电刺激治疗股二头肌急性拉伤的模拟实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
实验目的:
     1.模拟运动状态下股二头肌的急性拉伤,建立一种反映运动实践特点的股二头肌急性拉伤动物模型,从而使进一步深入的研究成为可能;
     2.通过对股二头肌急性拉伤后力学以及组织学的观察,明确其结构、功能和病理学等方面的特点,为下一步实验研究打下基础;
     3.采用低强度20Hz和80Hz电刺激治疗股二头肌急性拉伤,观察其对于肌肉损伤部位结构重塑的影响;
     4.采用低强度20Hz和80Hz电刺激治疗股二头肌急性拉伤,观察电刺激治疗对于成肌细胞分化、融合以及肌纤维形成的MyoD和Myogenin基因表达调控的影响。为阐明电刺激治疗肌肉拉伤的机制寻找的突破口,从而为肌肉拉伤的临床治疗提供科学的参数与依据,优化电刺激治疗方案。
     实验方法:
     雄性SD大鼠45只,随机分为正常对照组、D0组、D3组、D7组、D7-20Hz组、D7-80Hz组、D14组、D14-20Hz组和D14-80Hz组。除正常对照组外,其余各组建立股二头肌急性拉伤动物模型。麻醉大鼠,采用生理刺激仪针电刺激固定侧肢体的坐骨神经,使股二头肌发生强直收缩,同时牵拉膝关节迅速做角速度为9600·s-1的伸膝运动,股二头肌做离心收缩,造成一侧肢体股二头肌急性拉伤。拉伤前后做超声诊断。动物造模完成后,D7-20Hz组、D7-80Hz组、D14-20Hz组和D14-80Hz于动物造模后第5天开始电刺激,每日两次,每次30分钟,相隔4小时,其余组继续喂养。各组分别在相应的时间进行力矩测试,待实验结束后处死大鼠,分离股二头肌,固定保存以备用,进行病理组织、免疫组化观察。
     实验结果:
     1.肌肉拉伤部位病理改变光镜观察结果:肌肉拉伤当天肌纤维坏死,肌肉组织结构紊乱,肌纤维水肿变性,肌肉间隙大小不一,部分肌纤维间隙明显加大,并可见血管扩张充血。其中股二头肌损伤程度较之半膜肌与半腱肌严重。拉伤后第3天病理改变光镜观察可见炎性反应明显。拉伤后第7天病理改变光镜观察可见,肌纤维出现修复,但是不成熟,肌纤维排列不严整,大小不一。经过20Hz电刺激治疗后,新生的肌纤维更成熟,成簇排列,结构更严整,边界更清晰。80Hz电刺激治疗的效果不明显。各组于拉伤后第14天肌纤维基本修复。
     2.肌肉拉伤后超声图像:大鼠肌肉拉伤后,半腱肌与半膜肌肌肉损伤较轻微,无超声影像的改变;股二头肌肌肉拉伤较前两者严重,表现为受累肌肉的局部回声减低,部分撕裂声像图显示肌纤维部分或完全不连续,裂口间出现血肿,肌肉拉伤位置处于远端肌腱结合部靠近肌肉端。各组于拉伤当日4小时后,经肌肉诊断超声横断面测量损伤所占横径比例处于5%-50%,属于二度损伤,各组之间比较差异不显著(P>0.05)。
     3.关节最大等长力矩测定:正常对照组关节最大等长力矩值为0.337±0.025(Nm),大鼠肌肉拉伤后不同时刻关节最大等长力矩指标的变化,肌肉拉伤后即刻关节最大等长力矩下降为正常的73.05±5.37%,与正常对照组比较存在显著性差异(P<0.05);第三天为79.79±6.95%;第七天为89.84±4.75%;第14天基本恢复到正常。
     4.电刺激治疗后关节最大等长力矩测定: D7-20Hz组关节最大等长力矩值为0.312±0.043(Nm),D7-80Hz组关节最大等长力矩值为0.302±0.033(Nm),与D7组比较不存在显著性差异(P>0.05)。D14-20Hz组关节最大等长力矩值为0.335±0.028(Nm),D14-80Hz组关节最大等长力矩值为0.334±0.060(Nm),与D14以及受伤前力矩比较比较不存在显著性差异(P>0.05)。
     5.力矩-角度关系测定结果:正常对照组最优角度出现在130.000±3.540,肌肉拉伤后即刻力矩-角度关系指标测定结果显示关节最大等长力矩出现右侧偏移,最优角度为144.500±3.710,与受伤前比较存在显著性差异(P<0.01);大鼠肌肉拉伤后第14天力矩-角度关系指标测定结果显示,D14组关节最大等长力矩出现左侧偏移,最优角度出现在120.000±3.530,与受伤前比较存在显著性差异(P<0.05)。大鼠肌肉拉伤后经电刺激治疗,力矩-角度关系指标测定结果显示关节最优角度出现左侧偏移, D14-20Hz和D14-80Hz最优角度分别出现在125.000±3.530以及121.000±4.180,其中D14-20Hz组偏移较小,与D14组比较存在显著性差异(P<0.05)。
     6. MyoD与Myogenin蛋白表达测定结果:肌肉拉伤后第7天MyoD与Myogenin蛋白表达, D7组、D7-20Hz组以及D7-80Hz组明显增强,与正常对照组比较差异显著(P<0.01),其中D7-20Hz组增强更明显,与D7组比较存在显著性差异(P<0.01),但是D7-80Hz组与D7组比较不存在显著性差异(P>0.05)。肌肉拉伤后第14天MyoD与Myogenin蛋白表达观察结果,其中肌肉拉伤后第14天各组MyoD蛋白表达,D14组以及D14-80Hz组减弱,与正常对照组比较无差异(P>0.05),但是D14-20Hz组依旧比正常对照组增强明显(P<0.05)。肌肉拉伤后第14天Myogenin蛋白表达,D14-20Hz组Myogenin蛋白表达依旧强于D14动物模型组(P<0.05)。
     实验结论:
     1.本实验研究成功地建立了股二头肌急性拉伤动物模型,并具有接近运动实践的特点;
     2.股二头肌急性拉伤后采用低强度20Hz的电刺激治疗,可以有效地促进损伤后肌肉结构的重塑,对于损伤后肌肉组织功能结构的恢复非常有利;
     3.股二头肌急性拉伤后采用低强度20Hz的电刺激治疗,并不能在两周内明显提高关节最大等长力矩,但是可以很好地优化关节力矩-角度的关系;
     4.股二头肌急性拉伤后采用低强度20Hz的电刺激治疗,促进了MyoD与Myogenin的基因表达,并观察到损伤股二头肌结构重塑和力矩-角度关系的优化,这表明采用低强度20Hz的电刺激治疗通过对MyoD与Myogenin的基因表达调控的影响,从而促进损伤股二头肌组织的修复;
     5.股二头肌急性拉伤后采用低强度80Hz时,其对受损伤肌肉在形态结构和功能上的恢复没有明显促进作用,并且对于MyoD与Myogenin的基因表达调控没有显著影响。
Objectives:
     1. To create an animal model that simulates exercise-induced acute biceps femoris strain, in order to provide basis for the further study on muscle structure, functions and pathology.
     2. To observe the mechanics and histology, so as to identify the features of structure, function and pathology after biceps femoris strain.
     3. To observe the effect of low-intensity electrical stimulation at different frequencies (20 Hz and 80 Hz) on the rebuilding of muscle structure.
     4. To observe the effect of low-intensity electrical stimulation at different frequencies (20 Hz and 80 Hz) on the gene regulatory of MyoD and Myogenin on proliferation, termination and new fibers rebuilding after acute biceps femoris strain, in order to find a new way for analysis the manchnism of muscular strain. Therefore, it will be helpful to choose better protocol of electrical therapy.
     Methods:
     Forty-five male SD rats were randomly divided into control group, D0 group, D3 group, D7 group, D7-20Hz group, D7-80Hz group, D14 group, D14-20Hz group and D14-80Hz group. All male SD rats except ones of control group were anesthetized. One limb was chosen at random to create a partial biceps femoris stretch injury.The biceps femoris was stimulated to tetany by activating the sciatic nerve via subcutaneous needle electrodes, which were placed over the sciatic nerve in the region of the ischial tuberosity. The limb was moved from knee flexion 700 to full knee extension at 9600?s-1 angular velocity and then returned to the starting position.After torque test and the observation of ultrasound, the biceps femoris was harvested for procedure of histology. After injury, no interventions were given to D0 group, D3 group, D7 group and D14 group. The electrical protocol was made in D7-20Hz group, D7-80Hz group, D14-20Hz group and D14-80Hz group. The biceps femoris was stimulated using a modified stimulator. Square wave stimuli at 20Hz\80Hz were applied twice a day for 30 minutes each time with a 4 hour interval. After experiment, we had an observation on torque, ultrasound diagnosis, HE staining, western-blotting and immuno-staining.
     Results:
     1. After injury, histology showed fiber necrosis, and hemorrhage. HE staining revealed structural disorder, edema, and increased gap between muscle fibers.The injuries of biceps were more severe than injury of Semitendinosus and Semimembrinosus. At 3 days post-injury, there was intense inflammatory cell proliferation. At 7 days, injured muscle fibers recovered but did not mature. Given electrical therapy in D7-20Hz group, the new fibers became more mature, neat formation and clear boundary.However, low-intensity 80Hz electrical stimulation show no significant effects. At 14 days, injured muscle fibers became mature and recovered.
     2. The images of Semitendinosus and Semimembrinosus are lack of any ultrasonic lesion. Injured Biceps correspond to lesions involving from 5 to 50% of the muscle volume or cross-sectional diameter, which belongs toⅡdegree injury. No significant difference between them(P>0.05).
     3. The isometric maximal knee torque of control group was 0.337±0.025Nm. The isometric maximal torque showed a significant drop by 73.05±5.37% of control muscle at day 0(P<0.05), 79.79±6.95% at Day 3 post-injury, 89.84±4.75% at Day 7 post-injury. At Day 14, the isometric maximal torque recovered to normal level.
     4. The isometric maximal knee torque of D7-20Hz group and D7-80Hz group respectively were 0.312±0.043Nm and 0.302±0.033Nm. Compared to the isometric maximal torque of D7 animal model group, no significant difference existed(P>0.05). The isometric maximal knee torque of D14-20Hz group and D14-80Hz group respectively were 0.335±0.028Nm and 0.334±0.060Nm. Compared to the isometric maximal knee torque of D7 animal model group, no significant difference existed(P>0.05).
     5. The optimal angle of control group was 130.000±3.540. It showed a significant right shift to 144.500±3.710 at day 0 post-injury. Compared to the optimal angle of control group,there was significant difference(P<0.05). At day 14 post-injury, it showed a significant left shift to 120.000±3.530 compared to the optimal angle of control group (P<0.05). After electrical stimulation, the optimal angle of D14-20Hz group and D14-80Hz group were 125.000±3.530 and 121.000±4.180. A significant difference existed between D14 group and D14-20Hz group(P<0.05).
     6. At 7 days post-injury,the protein expression of MyoD and Myogenin increased in D7group、D7-20Hz group and D7-80Hz group. Compared to control group, there was a significant difference (P<0.01). Between D7 group and D7-20Hz group, there was also significant difference(P<0.01).At 14 day after injury, the protein expression of MyoD decreased in D14 group and D14-80Hz group. Compared to control group, there was no significant difference (P>0.05). However, the protein expression of MyoD was still significant higher in D14-20Hz group compared to D14 animal model group (P<0.05). The protein expression of Myogenin was still higher in D14-20Hz. Compared to D14 group, there was a significant difference (P<0.05).
     Conclusions:
     1. The animal model, which was created in this experiment, simulated a sports injury well.
     2. The low intensity 20Hz electrical stimulation was useful for muscular rebuilding of the injured biceps femoris in morphological structure and function.
     3. The low intensity the 20Hz electrical stimulation could not increase the maximal isometric toque but was able to improve the torque-angle relationship in injured biceps femoris during 2 weeks post-injury.
     4. The low-intensity 20Hz electrical stimulation could improve the gene regulatory of MyoD and Myogenin as well as muscular rebuilding, which proved the low-intensity 20Hz electrical stimulation was helpful for the rapair of injured biceps femoris through the intervention on gene regulatory of MyoD and Myogenin.
     5. The low-intensity 80Hz electrical stimulation had no effects on the gene regulatory of MyoD and Myogenin as well as muscular rebuilding.
引文
[1] Garrett WE Jr. Muscle strain injuries [J]. Am J Sports Med. 1996. 24(6 Suppl):S2-8
    [2] Beiner JM, Jokl P. Muscle contusion injuries: current treatment options [J]. J Am Acad Orthop Surg. 2001.9(4):227-223
    [3] J?rvinen MJ, Lehto MU. The effects of early mobilisation and immobilisation on the healing process following muscle injuries [J]. Sports Med. 1993.15(2):78-89
    [4] Campani R, Bottinelli O, Genovese E,et al. The role of echotomography in sports traumatology of the lower extremity[J]. Radiol Med. 1990.79(3):151-162
    [5] Koulouris G, Connell D. Evaluation of the hamstring muscle complex following acute injury [J]. Skeletal Radiol. 2003 .32 (10):582-589
    [6] Hoskins W, Pollard H. The management of hamstring injury--Part 1: Issues in diagnosis [J]. Man Ther. 2005.10(2):96-107
    [7] Orchard JW. Intrinsic and extrinsic risk factors for muscle strains in Australian football[J]. Am J Sports Med. 2001.29(3): 300-303
    [8] Bischoff R. The satellite cell and muscle regeneration. In Myology: Basic and Clinical (2nd ed.), edited by Engel AG and Franzini-Armstrong C.New York: McGraw-Hill, 1994, (1):97–118.
    [9] Hawke TJ , Garry DJ. Myogenic satellite cells: physiology to molecular biology[J]. J Appl Physiol, 2001,91: 534–551.
    [10] Seale P,Rudnicki MA. A new look at the origin, function, and“stem-cell”status of muscle satellite cells[J]. Dev Biol.2002;18: 115–124
    [11] Vierck J, O'Reilly B, Hossner K,et al. Satellite cell regulation following myotrauma caused by resistance exercise[J]. Cell Biol Int. 2000;24(5):263-272
    [12] Winchester PK, Davis ME, Alway SE, and Gonyea WJ. Satellite cell activation in the stretch-enlarged anterior latissimus dorsi muscle of the adult quail[J]. Am J Physiol Cell Physiol,1991,260: C206–C212.
    [13] Kennedy JM, Eisenberg RR, Reid SK, Sweeney LJ, and Zak R.Nascent muscle fiber appearance in overloaded chicken slow-tonic muscle[J].Am J Anat,1988,181: 203–215
    [14] Lowe DA and Alway SE. Stretch-induced myogenin, MyoD, and MRF4 expression and acute hypertrophy in quail slow-tonic muscle are not dependent upon satellite cell proliferation[J]. Cell Tissue Res ,1999,296: 531–539
    [15] Woodard C. What is active treatment? In: Woodard C, ed. SportsMedicine. London, England: Max Parrish & Co; 1954:1–14
    [16] Evans P.The healing process at cellular level:A review[J]. Physiotherapy. 1980.66: 256-259
    [17] Watson T. The role of electrotherapy in contemporary physiotherapy practice[J]. Manual Therapy 2000.5(3):132–41
    [18] Chris Jarmey.The Atlas of Musculo-skeletal Anatomy. Chichester: Lotus Pub;Berkeley,Calif: North Atlantic Books, 2004: 324-327
    [19] Woods C, Hawkins RD, Maltby S,et al. The Football Association Medical Research Programme: an audit of injuries in professional football--analysis of hamstring injuries[J]. Br J Sports Med. 2004.38(1):36-41
    [20] Moore KL, Dalley AF. Clinical oriented anatomy, 4th ed. Baltimore: Lippincott Williams & Wilkins; 1999:563
    [21] Perry, J. D.Exercise, injury and chronic inflammatory lesions[J].Br Med Bull.1992;48(3): 668-682
    [22]秦岭,张驰,王晔平,等.用自身软骨组织作为介质加速骨腱联合的愈合——兔组织学实验[J].武汉体育学院学报.2002.36(3):83-84
    [23] GARRETT W E, Jr CALIFF J C, BASSETT F H. Histochemical correlates of hamstring injuries [J]. Am J Sports Med, 1984, 12: 98-103
    [24] Kalimo H, Rantanen J, J?rvinen M. Muscle injuries in sports [J].Baillieres Clin Orthop. 1997.2:1-24
    [25]倪国新,肌肉拉伤的康复[J].现代康复.1999 .3(7):811-812
    [26] Almekinders LC, Gilbert JA. Healing of experimental muscle strains and the effects of nonsteroidal antiinflammatory medication [J]. Am J Sports Med. 1986.14(4):303-308
    [27]夏建英.大白鼠肌肉拉伤后运动和固定对肌肉的一些力学性质影响[D].上海体育学院,1987
    [28] Shu Bin, Wu Zongyao. Biomechanical evaluation of experimental muscle strain injuries in rabbits [J]. J Biomed Eng.1995, 12(4): 288-294
    [29]周里,陆爱云.大鼠骨骼肌模拟急性拉伤的生物力学实验研究[J].体育科学.1999,19(6):59-65
    [30] Lieber RL, Fridén J.Mechanisms of muscle injury gleaned from animal models. Am J Phys Med Rehabil [J]. 2002.81(11 Suppl): S70-79
    [31] Hughes W, Gosselin LE. Impact of endurance concentric contraction training on acute force deficit following in vitro lengthening contractions [J]. Eur J Appl Physiol. 2002 .87(3): 283-289
    [32] Brockett CL, Morgan DL, Proske U. Human hamstring muscles adapt to eccentric exercise by changing optimum length[J]. Med Sci Sports Exerc. 2001.33(5):783-790
    [33] Clarkson PM, Hubal MJ. Exercise-induced muscle damage in humans[J]. Am J Phys Med Rehabil. 2002.81(11 Suppl):S52-69
    [34] Clanton TO, Coupe KJ. Hamstring strains in athletes: diagnosis and treatment [J]. J Am Acad Orthop Surg. 1998.6(4):237-248
    [35] Kujala UM, Orava S, J?rvinen M. Hamstring injuries. Current trends in treatment and prevention [J]. Sports Med. 1997.23(6): 397-404
    [36] Drezner JA. Practical management: hamstring muscle injuries[J]. Clin J Sport Med. 2003.13(1):48-52
    [37] Croisier JL, Forthomme B, Namurois MH, et al. Hamstring muscle strain recurrence and strength performance disorders[J]. Am J Sports Med. 2002.30(2):199-203
    [38] Croisier JL. Factors associated with recurrent hamstring injuries [J]. Sports Med. 2004;34(10):681-695
    [39] Worrell TW. Factors associated with hamstring injuries: An approach to treatment and preventative measures [J]. Sports Med. 1994 .17(5):338-345
    [40] Hartig DE, Henderson JM. Increasing hamstring flexibility decreases lower extremity overuse injuries in military basic trainees [J]. Am J Sports Med. 1999.27(2):173-176
    [41] Witvrouw E, Danneels L, Asselman P,et al. Muscle flexibility as a risk factor for developing muscle injuries in male professional soccer players. A prospective study [J]. Am J Sports Med. 2003.31 (1):41-46
    [42] Heiser TM, Weber J, Sullivan G,et al. Prophylaxis and management of hamstring muscle injuries in intercollegiate football players[J]. Am J Sports Med. 1984.12(5):368-370
    [43] Askling C, Karlsson J, Thorstensson A. Hamstring injury occurrence in elite soccer players after preseason strength training with eccentric overload [J]. Scand J Med Sci Sports. 2003.13(4):244-250
    [44] Mj?lsnes R, Arnason A, ?sthagen T, et al. A 10-week randomized trial comparing eccentric vs. concentric hamstring strength training in well-trained soccer players [J]. Scand J Med Sci Sports. 2004.14(5):311-317
    [45] Brockett CL, Morgan DL, Proske U. Predicting hamstring strain injury in elite athletes [J]. Med Sci Sports Exerc. 2004.36(3): 379-387
    [46] Worrell TW, Perrin DH, Gansneder BM, et al. Comparison of isokinetic strength and flexibility measures between hamstring injured and noninjured athletes [J]. J Orthop Sports Phys Ther. 1991.13(3):118-125
    [47] J?nhagen S, Németh G, Eriksson E. Hamstring injuries in sprinters. The role of concentric and eccentric hamstring muscle strength and flexibility [J]. Am J Sports Med. 1994.22(2):262-266
    [48] Magnusson SP, Simonsen EB, Aagaard P, et al. A mechanism for altered flexibility in human skeletal muscle [J]. J Physiol. 1996 .497 ( Pt 1):291-298
    [49] Hartig DE, Henderson JM. Increasing hamstring flexibility decreases lower extremity overuse injuries in military basic trainees [J]. Am J Sports Med. 1999.27(2):173-176
    [50] Decoster LC, Cleland J, Altieri C,et al. The effects of hamstring stretching on range of motion: a systematic literature review [J]. J Orthop Sports Phys Ther. 2005.35(6):377-387
    [51] Bennell KL, Crossley K. Musculoskeletal injuries in track and field: incidence, distribution and risk factors [J]. Aust J Sci Med Sport. 1996.28(3):69-75
    [52] Carlson H, Thorstensson A, Nilsson J. Lumbar back muscle activity during locomotion: effects of voluntary modifications of normal trunk movements [J]. Acta Physiol Scand. 1988.133(3): 343-353
    [53] Orchard JW, Alcott E, James T,et al. Exact moment of a gastrocnemius muscle strain captured on video[J]. Br J Sports Med. 2002.36(3):222-223
    [54] Hodges PW, Pengel LH, Herbert RD, Measurement of muscle contraction with ultrasound imaging [J]. Muscle Nerve. 2003 .27 (6):682-692
    [55] Vogt M, Puntschart A, Howald H, et al. Effects of dietary fat on muscle substrates, metabolism, and performance in athletes[J]. Med Sci Sports Exerc. 2003.35(6):952-960
    [56]舒彬,吴宗耀.实用性肌肉拉伤的生物力学研究[J].生物医学工程学杂志.1995.12(4):288-294
    [57] Lieber RL, Fridén J. Mechanisms of muscle injury after eccentric contraction [J]. J Sci Med Sport. 1999.2(3):253-265
    [58] Lieber RL, Schmitz MC, Mishra DK, et al. Contractile and cellular remodeling in rabbit skeletal muscle after cyclic eccentric contractions [J]. J Appl Physiol. 1994.77(4):1926-1934
    [59] Best TM, McCabe RP, Corr D, et al. Evaluation of a new method to create a standardized muscle stretch injury [J]. Med Sci Sports Exerc. 1998.30(2):200-205
    [60]石葛明,王学礼,李桂桐等.按摩对肌肉损伤修复作用的形态学研究[J].中国运动医学杂志.1991.10(4):201-204
    [61]陈世益,李云霞,马昕,等.外源性胰岛素样生长因子- 2促进骨骼肌损伤修复的实验研究[J].中国运动医学杂志.2002.21(4):340-345
    [62]吕丹云,金玉兰,陈刚.股四头肌和小腿三头肌及其肌止装置包括骸骨与跟骨区域慢性运动损伤的模拟实验研究[J].中国运动医学杂志.1982.1(1):14-19
    [63] Armstrong RB, Ogilvie RW, Schwane JA.Eccentric exercise-induced injury to rat skeletal muscle [J]. J Appl Physiol. 1983.54(1):80-93
    [64]于长隆,曲绵域,姜泽伟,等.兔骨骼肌被动牵拉伤的实验病理研究[J].中国运动医学杂志,1985,4(1):1-15
    [65]田野.运动生理学高几教程.北京:高等教育出版社.2003,8:40-43
    [66]佃仁森,王和鸣,练克俭,等.中药复方制剂对软组织损伤修复的实验研究综述[J].福建中医学院学报, 2008, (02):66-68
    [67] MacIntosh, Brian R., Skeletal muscle: form and function. Champaign, Ill. : Human Kinetics, c2006.2nd :3-18
    [68] Richard L. Lieber. Skeletal muscle structure and function: implications for rehabilitation and sports medicine [M]. Baltimore, Md.Hong Kong : Williams & Wilkins, c1992:1-42
    [69] Carpenter, Stirling. Pathology of skeletal muscle [M]. New York, N.Y. : Oxford University Press, 2001.2nd Edition:65-92
    [70] Carpenter S, Karpati G. Segmental necrosis and its demarcation in experimental micropuncture injury of skeletal muscle fibers [J]. J Neuropathol Exp Neurol. 1989.48(2):154-70
    [71] Hurme T, Kalimo H, Lehto M, et al. Healing of skeletal muscle injury: an ultrastructural and immunohistochemical study [J]. Med Sci Sports Exerc.1991.23 : 801- 810
    [72]苏全生,田野,孙君志,等.中国运动医学杂志.大鼠运动性骨骼肌损伤后血液白细胞介素- 6、肌酸激酶及其同工酶的时相性变化[J].2006.25(2):176-180
    [73] Lehto M, Jarvinen M, Nelimarkka O: Scar formation after skeletal muscle injury. A histological and autoradiographical study in rats[J].Arch Orthop Trauma Surg.1986.104:366-370
    [74] Lehto M, Jarvinen M: Collagen and glycosaminoglycan synthesis of injured gastrocnemius muscle in rat[J].Eur Surg Res.1985.17: 179-185
    [75] Lehto M, Duance VC, Restall D: Collagen and fibronectin in a healing skeletal muscle injury. An immunohistological study of the effects of physical activity on the repair of injured gastrocnemius muscle in the rat[J].J Bone Joint Surg.1985.67B: 820-828
    [76] Carlson BM, Faulkner JA: The regeneration of skeletal muscle fibers following injury: a review[J].Med Sci Sports Exerc.1983.15: 187-198
    [77] Snow MH: Myogenic cell formation in regenerating rat skeletal muscle injured by mincing. I. A fine structural study[J]. Anat Rec.1977.188:181-199
    [78] Hurme T, Kalimo H: Activation of myogenic precursor cells after muscle injury[J].Med Sci Sports Exerc.1992,24:197-205
    [79] J?rvinen TA, J?rvinen TL, K??ri?inen M, et al. Muscle injuries: biology and treatment [J]. Am J Sports Med. 2005.33(5):745-64
    [80] Robertson TA, Maley MA, Grounds MD, et al. The role ofmacrophages in skeletal muscle regeneration with particular reference to chemotaxis [J].Exp Cell Res,1993 ,207:321-331
    [81]李云霞,陈世益,马昕,等.外源性胰岛素样生长因子21促进骨骼肌损伤修复的实验研究[J].中华物理医学与康复杂志. 2002.24(3):147-151
    [82] HAWKE T J,GARRY DJ.Myogenic satellite cells:physiology to molecular biology[J].J Appl Physiol.2001.91(2): 534-551
    [83] Pavlath GK, Dominov JA, Kegley KM,et al. Regeneration of transgenic skeletal muscles with altered timing of expression of the basic helix-loop-helix muscle regulatory factor MRF4[J]. Am J Pathol. 2003.162(5):1685-1691
    [84] Cooper RN, Tajbakhsh S, Mouly V.et al.In vivo satellite cell activation via Myf5 and MyoD in regenerating mouse skeletal muscle [J]. J Cell Sci. 1999.112 ( Pt 17):2895-2901
    [85] Arnold HH, Winter B. Muscle differentiation: more complexity to the network of myogenic regulators [J]. Curr Opin Genet Dev. 1998. 8(5): 539-544
    [86] Zipora Yablonka-Reuveni, Michael A.Rudnicki, Anthony J.Rivera, et al. The transition from proliferation to differentiation is delayed in satellite cells from mice lacking MyoD [J]. Dev Biol. 1999 .210(2):440-455
    [87]潘同斌,毛杉杉,王瑞元.慢性低氧及跑台训练对大鼠骨骼肌成肌调节因子MyoD和Myogenin基因表达的影响[J].北京体育大学学报. 2007, 30(9): 1209-1211
    [88] Omoteyama K, Mikami Y, Takagi M. Foxc2 induces expression of MyoD and differentiation of the mouse myoblast cell line C2C12 [J]. Biochem Biophys Res Commun , 2007 , 358(3): 885
    [89] Gerber AN, Wilson CW, Li YJ, et al. The hedgehog regulated oncogenes Gli1 and Gli2 block myoblast differentiation by inhibiting MyoD-mediated transcriptional activation [J]. Oncogene, 2007, 26(8): 1122-1136
    [90] Swenson C, Sward L, Karlsson J. Cryotherapy in sports medicine [J]. Scandinavian Journal of Medicine & Science in Sports 1996.6(4):193–200
    [91] Deal DN, Tipton J, Rosencrance E, Curl WW, Smith TL. Ice reduces edema: a study of microvascular permeability in rats [J]. J Bone Joint Surg Am. 2002.84:1573-1578
    [92] MacAuley D. Do textbooks agree on their advice on ice? [J]. Clinical Journal of Sport Medicine 2001.11 (2): 67–72
    [93] Jarvinen TA, Kaariainen M, Jarvinen M, Kalimo H. Muscle strain injuries [J]. Current Opinion in Rheumatology 2000.12(2):155–161
    [94] K??ri?inen M, J?rvinen T, J?rvinen M,et al. Relation between myofibers and connective tissue during muscle injury repair [J]. Scand J Med Sci Sports. 2000.10(6):332-337
    [95] Almekinders LC, Gilbert JA. Healing of experimental muscle strains and the effects of nonsteroidal antiinflammatory medication [J]. The American Journal of Sports Medicine 1986. 14 (4):303–308
    [96] Obremsky WT, Seaber AV, Ribbeck BM, Garrett Jr WE. Biomechanical and histological assessment of a controlled muscle strain injury treated with piroxicam [J]. The American Journal of Sports Medicine 1994.22:558–561
    [97] Geffen SJ. 3: Rehabilitation principles for treating chronic musculoskeletal injuries [J]. Med J Aust. 2003.178(5):238-242
    [98] Kannus P, Parkkari J, J?rvinen TL, et al. Basic science and clinical studies coincide: active treatment approach is needed after a sports injury [J]. Scand J Med Sci Sports. 2003.13(3): 150-154
    [99] Rantanen J, Thorsson O, Wollmer P, Hurme T, Kalimo H. Effects of therapeutic ultrasound on the regeneration of skeletal muscle myofibers after experimental muscle injury [J]. Am J Sports Med.1999.27:54-59
    [100] Wilkin LD, Merrick MA, Kirby TE, Devor ST. Influence of therapeutic ultrasound on skeletal muscle regeneration following blunt contusion [J].Int J Sports Med. 2004.25:73-77
    [101]邱茂良.针灸学[M].上海:上海科学技术出版社,1988,141
    [102]赵斌,田惠林,刘玉倩.电针对肌肉损伤修复作用的形态学观察[J].中国临床康复.2002.6(20):3044
    [103]陈德松.电刺激在被动活动对小鼠失神经支配肌肉萎缩的影响[J].中华实验外科杂志,1991,8(2):90
    [104]罗磊,许晓瑾.电针对力竭游泳大鼠肾脏线粒体自由基代谢和线粒体功能的影响[J].中国针灸.2001.21(6):366-368
    [105] Watson T. The role of electrotherapy in contemporary physiotherapy practice[J].Manual Therapy 2000.5(3):132–141
    [106] Richard L.Lieber, Schmitz MC, Mishra DK, et al. Contractile and cellular remodeling in rabbit skeletal muscle after cyclic eccentric contractions [J]. J Appl Physiol. 1994.77(4):1926-1934
    [107] Johnson MD, Buckley JG. Muscle power patterns in the mid-acceleration phase of sprinting [J]. J Sports Sci. 2001 .19(4): 263-272
    [108] Nunome H, Ikegami Y, Kozakai R,et al. Segmental dynamics of soccer instep kicking with the preferred and non-preferred leg [J]. J Sports Sci. 2006.24(5):529-541
    [109] Peetrons P. Ultrasound of muscles.Eur Radiol. 2002 ,12(1):35-43
    [110] Brandser EA, El-Khoury GY, Kathol MH, et al.Hamstring injuries: radiographic, conventional tomographic, CT and MRimaging characteristics [J]. Radiology 1995.197:257–262
    [111] Carpenter, Stirling. Pathology of skeletal muscle. New York,N.Y. : Oxford University Press, 2001.2nd Edition:65-92
    [112] Jacobson, Jon A. Fundamentals of musculoskeletal ultrasound. Philadelphia, PA.2007.1st ed.15-19;178-208
    [113] Tidball JG, Chan CM: Adhesive strength of single muscle cells to basement membrane at myotendinous junctions [J]. J Appl Physiol, 1989,67: 1063-1069
    [114] Tidball JG, Salem G, Zernicke R: Site and mechanical conditions for failure of skeletal muscle in experimental strain injuries [J]. J Appl Physiol,1993,74: 1280-1286
    [115]王生,何作顺,何丽华.等。静态负荷所致肌肉损伤的能量代谢变化[J].中华劳动卫生职业病杂志.2001.19(3):172-174
    [116] Hasselman CT, Best TM, Seaber AV, et al. A threshold and continuum of injury during active stretch of rabbit skeletal muscle [J]. Am J Sports Med. 1995,23(1):65-73
    [117]郑亚林,张志峰.运动状态下骨骼肌肉的生物力学特征[J].中国组织工程研究与临床康复.2008,12(28):5503-5506
    [118]于长隆,曲绵域,姜泽伟,等.兔骨骼肌被动牵拉伤的实验病理研究[J].中国运动医学杂志,1985,4(1):1-15
    [119] Lieber RL, Schmitz MC, Mishra DK, et al. Contractile and cellular remodeling in rabbit skeletal muscle after cyclic eccentric contractions [J]. J Appl Physiol. 1994.77(4):1926-1934
    [120] Hakim M, Hage W, Lovering RM, Moorman CT 3rd,et al. Dexamethasone and recovery of contractile tension after a muscle injury [J]. Clin Orthop Relat Res. 2005.439:235-242.
    [121] Lovering RM, Roche JA, Bloch RJ, et al. Recovery of function in skeletal muscle following 2 different contraction-induced injuries [J]. Arch Phys Med Rehabil. 2007.88(5):617-625
    [122] Brooks SV, Zerba E, Faulkner JA. Injury to muscle fibres after single stretches of passive and maximally stimulated muscles in mice [J]. J Physiol. 1995.15;488 ( Pt 2):459-469
    [123] Butterfield TA, Herzog W. Quantification of muscle fiber strain during in vivo repetitive stretch-shortening cycles. J Appl Physiol [J]. 2005.99(2):593-602
    [124] Schache AG, Wrigley TV, Baker R, et al. Biomechanical response to hamstring muscle strain injury [J]. Gait Posture. 2009. 29(2): 332-338.
    [125] Corona BT, Rouviere C, Hamilton SL, et al. Eccentric contractions do not induce rhabdomyolysis in malignant hyperthermia susceptible mice [J]. Appl Physiol. 2008.105(5): 1542-1553.
    [126] Hubal MJ, Rubinstein SR, Clarkson PM. Muscle function in men and women during maximal eccentric exercise [J]. J Strength Cond Res. 2008.22(4):1332-1338.
    [127] Warren GL, Summan M, Gao X,et al. Mechanisms of skeletal muscleinjury and repair revealed by gene expression studies in mouse models [J].Physiol. 2007.15;582(Pt 2):825-841
    [128] Chen TC. Variability in muscle damage after eccentric exercise and the repeated bout effect [J]. Res Q Exerc Sport. 2006.77 (3):362-371
    [129] Brooks SV and Faulkner JA. The magnitude of the initial injury induced by stretches of maximally activated muscle fibres of mice and rats increases in old age [J]. J Physiol.1996.497: 573–580.
    [130] Brooks SV and Faulkner JA. Severity of contraction-induced injury is affected by velocity only during stretches of large strain. J Appl Physiol,2001.91: 661–666
    [131] Gosselin LE and Burton H. Impact of initial muscle length on force deficit following lengthening contractions in mammalian skeletal muscle [J].Muscle Nerve.2002.25: 822–827
    [132] Lieber RL, Woodburn TM, and Friden J. Muscle damage induced by eccentric contractions of 25% strain [J]. J Appl Physiol, 1991. 70: 2498–2507
    [133] Whitehead NP, Morgan DL, Gregory JE, and Proske U. Rises in whole muscle passive tension of mammalian muscle after eccentric contractions at different lengths [J]. J Appl Physiol 2003.95: 1224–1234
    [134] Hirata A, Masuda S, Tamura T, et al. Expression profiling of cytokines and related genes in regenerating skeletal muscle after cardiotoxin injection: a role for osteopontin [J]. Am J Pathol. 2003.163(1):203-215.
    [135] Kalimo H, Rantanen J, J?rvinen M. Muscle injuries in sports [J]. Baillieres Clin Orthop. 1997.2:1-24
    [136] K??ri?inen M, J?rvinen T, J?rvinen M, et al. Relation between myofibers and connective tissue during muscle injury repair [J]. Scand J Med Sci Sports. 2000.10(6):332-337
    [137] James JH, Fischer JE. Are the effects of platelet-activating factor on muscle metabolism of carbohydrates, amino acids and proteins attributable mainly to epinephrine? [J].Shock. 2000. 14 (4):499-500
    [138] Kirkendall DT, Garrett Jr WE. Clinical perspectives regarding eccentric muscle injury [J]. Clinical Orthopaedics and Related Research. 2002 (403 Suppl.):S81–89.
    [139] Slavotinek JP, Verrall GM, Fon GT. Hamstring injury in athletes: using MR imaging measurements to compare extent of muscle injury with amount of time lost from competition [J]. American Journal of Roentgenology 2002.179 (6):1621–1628.
    [140] Garrett Jr WE, Califf JC, Bassett III FH. Histochemical correlates of hamstring injuries [J]. The American Journal of Sports Medicine 1984.12 (2): 98–103
    [141] Chris Jarmey.The Atlas of Musculo-skeletal Anatomy. Chichester: Lotus Pub;Berkeley,Calif:North Atlantic Books,2004:324-327
    [142] Garrett Jr WE, Rich FR, Nikolaou PK, Vogler III JB. Computed tomography of hamstring muscle strain [J]. Medicine and Science in Sports and Exercise 1989.21(5):506–514
    [143] De Smet AA, Best TM. MR imaging of the distribution and location of acute hamstring injuries in athletes [J]. American Journal of Roentgenology 2000.174(2):393–399.
    [144] Keen J, Nyland J, Kocabey Y, Malkani A. Shoulder and elbow function 2 years following long head triceps interposition flap transfer for massive rotator cuff tear reconstruction [J]. Arch Orthop Trauma Surg. 2006.126(7):471-479
    [145] Ellenbecker TS, Elmore E, Bailie DS. Descriptive report of shoulder range of motion and rotational strength 6 and 12 weeks following rotator cuff repair using a mini-open deltoid splitting technique [J]. J Orthop Sports Phys Ther. 2006 .36(5):326-35
    [146] Cools AM, Declercq GA, Cambier DC, Mahieu NN, Trapezius activity and intramuscular balance during isokinetic exercise in overhead athletes with impingement symptoms [J]. Scand J Med Sci Sports. 2007.17(1):25-33
    [147] Knapid JJ, Bauman CL, Jones BH, et al. Isokinetic strength and flexibility imbalance associated with athletic injures in female collegiate athletes [J]. Am J Sports Med,1991.19:76-80
    [148] Bennell K,Wajswelner H,Lew P.et al. Isokinetic strength testing does not predict hamstring injure in Australian Rule footballers [J].Br J Sports Med.1998.32(4):309-314
    [149] Balnave CD, Thompson MW. Effect of training on eccentric exercise-induced muscle damage [J]. J Appl Physiol.1993.75:1545-1551
    [150] Gibala MJ, MacDougall JD, Tarnopolsky MA, et al. Changes in human skeletal muscle ultrastructure and force production after acute resistance exercise [J]. J Appl Physiol 1995.78: 702-8
    [151] Whitehead NP, Morgan DL, Gregory JE, and Proske U. Rises in whole muscle passive tension of mammalian muscle after eccentric contractions at different lengths [J]. J Appl Physiol.2003.95: 1224–1234
    [152] Timothy A. Butterfield.Walter Herzog.Effect of altering starting length and activation timing of muscle on fiber strain and muscle damage [J].J Appl Physiol 2006,100: 1489–1498
    [153] N. P. Whitehead, N. S. Weerakkody, J. E. Gregory, et al. Changes in passive tension of muscle in humans and animals after eccentric exercise [J]. Journal of Physiology 2001.533.2:593–604
    [154] Cornelison DD, Olwin BB, Rudnicki MA, and Wold BJ.MyoD(-/-)satellite cells in single-fiber culture are differentiation defective and MRF4 deficient [J]. Dev Biol.2000.224: 122–137
    [155] Cornelison DDW, Wold BJ. Single-cell analysis of regulatory gene expression in quiescent and activated mouse skeletal muscle satellite cells [J]. Dev Biol,1997.191: 270–283
    [156] Rantanen J, Hurme T, Lukka R, Heino J, and Kalimo H.Satellite cell proliferation and the expression of myogenin and desmin in regenerating skeletal muscle: evidence for two different populations of satellite cells [J]. Lab Invest.1995.72: 341–347
    [157] Zammit PS, Heslop L, Hudon V, et al. Kinetics of myoblast proliferation show that resident satellite cells are competent to fully regenerate skeletal muscle fibers [J]. Exp Cell Res, 2002. 281:39–49
    [158] Papadimitriou JM. Pax7 includes two polymorphic homeoboxes which contain rearrangements associated with differences in the ability to regenerate damaged skeletal muscle in adult mice [J]. Int J Biochem Cell Biol,1998.30: 261–269
    [159] Kay PH, Marlow SA, Mitchell CA, and Papadimitriou JM.Studies on the evolution and function of different forms of the mouse myogenic gene Myo-D1 and upstream flanking region [J]. Gene, 1993. 124: 215–222
    [160] Kay PH, Mitchell CA, Akkari A, and Papadimitriou JM. Association of an unusual form of a Pax7-like gene with increased efficiency of skeletal muscle regeneration [J]. Gene.1995. 163: 171–177
    [161] Yablonka-Reuveni Z and Rivera AJ. Temporal expression of regulatory and structural muscle proteins during myogenesis of satellite cells on isolated adult rat fibers [J]. Dev Biol, 1994. 164: 588–603
    [162] Smith CK, Janney MJ, and Allen RE. Temporal expression of myogenic regulatory genes during activation, proliferation and differentiation of rat skeletal muscle satellite cells [J]. J Cell Physiol,1994.159:379–385
    [163] Schultz E, Jaryszak DL, Valliere CR. Response of satellite cells to focal skeletal muscle injury [J].Muscle Nerve,1985.8: 217–222
    [164] Schultz E, Jaryszak DL, Gibson MC, and Albright DJ. Absence of exogenous satellite cell contribution to regeneration of frozen skeletal muscle [J]. J Muscle Res Cell Motil.1986. 7: 361–367
    [165]王保成,杨胜利.电刺激法治疗运动训练中肌肉软组织损伤的应用研究[J].北京体育师范学院学报.1994.6(2):35-37
    [166]黄力平,曹龙军,周石,等.不同时间电刺激训练对肌肉损伤与修复形态学及IGF-1表达的影响.第八届全国体育科学大会论文摘要汇编.2007:140
    [167]朱建辛,张耀明;重组人表皮细胞生长因子在慢性溃疡创面中的应用[J].中国修复重建外科杂志,2002,16(1):42-43
    [168] Majed AA, Tam SL, Gordon T. Electrical stimulation accelerates and enhances expression of regeneration-associated genes in regenerating rat femoral motoneurons[J]. Cell Mol Neurobiol, 2004, 24(3): 379-402
    [169]付小兵,程飚,盛志勇;创面愈合与瘢痕形成的分子学研究[J].中国临床康复,2002,6(4):464-466
    [170] Gonzalo Ugarte, Enrique Brandan. Transforming Growth Factor ? (TGF-?) Signaling Is Regulated by Electrical Activity in Skeletal Muscle Cells[J]. The Journal of Biological Chemistry.2006. 281 (27): 18473–18481
    [171]史仍飞,危小焰,卞玉华.机械牵拉刺激对大鼠骨骼肌卫星细胞增殖的影响[J].体育科学.2007年.27(5):74-76
    [172]周里.电刺激方法治疗肌肉损伤的应用观察[J].体育与科学, 1997,18 (3) : 32—341
    [173] Black CD, Elder CP, Gorgey A, Dudley GA. High specific torque is related to lengthening contraction-induced skeletal muscle injury [J].J Appl Physiol. 2008 Mar;104(3):639-647

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700