分离鉴定技术、亚细胞蛋白分离和富集技术以及定量蛋白质组技术提出了很高的要求。
     本论文研究的目的是利用蛋白质组技术,一方面对分离鉴定技术进行优化,构建适合肝脏这种复杂蛋白样品蛋白质组研究的技术平台,尽可能的分析肝脏的全蛋白质组,从全局把握肝脏这一人体重要器官的生理功能,也为肝脏疾病研究提供参考数据;另一方面开发新的分离和富集技术,分析更高纯度的细胞器蛋白、在生命过程中起重要作用的翻译后修饰蛋白、低丰度蛋白和高疏水性蛋白,为全面、深刻的理解肝癌转移这一复杂过程提供信息依据,寻找有潜力成为早期诊断肝癌、预测转移的生物标记和干预治疗的靶分子。另外建立和优化定量蛋白质组技术,研究肝癌细胞以及肝疾病组织的差异表达,寻找与病理改变有关的蛋白质和疾病特异性蛋白质。
     本论文由4个部分组成。第一章概述了蛋白质组学的技术进展,包括以凝胶质谱联用技术、多维色谱质谱联用技术为主的分离鉴定技术,对膜蛋白以及糖蛋白这些丰度低、功能重要蛋白的富集技术,以及用于研究差异蛋白质的定量蛋白质组技术。在此基础上提出了本课题的研究内容。
     第二章阐述基于双向凝胶电泳与质谱联用技术研究正常人肝脏全蛋白的表达谱研究。大规模的蛋白质组研究需要高分辨蛋白质分离技术和高通量、高灵敏度的鉴定技术。在双向凝胶电泳第一向等电聚焦水平上,我们从上样方式、水化液配方、聚焦时间等方面优化了碱性蛋白的分离条件,利用超放大胶分离技术搭建了高分辨的双向凝胶电泳分离平台,构建了人类肝脏蛋白质2-DE参考谱,检测到5481个蛋白质点。这是目前国际上最为全面的人体器官蛋白质组2-DE参考谱,为其它肝病的研究建立了良好的参照系。我们成功鉴定了429个非冗余蛋白质,对pH4-7、pH5-6、pH5.5-6.7、pH6-9部分蛋白质点在胶上进行了注释,由此构建了人肝2-DE蛋白质表达谱数据库。对蛋白质的理化性质、功能及亚细胞定位进行了全面分析。90%的蛋白分子量都分布于10KDa-80KDa的范围,pI分布呈典型的双峰形式。大部分蛋白GRAVY值小于0,说明鉴定到的蛋白主要是亲水性蛋白。鉴定的大部分蛋白质具有催化活性,参与代谢活动,其他蛋白与基因、蛋白质表达与降解,细胞骨架形成与离子传输,信号转导,细胞生长与调控等功能相关,充分体现了肝脏所承担的生理功能。
     肝脏的亚细胞器修饰谱研究是在全蛋白表达谱基础上对肝脏蛋白质组的进一步深入研究。第三章所述工作是建立一种利用生物素酰肼标记和亲和素纯化富集糖蛋白和糖肽的方法,并将此方法用于HepG2肝癌细胞膜糖蛋白研究。首先对标准蛋白的生物素标记-亲和素纯化进行了一系列的条件考察,结果证明该方法能特异性的富集糖蛋白,并且采用SDS buffer煮沸条件能将富集蛋白从链霉亲和素上完全洗脱。我们设计了三条技术路线,从糖蛋白和糖基化位点质谱鉴定的结果,考察三条技术路线的富集效率和富集特异性。结果显示从肽段水平上富集生物素化糖肽,操作简单,富集效率和特异性高,更适合复杂样本的分析。采用建立的生物素酰肼-亲和素纯化法分别从蛋白水平和肽段水平对HepG2肝癌细胞膜糖蛋白进行了富集研究。蛋白水平富集的膜糖蛋白共鉴定到171个跨膜蛋白,占鉴定蛋白的31%,其中93(54%)个蛋白具有2个或2个以上的跨膜区,44个是跨膜糖蛋白。肽段水平富集的膜糖肽鉴定到70个非冗余糖肽,48个糖蛋白,73个糖基化位点。其中发现了很多肝癌及肝癌转移相关蛋白,涉及了肝癌转移的多个过程,如代谢,细胞运动和侵袭,信号转导等,为全面、深刻的理解肝癌转移这一复杂过程提供了丰富的数据。本工作首次构建了HepG2肝癌细胞膜糖蛋白数据,该数据库对肝癌转移复发相关研究具有一定价值。
     为了更好的理解肝癌的发生机理和寻找阳性率高、特异性强的肝癌早期诊断标志物,第四章中我们应用基于细胞培养稳定同位素标记(SILAC),液相色谱-傅立叶变换离子回旋共振质谱和定量分析软件MSQuant联用的定量蛋白质组策略进行了差异蛋白质分析。应用精氨酸同位素标记,对AFP阳性肝癌细胞系HepG2和AFP阴性肝癌细胞系SK-HEP-1以及正常肝细胞系HL-7702进行了差异比较研究,发现了一些与肝癌密切相关的蛋白,其中蛋白分子TGM2在AFP阴性和阳性肝癌细胞中有显著差异,有可能成为肝癌诊断的标志物。
Human liver is the largest organ in the body, probably second only to the brain in complexity. It takes on many important physiological functions including the main digestive function for the metabolism of most substances.
     Liver diseases are great challenges for modern medicine with extremely poor prognosis due to failure of effective early diagnosis and stage analysis. In order to address this serious health issue, the human liver proteome project was initiated by HUPO in 2003.
     The research of liver proteome is a systematic and complicated project. Firstly, it was absolutely a challenge to separate and identify all liver proteins because of the very complex protein compositions. Secondly, the goal of liver proteome research is not just to identify all expressed proteins in human livers, but also to study the function of them. Recent advancement in proteomics allow us to study global patterns of protein content and activity and how these change during development or in response to disease, it has boosted our understanding of systems-level and mechanism of disease. In addition, proteomics benefits the identification of new drug targets and development of new diagnostic markers in clinical research. Therefore, the development of new technologies will play a key role in proteome research.
     Tremendous progress has been made in proteomics during the past few years. With the notable technology developments, one of the aims of our research is to optimize separation and identification techniques and develop an integrated analysis platform which can separate, detect, and identify as many liver proteins as possible. Then, the studies of new sample preparation technologies should be strengthened, and the targets of these studies should be concentrated on the enrichment low-abundance proteins and elucidation of the post-translational modification protein profiles. At last, we wanted to establish a quantitative strategy to analyze the differentially expressed protein profiles of human hepatocellular carcinoma (HCC), which might be helpful to identify new biomarkers of HCC and improve early detection of HCC for the patients
     This dissertation consists of 4 parts and contents are summarized as follows:
     In the first chapter, the status quo of proteomics and the technology developments in proteomics such as 2-DE, MUDPIT, enrichment of membrane proteins and glycoproteins, and quantitative methodologies, were summarized.
     The goal of the study in chapter two was to visualize and detect as many proteins as possible in normal human livers using two-dimensional gel electrophoresis and make a reference map of human normal liver proteins for the comprehensive analysis of human liver proteome and the other related research. To tackle the poor resolution in the alkaline pH range of 2-DE gels, we have optimized isoelectric focusing protocol including sample application using cup-loading at the anode and modification of rehydration buffer. With the application of optimized protocol we get reproducible better resolution both in analytical and preparative 2-DE gels. Narrow pH range ultra-zoom 2-DE gels were developed and optimized to improve the resolution and enhance the detection of low abundance proteins. High resolution patterns of human liver in pH gradients 4.5-5.5, 5-6, 5.5-6.7, 6-9 were presented. The ultra-zoom gels pH4.5-9 revealed a total of 5481 protein spots.429 unique proteins were successfully identified, and some of which were labeled on the 2-DE maps and annotated by GO analysis. It is hoped that the visualized reference map of human liver proteins presented in this work will be valuable for comparative proteomics of liver disease.
     Based on the expression profile of human liver proteome, the research of subcellular organelles and post-translational modification was the further study of human liver proteomics. In chapter three, we first developed a purification strategy to effectively enrich membrane glycoproteins, which involves biotinylation of cell surface membrane glycoproteins and affinity enrichment of the membrane glycoproteins.To address the practicability of the method, the whole strategy was first employed to isolate and identify the glycoproteins from a standard protein mixture. The result showed that the glycoproteins were unambiguously enriched and identified. Three technique lines were compared to investigate the efficiency and specificity of enrichment. It proved that capturing glycosylated peptides can effectively reduce sample complexity and fit for complexity. Then, we used the method to analyze hepatocarcinoma cells' membrane glycoprotein for the potential biomarker discover for liver cancer. From protein level, 171 integral membrane proteins were identified and 54% had more than one TMD, of which 44 were integral membrane glycoproteins. Frome peptide level, 70 unique glycopeptides with 73 glycosylation sites were identified, and it resulted in the identification of 48 membrane glycoproteins. Therefore, we have build up a HepG2 membrane glycoprotein database in the first time, and this data should have a great value for analysis of HCC metastasis.
     The work in chapter four is focus on the differentiated expressed protein profiles of hepatocellular carcinoma cell lines. To improve early diagnosis of HCC as well as better understanding the mechanisms underlying tumorigenesis, A quantitative proteomic analysis approach, stable isotope labeling with amino acids in cell culture (SILAC) combined with LTQ-FT-MS/MS identification and MSQuant quantitative software, was used to explore differentially expressed protein profiles between normal (HL-7702) and cancer (HepG2 and SK-HEP-1) cells. Some HCC related proteins were found out, and it suggested that TGM2 may serve as a novel candidate involved in HCC. These novel findings may add important clues to identify new biomarkers of HCC and improve early detection of HCC.
引文
[1] Patterson SD. Proteomics: the industrialization of protein chemistry. Curr Opin Biotechnol. 2000 ,11(4):413-8.
    [2] Jain KK. Proteomics:new technologies and their applications. Drug Discov Today. 2001, 6(9):457-459.
    [3] O’Farrell. High resolution two dimensional electrophoresis of proteins. J. Biol.Chem. 1975, 250: 4007-4021
    [4] Bjellqvist B.,Ek K.,Righetti P.G., et al. Isoelectric focusing in immobilized pH gradient: principle, methodology and some applications. J Biochem Biophys Method.1982, 6: 317-339
    [5] G?rg A, Weiss W, Dunn MJ. Current two-dimensional electrophoresis technology for proteomics. Proteomics. 2004,4(12):3665-85.
    [6] Oguri T, Takahata I, Katsuta K,et.al. Proteome analysis of rat hippocampal neurons by multiple large gel two-dimensional electrophoresis. Proteomics. 2002,2(6):666-72.
    [7] Tonella L, Hoogland C, Bina P A, et.al. New perspectives in the Escherichia coli proteome investigation. Proteomics, 2001,1(3):409-23
    [8] Marmagne A, Rouet MA, Ferro M, et al. Identification of new intrinsic proteins in Arabidopsis plasma membrane proteome[J]. Mol Cell Proteomics, 2004, 3 (7): 675-91
    [9] Washburn MP, Ulaszek RR, Yates JR 3rd. Reproducibility of quantitative proteomic analyses of complex biological mixtures by multidimensional protein identification technology. Anal Chem. 2003,75(19):5054-61.
    [10] Washburn MP, Wolters D, Yates JR 3rd.Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechnol. 2001,19(3):242-7.
    [11] Link AJ, Eng J, Schieltz DM, et.al.Direct analysis of protein complexes using mass spectrometry. Nat Biotechnol. 1999,17(7):676-82.
    [12] Ficarro SB, McCleland ML, Stukenberg PT, et.al. Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae. Nat Biotechnol. 2002 ,20(3):301-5.
    [13] Seddon AM, Curnow P, Booth PJ. Membrane proteins, lipids and detergents: not just a soap opera[J]. Biochim Biophys Acta, 2004, 1666 (1-2): 105-17
    [14] RichardJ,simpson,Lisa MC, et.al. Proteomic analysis of the human colon carcinoma cell line(LIM1215):Development of a membrane database.Electrophoresis,2000,21(1):707-732
    [15] Chen X, Walker AK, Strahler JR, et.al. Organellar proteomics: analysis of pancreatic zymogen granule membranes. Mol Cell Proteomics. 2006, 5(2): 306-12.
    [16] Rahbar AM, Fenselau C. Integration of Jacobson's pellicle method into proteomic strategies for plasma membrane proteins. J Proteome Res. 2004, 3(6):1267-77.
    [17] Omaetxebarria MJ, H?gglund P, Elortza F, et.al. Isolation and characterization of glycosylphosphatidylinositol-anchored peptides by hydrophilic interaction chromatography and MALDI tandem mass spectrometry. Anal Chem. 2006,78(10):3335-41.
    [18] Cutillas PR, Biber J, Marks J, Jacob R, et.al. Proteomic analysis of plasma membrane vesicles isolated from the rat renal cortex.Proteomics. 2005,5(1):101-12.
    [19] Zhang L, Wang X, Peng X, et al. Immunoaffinity purification of plasma membrane with secondary antibody superparamagnetic beads for proteomic analysis[J]. J Proteome Res, 2007, 6 (1): 34-43
    [20] Zhao Y, Zhang W, Kho Y, Zhao Y. Proteomic analysis of integral plasma membrane proteins. Anal Chem. 2004,76(7):1817-23.
    [21] Zhang W, Zhou G, Zhao Y, White MA, Zhao Y. Affinity enrichment of plasma membrane for proteomics analysis. Electrophoresis. 2003,24(16):2855-63. Links
    [22] Bertozzi CR, Kiessling LL. Chemical glycobiology. Science, 2001, 291(5512): 2357- 2364.
    [23] Rudd PM, Elliott T, Cresswell P, et.al. Glycosylation and the immune system. Science, 2001, 291(5512): 2370-2376.
    [24] Hirabayashi J, Hashidate T,Kasai K. Glyco-catch method:A 1ectin affinity technique glycoproteomics.J biomol Tech. 2002,13,205.
    [25] Hagglund P, J Bunkenborg, Elortza F, et al. A new strategy for identification of N-glycosylated p roteins and unambiguous assignment of their glycosylation sites using HILIC. J Proteome Res. 2004,3(3):556-66.
    [26] Zhang H, Li Xj, Martin DB, et.al. Identification and quantification of N2linked glycop roteins using hydrazide chemistry, stable isotope labeling and mass spectrometry. Nat.Biotechnol. 2003 21: 660-666.
    [27] Wodicka L,Dong H, Mittmann M,et al. Genome-wide expression monitoringin Saccharomyces cerevisiae. Nat Biotechnol, 1997, 15(13): 1359-1367.
    [28] Unlu M, Morgan ME, Minden JS. Difference gel electrophoresis: a single gel method for detecting changes in protein extracts. Electrophoresis, 1997, 18(11):2071-2077.
    [29] Oda Y, Huang K, Cross FR, Cowburn D, Chait BT. Accurate quantitation of protein expression and site-specific phosphorylation. Proc Natl Acad Sci U S A. 1999, 96(12):6591-6.
    [30] Yan W, Chen SS. Mass spectrometry-based quantitative proteomic profiling. Brief Funct Genomic Proteomic. 2005 ,4(1):27-38.
    [31] Zhang G, Spellman DS, Skolnik EY, Neubert TA. Quantitative phosphotyrosine proteomics of EphB2 signaling by stable isotope labeling with amino acids in cell culture (SILAC). J Proteome Res, 2006, 5: 581-588.
    [32] Bose R, Molina H, Patterson AS, Bitok JK, Periaswamy B, Bader JS, Pandey A, Cole PA. Phosphoproteomic analysis of Her2/neu signaling and inhibition. Proc Natl Acad Sci U S A, 2006, 103: 9773-9778.
    [33] Gygi SP, Rist B, Gerber SA, et al. Quantitative analysis of complex protein mixtures using isotope coded affinity tags. Nat Biotechnol, 1999, 17: 994-999.
    [34] Ross PL, Huang YN., Marchese JN, et. al. Multiplexed protein quantitation in saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol. Cell. Proteomics. 2004, 3(12): 1154-1169.
    [35] Schnolzer M, Jedrzejewski P, Lehmann WD, et. al. Protease-catalyzed incorporation of 18O into peptide fragments and its application for protein sequencing by electrospray and matrix-assisted laser desorption/ionization mass spectrometry. Electrophoresis.1996, 17(5): 945-953.
    [36] Rao KC, Carruth RT,Miyagi M. Proteolytic 18O Labeling by Peptidyl-Lys Metalloendopeptidase for Comparative Proteomics. J Proteome Res., 2005, 4(2), 507-514.
    [37] Sakai J, Kojima S, Yanagi K, Kanaoka M. 18O-labeling quantitative proteomics using an ion trap mass spectrometer. Proteomics, 2005, 5(1):16-23.
    [1] Jia H,Louet S. China pushes liver proteomics. Nat Biotechnol, 2004, 22 (2): 136
    [2] He F. Human liver proteome project: plan, progress, and perspectives. Mol Cell Proteomics, 2005, 4 (12): 1841-1848
    [3] Gorg A, Obermaier C, Boguth G, et al. The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis, 2000, 21 (6): 1037-1053
    [4] Aebersold R,Mann M. Mass spectrometry-based proteomics. Nature, 2003, 422 (6928): 198-207
    [5] Mann M,Jensen ON. Proteomic analysis of post-translational modifications. Nat Biotechnol, 2003, 21 (3): 255-261
    [6] Packer NH, Ball MS, Devine PL. Glycoprotein detection of 2-D separated proteins. Methods Mol Biol, 1999, 112: 341-352
    [7] Wildgruber R, Harder A, Obermaier C, et al. Towards higher resolution: two-dimensional electrophoresis of Saccharomyces cerevisiae proteins using overlapping narrow immobilized pH gradients. Electrophoresis, 2000, 21 (13): 2610-2616
    [8] Westbrook JA, Yan JX, Wait R, et al. Zooming-in on the proteome: very narrow-range immobilised pH gradients reveal more protein species and isoforms. Electrophoresis, 2001, 22 (14): 2865-2871
    [9]. Gorg A, Postel W, Weser J, et al. Improved resolution of PI (alpha 1-antitrypsin) phenotypes by a large-scale immobilized pH gradient. Am J Hum Genet, 1985, 37 (5): 922-930
    [10] Candiano G, Bruschi M, Musante L, et al. Blue silver: a very sensitive colloidal Coomassie G-250 staining for proteome analysis. Electrophoresis, 2004, 25 (9): 1327-1333
    [11] Harder A, Wildgruber R, Nawrocki A, et al. Comparison of yeast cell protein solubilization procedures for two-dimensional electrophoresis. Electrophoresis, 1999, 20 (4-5): 826-829
    [12] Boucherie H, Dujardin G, Kermorgant M, et al. Two-dimensional protein map of Saccharomyces cerevisiae: construction of a gene-protein index. Yeast, 1995, 11 (7): 601-613
    [13] Shaw MM,Riederer BM. Sample preparation for two-dimensional gel electrophoresis. Proteomics, 2003, 3 (8): 1408-1417
    [14] Herbert BR, Harry JL, Packer NH, et al. What place for polyacrylamide in proteomics Trends Biotechnol, 2001, 19 (10 Suppl): S3-9
    [15] Medjahed D, Smythers GW, Powell DA, et al. VIRTUAL2D: A web-accessible predictive database for proteomics analysis. Proteomics, 2003, 3 (2): 129-138
    [16] Sanchez JC, Rouge V, Pisteur M, et al. Improved and simplified in-gel sample application using reswelling of dry immobilized pH gradients. Electrophoresis, 1997, 18 (3-4): 324-327
    [17] Li XM, Patel BB, Blagoi EL, et al. Analyzing alkaline proteins in human colon crypt proteome. J Proteome Res, 2004, 3 (4): 821-833
    [18] Gorg A, Obermaier C, Boguth G, et al. Very alkaline immobilized pH gradients for two-dimensional electrophoresis of ribosomal and nuclear proteins. Electrophoresis, 1997, 18 (3-4): 328-337
    [19] Hoving S, Voshol H, van Oostrum J. Towards high performance two-dimensional gel electrophoresis using ultrazoom gels. Electrophoresis, 2000, 21 (13): 2617-2621
    [20] Hoving S, Gerrits B, Voshol H, et al. Preparative two-dimensional gel electrophoresis at alkaline pH using narrow range immobilized pH gradients. Proteomics, 2002, 2 (2): 127-134
    [21] Luche S, Diemer H, Tastet C, et al. About thiol derivatization and resolution of basic proteins in two-dimensional electrophoresis. Proteomics, 2004, 4 (3): 551-561
    [22] Olsson I, Larsson K, Palmgren R, et al. Organic disulfides as a means to generate streak-free two-dimensional maps with narrow range basic immobilized pH gradient strips as first dimension. Proteomics, 2002, 2 (11): 1630-1632
    [23] Padliya ND,Wood TD. A strategy to improve peptide mass fingerprinting matches through the optimization of matrix-assisted laser desorption/ionization matrix selection and formulation. Proteomics, 2004, 4 (2): 466-473
    [24] Li ZB, Lehar M, Braga N, et al. Study of human laryngeal muscle protein using two-dimensional electrophoresis and mass spectrometry. Proteomics, 2003, 3 (7): 1325-1334
    [25] Zhan X,Desiderio DM. A reference map of a human pituitary adenoma proteome. Proteomics, 2003, 3 (5): 699-713
    [26] Jones A, Faldas A, Foucher A, et al. Visualisation and analysis of proteomic data from the procyclic form of Trypanosoma brucei. Proteomics, 2006, 6 (1): 259-267
    [27] Celis JE, Rasmussen HH, Gromov P, et al. The human keratinocyte two-dimensional gel protein database (update 1995): mapping components of signal transduction pathways. Electrophoresis, 1995, 16 (12): 2177-2240
    [28] Berven FS, Karlsen OA, Murrell JC, et al. Multiple polypeptide forms observed in two-dimensional gels of Methylococcus capsulatus (Bath) polypeptides are generated during the separation procedure. Electrophoresis, 2003, 24 (4): 757-761
    [1] Alberts B, Johnson A., Lewis J, Raff M. et al. (Eds.) Molecular Biology of the Cell. New York: Garland Science, 2002.
    [2] Gahmberg CG,Tolvanen M. Why mammalian cell surface proteins are glycoproteins. Trends Biochem Sci, 1996, 21 (8): 308-311
    [3] Haltiwanger RS, Lowe JB. Role of glycosylation in development. Annu Rev Biochem, 2004, 73: 491-537.
    [4] Zhang Y, Zhao JH, Zhang XY, et al. Relations of the type and branch of surface N-glycans to cell adhesion, migration and integrin expressions. Mol Cell Biochem, 2004, 260:137-46.
    [5] Haltiwanger RS. Regulation of signal transduction pathways in development by glycosylation. CurrOpin StructBiol, 2002, 12:593-598.
    [6] Rudd PM, Elliott T, Cresswell P, et al. Glycosylation and the immune system. Science, 2001, 291: 2370-2376.
    [7] Ghosh D, Krokhin O, Antonovici M, et al. Lectin affinity as an approach to the proteomic analysis of membrane glycoproteins. J Proteome Res, 2004, 3 (4): 841-850
    [8] Fan X, She YM, Bagshaw RD, et al. Identification of the hydrophobic glycoproteins of Caenorhabditis elegans. Glycobiology, 2005, 15 (10): 952-964
    [9] Zhang H, Li XJ, Martin DB, et al. Identification and quantification of N-linked glycoproteins using hydrazide chemistry, stable isotope labeling and mass spectrometry. Nat Biotechnol, 2003, 21 (6): 660-666
    [10] Lewandrowski U, Zahedi RP, Moebius J, et al. Enhanced N-glycosylation site analysis of sialoglycopeptides by strong cation exchange prefractionation applied to platelet plasma membranes. Mol Cell Proteomics, 2007, 6 (11): 1933-1941
    [11] Freitag S, Le Trong I, Chilkoti A.et.al. Structural studies of binding site tryptophan mutants in the high-affinity streptavidin-biotin complex. J Mol Biol. 1998,279(1):211-21
    [12] Lindqvist Y,Schneider G,Protein-biotin interactions Curr Opin Struct Biol. 1996,6(6):798-803.
    [13] Polyak B, Geresh S, Marks RS. Synthesis and characterization of a biotin-alginate conjugate and its application in a biosensor construction. Biomacromolecules. 2004,5(2):389-96.
    [14] Humbert N, Zocchi A,Ward TR. Electrophoretic behavior of streptavidin complexed to a biotinylated probe: a functional screening assay for biotin-binding proteins. Electrophoresis. 2005,26(1):47-52.
    [15] Schriemer DC, Yalcin T, Li L. MALDI mass spectrometry combined with avidin-biotin chemistry for analysis of protein modifications. Anal Chem. 1998, 70(8):1569-75.
    [16] Reisfeld A, Rothenberg JM, Bayer EA, Wilchek M. Nonradioactive hybridization probes prepared by the reaction of biotin hydrazide with DNA. Biochem Biophys Res Commun. 1987,142(2):519-26.
    [17] BOBBITT JM. Periodate oxidation of carbohydrates.Adv Carbohydr Chem. 1956,48(11):1-41.
    [18] O'Shannessy DJ, Quarles RH.Labeling of the oligosaccharide moieties of immunoglobulins. J Immunol Methods. 1987 ,99(2):153-61.
    [19] O'Shannessy DJ, Dobersen MJ, Quarles RH. A novel procedure for labeling immunoglobulins by conjugation to oligosaccharide moieties. Immunol Lett. 1984,8(5):273-7.
    [20] Wilchek M, Bayer EA, Livnah O. Essentials of biorecognition: the (strept)avidin-biotin system as a model for protein-protein and protein-ligand interaction.Immunol Lett. 2006,103(1):27-32.
    [21] Weber PC, Ohlendorf DH, Wendoloski JJ, Salemme FR. Structural origins of high-affinity biotin binding to streptavidin.Science. 1989,243(4887):85-8.
    [22] Jurinke C, van den Boom D, Collazo V,et.al. Recovery of nucleic acids from immobilized biotin-streptavidin complexes using ammonium hydroxide and applications in MALDI-TOF mass spectrometry Anal Chem. 1997, 69(5): 904-10.
    [23] Freitag S, Le Trong I, Klumb L,et.al. Structural studies of the streptavidin binding loop.Protein Sci. 1997,6(6):1157-66.
    [24] Ding Z, Long CJ, Hayashi Y, et.al. Temperature control of biotin binding and release with A streptavidin-poly(N-isopropylacrylamide) site-specific conjugate. Bioconjug Chem. 1999,0(3):395-400.
    [25] Br?ndli AW, Parton RG, Simons K. Transcytosis in MDCK cells: identification of glycoproteins transported bidirectionally between both plasma membrane domains. J Cell Biol. 1990,111(6 Pt 2):2909-21.
    [26] De La Fuente EK, Dawson CA, Nelin LD,et.al. Biotinylation of membrane proteins accessible via the pulmonary circulation in normal and hyperoxic rats.Am J Physiol. 1997,272(3 Pt 1):L461-70.
    [27] Holmberg A, Blomstergren A, Nord O,et.al.The biotin-streptavidin interaction can be reversibly broken using water at elevated temperatures. Electrophoresis, 2005,26(3):501-10.
    [28] Hood L. Systems biology:integrating technology, biology,and computation. Mech Ageing Dev.2003,124(1):9-16.
    [29] O'Shannessy DJ, Quarles RH. Labeling of the oligosaccharide moieties of immunoglobulins.J Immunol Methods. 1987,99(2):153-61.
    [30] Alvarez-Manilla G, Atwood J 3rd, Guo Y,et.al. Tools for glycoproteomic analysis: size exclusion chromatography facilitates identification of tryptic glycopeptides with N-linked glycosylation sites.J Proteome Res. 2006, 5(3): 701-8.
    [31] Parkin, D. M.; Bray, F.; Ferlay, J.; Pisani, P. Global cancer statistics, 2002. CA. Cancer J. Clin. 2005, 55 (2), 74-108.
    [32] Kannicht CE Posttranslational Modifications of Proteins:Tools for Functional Proteomics, Methods in Molecular Biology. Totowa, NJ, USA: Humana Press, 2002.
    [33] Zhao Y, Zhang W, Kho Y, Zhao Y. Proteomic analysis of integral plasma membrane proteins. Anal Chem. 2004,76(7):1817-23.
    [34] Goshe MB, Blonder J, Smith RD. Affinity labeling of highly hydrophobic integral membrane proteins for proteome-wide analysis. J Proteome Res. 2003 ,2(2):153-61.
    [35] Zhang W, Zhou G, Zhao Y, et.al. Affinity enrichment of plasma membrane for proteomics analysis. Electrophoresis. 2003,24(16):2855-63.
    [36] Marmagne A, Rouet MA, Ferro M, et al. Identification of new intrinsic proteins in Arabidopsis plasma membrane proteome. Mol Cell Proteomics, 2004, 3 (7): 675
    [37] Nunomura K, Nagano K, Itagaki C, et al. Cell surface labeling and mass spectrometry reveal diversity of cell surface markers and signaling molecules expressed in undifferentiated mouse embryonic stem cells. Mol Cell Proteomics, 2005, 4 (12): 1968
    [38] Park YM, Kim JY, Kwon KH, et al. Profiling human brain proteome by multi-dimensional separations coupled with MS. Proteomics, 2006, 6 (18): 4978
    [39] Krogh A , Larsson B, von Heijne G, et al. Predicting transmembrane proteintopology with a hidden Markov model: application to complete genomes. J Mol Biol, 2001, 305 (3):567-580.
    [40] Sonnhammer EL, von Heijne G, Krogh A. A hidden Markov model for predicting transmembrane helices in protein sequences. Proc Int Conf Intell Syst Mol Biol, 1998, 6: 175-182.
    [41] Santoni V, Kieffer S, Desclaux D,et.al. Membrane proteomics: use of additive main effects with multiplicative interaction model to classify plasma membrane proteins according to their solubility and electrophoretic properties. Electrophoresis. 2000,21(16):3329-44.
    [42] van Montfort BA, Doeven MK, Canas B ,et.al Combined in-gel tryptic digestion and CNBr cleavage for the generation of peptide maps of an integral membrane protein with MALDI-TOF mass spectrometry. Biochim Biophys Acta. 2002,1555(1-3):111-5.
    [43] Russell WK, Park ZY, Russell DH. Proteolysis in mixed organic-aqueous solvent systems: applications for peptide mass mapping using mass spectrometry. Anal Chem, 2001, 73 (11): 2682-5
    [44] Zhang N, Chen R, Young N, et al. Comparison of SDS- and methanol-assisted protein solubilization and digestion methods for Escherichia coli membrane proteome analysis by 2-D LC-MS/MS. Proteomics, 2007, 7 (4): 484-93
    [45] Takahashi K, Eto H, Tanabe KK. Involvement of CD44 in matrix metalloproteinase-2 regulation in human melanoma cells. Int J Cancer ,1999 , 80 (3) : 387-395.
    [46] Kajita M , Itoh Y, Chiba T , et al. Membrane2type 1 matrix metalloproteinase cleaves CD44 and promotes cell migration. J Cell Biol ,2001 , 153 (5) : 893-904.
    [47] Bourguignon LY, Zhu H, Shao L, et al. CD44 interaction with tiam1 promotes Rac1 signaling and hyaluronic acid-mediated breast tumor cell migration. J Biol Chem , 2000 , 275 (3) : 1829-1838.
    [48] Yasuda M , Tanaka Y, Fujii K, et al. CD44 stimulation down regulates Fas expression and Fas-mediated apoptosis of lung cancer cells. Int Immunol , 2001 ,13 (10) : 1309-1319.
    [49] Mottolese M, Natali PG, Coli A, et.al. Comparative analysis of proliferating cell nuclear antigen and epidermal growth factor receptor expression in glial tumours: correlation with histological grading. Anticancer Res. 1998,18(3B):1951-6.
    [50] Dedhar s. Integrins and signal transduction. Curr Opin Hematol ,1999,6 (1) :37-43
    [51] Uotani H, Yamashita I, Nagata T,et.al. Induction of E-selectin after partial hepatectomy promotes metastases to liver in mice. J Surg Res. 2001, 96(2):197-203.
    [52] Guo H, Majmudar G, Jensen TC, et al. Characterization of the human EMMPR IN, a tumor cell surface inducer of matrix metalloproteinases. Gene, 1998,220(122):99-108
    [53] Sun J, Hemler ME. Regulation of MMP-1 and MMP-2 production through CD147/extracellular matrix metalloproteinase inducer interactions. Cancer Res. 2001,61(5):2276-81.
    [54] Parham P. Virtual reality in the MHC. Immunol Rev. 1999 ,167:5-15.
    [1] Ong SE, Mann M. Mass spectrometry-based proteomics turns quantitative. Nat Chem Biol, 2005, 1(5): 252-262.
    [2] Julka S, Regnier FE. Quantitation in Proteomics through stable isotope coding: a review. J Proteome Res, 2004, 3: 350-363.
    [3] Sechi S, Oda Y. Quantitative proteomics using mass spectrometry. Curr Opin Chem Biol, 2003, 7: 70-77.
    [4] Patton WF, Beechem JM. Rainbow’s end: the quest for multiplexed fluorescence quantitative analysis in proteomics. Curr Opin Chem Biol, 2002, 6: 63-69.
    [5] Mann M. Quantitative proteomics Nat biotechnol, 1999, 17: 954-955.
    [6] Tao WA, Aebersold R. Advances in quantitative proteomics via stable isotope tagging and mass spectrometry. Curr Opin Biotechnol, 2003, 14: 110-118.
    [7] Beynon RJ, Pratt JM. Metabolic labeling of proteins for proteomics. Mol Cell Proteomics, 2005, 4: 857-872.
    [8] Oda Y, Huang K, Cross F. Accurate quantitation of protein espression and site-spacific phosphorylation. Proc Natl Acad Sci USA, 1999, 96(12): 6591-6596.
    [9] Ong SE, Blagoev B, Kratchmarova I. stable isotope labeling by amino acida in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol cell Proteomics, 2002,1(5): 376-386.
    [10] Ong SE, Kratchmarova I, Mann M. Properties of 13C-substituted arginine in stable isotope labeling by amino acids in cell culture (SILAC).J Proteome Res. 2003,2(2):173-81.
    [11] ElSerag HB, Mason AC, Key C, et al. Trends in survival of patientswith hepatocellular carcinoma beween 1977 and 1996 in the United States. Hepatology, 2001, 33 (1): 62-65.
    [12] Yoshida S, Kurokohchi K, Arima K, et al. Clinical significance of lens culinaris agglutinin reactive fraction of serum alpha fetoprotein in patients with hepatocellular carcinoma. Int J Ontol, 2002, 20(2):305-309.
    [13] Haas W, Faherty BK, Gerber SA,et.al. Beausoleil SA, Bakalarski CE, Li X, Villen J, Gygi SP. Optimization and use of peptide mass measurement accuracy in shotgun proteomics. Mol Cel Proteomics, 2006, 5: 1326-1337.
    [14] De Godoy LM, Olsen JV, De Souza GA, et.al. Status of complete proteome analysis by mass spectrometry: SILAC labeled yeast as a model system.Genome Biol, 2006, 7: R50.
    [15] Hubbard AK, Rothlein R. Intercellular adhesion molecule-1 (ICAM-1) expression and cell signaling cascades. Free Radic. Biol. Med. 2000, 28 (9), 1379-1386.
    [16] Witkowska AM, Borawska MH. Soluble intercellular adhesion molecule-1 (sICAM-1): an overview. Eur. Cytokine Netw. 2004, 15 (2), 91-98.
    [17] Brill S,Li S,Lyman C, et.al. The Ras GTPase-activating-protein-related human protein IQGAP2 harbors a potential actin binding domain and interacts with calmodulin and Rho family GTPases. Mol. Cell Biol. 1996, 16 (9), 4869-4878.
    [18] Evans MJ, von Hahn T, Tscherne DM, et.al. Claudin-1 is a hepatitis C virus co-receptor required for a late step in entry. Nature 2007, 446 (7137), 801-805.
    [19] Krajewska M, Olson AH, Mercola D, et.al. Claudin-1 immunohistochemistry for distinguishing malignant from benign epithelial lesions of prostate. Prostate 2007, 67 (9), 907-910.
    [20] Facchiano F, Facchiano A, Facchiano AM. The role of transglutaminase-2 and its substrates in human diseases. Front. Biosci. 2006, 11, 1758-1773.
    [21] Mirza A, Liu SL, Frizell E, et.al. A role for tissue transglutaminase in hepatic injury and fibrogenesis, and its regulation by NF-kappaB. Am. J. Physiol. 1997, 272 (2 Pt 1), G281-288.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700