加味镇眩方降压作用的药效学、临床研究及其对高血压微血管稀疏的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景
     在我国,随着社会生活水平的提高以及生活方式的转变,高血压病的发病率稳步上升,2002年全国居民营养与健康状况调查资料显示,我国成人高血压患病率为18.8%,全国有高血压患者约1.6亿。作为最常见的慢性病,高血压是引起脑卒中、冠心病和肾功能衰竭等疾病的重要基础疾病之一。
     西药降压虽然具有降压迅速、顺应性良好的优势,但降压药的不良反应较多,很多病人甚至不能忍受而放弃治疗。中医药治疗高血压具有独特的优势,如降压稳定而持久,同时症状改善明显,不良反应较少。陈宝田教授根据祖国医学中“诸风掉眩,皆属于肝”、“无痰不做眩”等相关理论,结合数十年临床经验,创制加味镇眩方,用于高血压病的治疗,效果良好。如能合理开发应用,将有助于弥补西药降压的不足,平稳降压、改善高血压患者临床症状、减少降压药物的不良反应,提高我国近两亿高血压患者的生活质量和健康水平。
     在高血压的病理生理中,微血管对高血压及其并发症的形成可能具有更重要的作用。微血管密度的减少,不仅导致血液平行通路下降,而且引起外周血管阻力的增高,从而推动动脉血压的持续升高;微血管密度的减少,又能使各个靶器官组织的物质能量代谢水平、储备能力及物质交换能力下降,最终导致靶器官的损害。本研究的主要目的在于:一、探讨加味镇眩方在动物实验研究和临床试验研究中的降压作用,二、探讨加味镇眩方对高血压微血管系统的影响及其他作用机制。
     第一章加味镇眩方降压作用的实验研究
     目的加味镇眩方的降压作用。
     方法将50只SHR大鼠随机分为加味镇眩方高剂量组、加味镇眩方中剂量组、加味镇眩方低剂量组、卡托普利组、对照组,经过12周的干预,分别测定基础血压、心率和2周、4周、6周、8周、10周、12周的血压及心率,以及干预结束后血浆AngⅡ含量。
     结果血压组间比较显示:各组间血压有统计学差异(F=54.557,P=0.000);与对照组相比,加味镇眩方低剂量组(P=0.001)、中剂量组(P=0.000)、高剂量组(P=0.000)及卡托普利组(P=0.000)均能降低SHR血压;与高剂量组相比,加味镇眩方低剂量组血压较高(P=0.029)、卡托普利组降压效果更好(P=0.001)均有统计学差异,中剂量组血压与之相比无统计学差异(P=0.249)
     不同时间的血压水平有统计学差异(F=209.221,P=0.000)。从各个时间点来看,治疗前五组SHR大鼠血压无统计学差异(F=0.850,P=0.501),治疗后2周(F=59.646,P=0.000)、4周(F=56.970,P=0.000)、6周(F=45.251,P=0.000)、8周(F=45.546,P=0.000)、10周(F=57.358,P=0.000)、12周(F=75.150,P=0.000)血压均有统计学差异。加味镇眩方低剂量组(2周P=0.089、4周P=0.002、6周P=0.000、8周P=0.000、10周P=0.000、12周P=0.000)、中剂量组(2周P=0.001、4周P=0.000、6周P=0.000、8周P=0.000、10周P=0.000、12周P=0.000)、高剂量组(2周P=0.000、4周P=0.000、6周P=0.000、8周P=0.000、10周P=0.000、12周P=0.000)及卡托普利组(2周P=0.000、4周P=0.000、6周P=0.000、8周P=0.000、10周P=0.000、12周P=0.000)在治疗后各个时间点血压均比对照组低.
     加味镇眩方高剂量组在第12周末取得最好的降压效果,与卡托普利组降压效果相当(P=0.020),与低(P=0.000)、中剂量组(P=0.001)相比有统计学差异,其他各个时间点卡托普利组血压均比加味镇眩方高剂量组低(2周P=0.000、4周P=0.000、6周P=0.000、8周P=0.000、10周P=0.000)。在整个实验中,中药组的血压呈平稳持续下降过程,而卡托普利组血压则较快下降,并保持稳定。时间和分组之间有交互效应(F=25.646,P=0.000)
     组间比较显示:各组间心率有统计学差异(F=11.594,P=0.000);与对照组相比,加味镇眩方低剂量组(P=0.004)、中剂量组(P=0.000)、高剂量组(P=0.000)均能降低SHR心率,卡托普利组对SHR大鼠心率无明显影响(P=0.297);与高剂量组相比,加味镇眩方低剂量组(P=0.209)、中剂量组(P=0.596)心率无统计学差异。
     不同时间的心率水平有统计学差异(F=40.907,P=0.000)。从各个时间点来看,治疗前五组SHR大鼠心率无统计学差异(F=0.981,P=0.427);治疗后2周(F=3.911,P=0.008)、4周(F=7.220,P=0.000)、6周(F=8.949,P=0.000)、8周(F=9.179,P=0.000)、10周(F=12.621,P=0.000)、12周(F=30.622,P=0.000)心率均有统计学差异,与对照组相比,加味镇眩方低剂量组(2周P=0.045、4周P=0.006、6周P=0.005、8周P=0.000、10周P=0.000、12周P=0.000)、中剂量组(2周P=0.002、4周P=0.001、6周P=0.000、8周P=0.000、10周P=0.000、12周P=0.000)、高剂量组(2周P=0.002、4周P=0.000、6周P=0.000、8周P=0.000、10周P=0.000、12周P=0.000)在治疗后各个时间点均能减慢SHR大鼠心率;卡托普利组在各个时间点与SHR大鼠组心率均无统计学差异。时间和分组之间存在着交互效应(F=7.449,P=0.000)。
     组间血浆AngⅡ含量的比较:各组血浆AngⅡ含量有统计学差异(F=7.047,P=0.000),与对照组相比,加味镇眩方低剂量组(P=0.015)、中剂量组(P=0.006)、高剂量组(P=0.000)、卡托普利组(P=0.000)均能降低血浆AngⅡ含量;与高剂量相比,加味镇眩方低(P=0.142)、中剂量组(P=0.257)、卡托普利组(P=0.359)在降低血浆AngⅡ方面无统计学差异。
     结论加味镇眩方可降低SHR大鼠血压,可能与降低SHR大鼠心率及血浆AngⅡ含量有关。
     第二章加味镇眩方对SHR血管内皮功能的影响
     目的:通过对自发性高血压大鼠(SHR)内皮依赖的耳廓微血管反应,以及NO的生物合成和生物利用途径的研究,探讨加味镇眩方的降压机制。
     方法:将50只SHR大鼠随机分为加味镇眩方高剂量组、加味镇眩方中剂量组、加味镇眩方低剂量组、卡托普利组、对照组,12周干预结束,SHR大鼠麻醉后,用激光多普勒系统分别测定耳廓微血管基础血流量以及温热刺激下的耳廓微血管血流量;处死SHR大鼠,分别测定其血浆NO含量、主动脉NOS活性、主动脉cGMP含量。
     结果:治疗后,各组大鼠耳廓微血管的基础血流灌注量无统计学差异(F=0.633,P=0.641)。
     将基础血流量作为协变量,采用协方差分析,可以看到,在温热刺激下,各组耳廓微血管血流量有统计学差异(F=55.40,P=0.000)。与对照组相比,加味镇眩方低(P=0.000)、中(P=0.000)、高剂量组(P=0.000)及卡托普利组(P=0.000)均能够增加SHR大鼠耳廓微血管血流量,与其他各组相比,加味镇眩方高剂量均能够增加SHR大鼠耳廓微血管血流量(P=0.000),卡托普利与低剂量中药组血流灌注量无统计学差异(P=0.450)。
     在温热刺激下,各组之间耳廓微血管血流灌注变化率存在差异(χ2=39.692,P=0.000),对照组对温热刺激的变化最不敏感,血流灌注增加最少,其次为卡托普利组、低剂量组、中剂量组、高剂量组。
     各组血浆NO(F=3.400,P=0.016)、主动脉NOS活性(F=2.892,P=0.033)及主动脉cGMP含量(F=8.195,P=0.000)有统计学差异。
     与对照组相比,加味镇眩方低剂量组对SHR大鼠血浆NO(P=0.058)、主动脉NOS活性(P=0.070)无明显影响,加味镇眩方中(P=0.007)、高剂量组(P=0.006)和卡托普利组(P=0.002)均能够明显提高SHR大鼠血浆NO含量,加味镇眩方中(P=0.022)、高剂量组(P=0.009)和卡托普利组(P=0.004)均能够明显提高主动脉NOS活性。与高剂量组相比,加味镇眩方低(P=0.254)、中剂量组(P=0.958)和卡托普利组(P=0.731)血浆NO含量无统计学差异,加味镇眩方低(P=0.393)、中剂量组(P=0.734),卡托普利组(P=0.737)主动脉NOS活性无统计学差异。
     与对照组相比,加味镇眩方低(P=0.000)、中(P=0.000)、高剂量组(P=0.000)和卡托普利组(P=0.009)均能提高SHR大鼠主动脉cGMP含量;与加味镇眩方高剂量组相比,加味镇眩方低(P=0.306)、中剂量组(P=0.905)主动脉cGMP含量无统计学差异,卡托普利组(P=0.035)主动脉cGMP含量较低。
     结论加味镇眩方可通过影响SHR大鼠NO/NOS/cGMP合成及利用系统,增加SHR大鼠耳廓微血管血流灌注量,改善血管内皮功能。
     第三章加味镇眩方对SHR大鼠心肌基质金属蛋白酶-2和左室重塑的影响
     目的:通过观察加味镇眩方对SHR大鼠左室质量及左室质量指数、左心室心肌胶原浓度、心肌MMP-2蛋白表达,探讨其对左室重塑的作用及其可能机制。
     方法:将50只SHR大鼠随机分为加味镇眩方高剂量组、加味镇眩方中剂量组、加味镇眩方低剂量组、卡托普利组、对照组,12周的干预结束后,动物称重处死后,电子天平称取左心室和室间隔质量为左心室质量,左室质量指数(LVMD=左心室质量(g)/体重(kg)。称取50mg左心室组织测定羟羟脯氨酸含量,其他组织4℃生理盐水洗净吸干,称重,4%多聚甲醛液中固定后石蜡包埋切片后免疫组织化学方法检测心肌MMP-2蛋白。
     结果:体重:各组间体重存在差异(F=3.548,P=0.013),与卡托普利组相比,加味镇眩方低(P=0.003)、中(P=0.034)、高剂量组(P=0.004)和对照组(P=0.004)体重增加,与加味镇眩方高剂量组相比,低剂量组(P=0.904)、中剂量组(P=0.401)、对照组(P=1.000)体重无统计学差异。
     左心室质量:各组间左心室质量存在差异(F=10.868,P=0.000),与对照组相比,加味镇眩方低(P=0.001)、中(P=0.000)、高剂量组(P=0.000)、卡托普利组(P=0.000)左心室质量明显减少。与加味镇眩方高剂量组相比,低剂量组(P=0.013)左心室质量增加,中剂量组(P=0.237)、卡托普利组(P=0.082)左心室质量无统计学差异。
     左室质量指数:各组间左室质量指数存在差异(F=9.550,P=0.000);与对照组相比,加味镇眩方低(P=0.001)、中(P=0.000)、高剂量组(P=0.000)、卡托普利组(P=0.001)左心室质量指数明显下降;与加味镇眩方高剂量组相比,低剂量组(P=0.019)、卡托普利组(P=0.017)左心室质量指数增加,中剂量组(P=0.198)左心室质量指数无统计学差异。
     各组SHR大鼠心肌MMP-2蛋白表达有统计学差异(F=170.854,P=0.000),与对照组相比,加味镇眩方低(P=0.037)、中(P=0.000)、高剂量组(P=0.000)、卡托普利组(P=0.000)均能够降低心肌MMP-2蛋白表达;与高剂量组相比,低剂量组(P=0.000)、中剂量组(P=0.000)、卡托普利组(P=0.000)心肌MMP-2蛋白表达增加。
     各组大鼠左室心肌胶原浓度有统计学差异(F=25.535,P=0.000),与对照组相比,加味镇眩方低(P=0.000)、中(P=0.000)、高剂量组(P=0.000)、卡托普利组(P=0.000)左室心肌胶原浓度均下降。与加味镇眩方高剂量组相比,低剂量组(P=0.012)、卡托普利组(P=0.004)胶原浓度增加,中剂量组与之无统计学差异(P=0.285)
     左室质量与终点血压显著相关(r=0.645,P=0.000),左室质量指数与终点血压显著相关(r=0.580,P=0.000)。
     结论:加味镇眩方能够降低心肌基质金属蛋白酶-2的表达、降低左室质量、降低左室质量指数及左室心肌胶原浓度。
     第四章加味镇眩方对SHR大鼠心、脑、肾微血管稀疏的影响
     目的:通过观察加味镇眩方组对SHR大鼠心、脑、肾微血管密度的影响,探讨其对高血压微血管系统的影响及其可能机制。
     方法:将50只SHR大鼠随机分为加味镇眩方高剂量组、加味镇眩方中剂量组、加味镇眩方低剂量组、卡托普利组、对照组,12周的干预结束后,动物称重处死后,迅速分离左心室,称取50mg左心室组织测定羟羟脯氨酸含量,其他组织4℃生理盐水洗净吸干,称重,立即投入到4%多聚甲醛液中固定12h。同时分离大脑、肾脏,分别称重后,沿冠状面切开,立即投入到4%多聚甲醛液中固定,石蜡包埋后切片,CD34染色免疫组织化学方法检测大鼠心肌、大脑、肾脏微血管密度。
     结果:各组心肌微血管密度有统计学差异(F=5.212,P=0.002)。与对照组相比,加味镇眩方低(P=0.029)、中(P=0.024)、高剂量组(P=0.000)、卡托普利组(P=0.032)均能够提高SHR大鼠心肌微血管密度。与加味镇眩方高剂量组相比,低剂量组(P=0.026)、中剂量组(P=0.031)、卡托普利组(P=0.023)SHR大鼠脑组织微血管密度无统计学差异
     各组SHR大鼠心肌微血管密度有统计学差异(F=22.793,P=0.000)。与对照组相比,加味镇眩方低(P=0.000)、中(P=0.000)、高剂量组(P=0.000)、卡托普利组(P=0.007)均能够增加SHR大鼠心肌微血管密度。与加味镇眩方高剂量组相比,低剂量组(P=0.030)、卡托普利组(P=0.000)SHR大鼠心肌微血管密度降低,中剂量组与之无统计学差异(P=0.080)
     各组肾小管周围微血管密度有统计学差异(F=26.820,P=0.000)。与对照组相比,加味镇眩方低(P=0.000)、中(P=0.000)、高剂量组(P=0.000)、卡托普利组(P=0.000)均能够增加SHR大鼠肾小管周围微血管密度。与加味镇眩方高剂量组相比,低剂量组(P=0.003)、卡托普利组(P=0.001)SHR大鼠肾小管周围微血管密度降低,中剂量组肾小管周围微血管密度与之无统计学差异(P=0.093)。
     各组肾小球微血管密度有统计学差异(F=29.766,P=0.000)。与对照组相比,加味镇眩方低(P=0.000)、中(P=0.000)、高剂量组(P=0.000)、卡托普利组(P=0.000)均能够提高SHR大鼠肾小球微血管密度。与加味镇眩方高剂量组相比,低剂量组(P=0.000)、卡托普利组(P=0.001)SHR大鼠肾小球微血管密度减少,中剂量组肾小球微血管密度与之无统计学差异(P=0.076)。
     肾小管周围微血管密度以及肾小球微血管密度与血压的具有相关性,分别为(r=-0.427,P=0.003)和(r=-0.500,P=0.000),心肌(r=-0.172,P=0.247)、大脑(r=-0.255,P=0.084)微血管密度与终点血压无明显相关。
     结论:加味镇眩方各个剂量组均能改善高血压主要靶器官心、脑、肾脏微血管稀疏的作用,高剂量组在改善脑组织微血管稀疏方面效果最好,中、高剂量组对于心、肾小球及肾小管周围微血管稀疏的效果最好。加味镇眩方对改善微血管稀疏的作用优于西药卡托普利。高血压肾小球及肾小管周围微血管密度与血压具有相关性。
     第二部分临床部分
     加味镇眩方治疗原发性高血压的疗效观察
     目的:通过加味镇眩方对原发性高血压患者血压及中医证侯的疗效观察,探讨其降低血压的临床有效性及安全性。
     方法:所有病例来源于河南省高血压病医院(河南省中医药研究院附属医院)门诊及高血压病区,性别不限,年龄在18岁-65岁,共90例。试验符合临床试验医学伦理,知情同意后进入临床试验。入组病例须符合高血压低危或中危(1~2级)诊断及中医肝火亢盛证或痰湿壅盛证诊断。90例患者随机分为中药治疗组和卡托普利对照组,中药治疗组45例,卡托普利对照组45例,中药组给予加味镇眩方治疗;对照组以西药卡托普利片(12.5mg,日二次),疗程4周。分别观察治疗前后的血压水平、中医证候积分及安全性指标。两组病例在性别(χ2=3.455,P=0.063)、年龄(t=0.429,P=0.669)、病程(t=—1.157,P=0.251)无统计学差异。两组治疗前收缩压无统计学差异(Z=-0.543,P=0.587);舒张压无统计学差异(Z=-1.091,P=0.275);中医证侯积分,无统计学差异(Z=-0.734,P=0.463)。
     结果:不同时间收缩压有统计学差异(F=369.678,P=0.000),治疗后两组收缩压均下降;两组之间收缩压变化无统计学差异(F=0.132,P=0.719),时间和分组之间无交互效应(F=1.120,P=0.297)。不同时间舒张压有统计学差异(F=50.230,P=0.000),治疗后两组舒张压均下降,两组之间舒张压变化无统计学差异(F=4.010,P=0.053)。时间和分组之间无交互效应(F=0.005,P=0.944)。不同时间中医证侯积分有统计学差异(F=368.841,P=0.000),治疗后两组中医证侯积分均降低,两组之间中医证侯积分变化有统计学差异(F=10.462,P=0.003),治疗组优于对照组。时间和分组之间有交互效应(F=59.588,P=0.000)。两组在降压疗效方面无统计学差异(Z=-0.759,P=-0.448)。两组在改善中医证侯方面有统计学差异(Z=-5.147,P=0.000),治疗组优于对照组。安全性评价:两组患者治疗前后实验室各指标检测均正常,卡托普利组因皮疹剔除1例,因咳嗽脱落6例,加味镇眩方组因无法坚持服药脱落7例。
     结论:加味镇眩方和卡托普利(25mg/d)均能降低高血压患者的血压,两者在降压方面疗效相当,收缩与舒张压下降均无显著差异。中药与卡托普利均能够改善中医症候体征,中药组疗效显著优于卡托普利组。
In China, with the improvement of living standards and lifestyle changes, the incidence of hypertension increased steadily, the 2002 National Nutrition and Health Survey data show that adult prevalence rate was 18.8%, there are about 160 million patients with hypertension. As the most common chronic disease, hypertension is one of most important basis disease led to stroke, coronary heart disease and renal failure and other diseases.
     Although Western medicine could lower blood pressure quickly, efficacy and the advantages of good compliance, but the side effects of antihypertensive drugs was more frequent, many patients had to give up treatment. Chinese medicine treatment of hypertension has unique advantages, such as blood pressure stable and durable, while alleviating symptoms, less side effects. Professor Chen Baotian according to the "dizzy all the Feng, all belonging to the liver," "do not dizzy without Tan " and related theories of Chinese medicine, combined with decades of clinical experience, create Modified ZhenXuanFang for the treatment of hypertension, and had a good effect. If rational development and wide clinical application, it will help complement the disadvantage of western medicine in decreasing blood pressure stablely and alleviating symptoms in patients with hypertension, reducing blood pressure medication side effects, improve health quality of nearly 200 million people hypertensive patients in china
     the pathophysiology of microcirculation has paly a more important role in hypertension. Reduction in microvessel density, not only led to decreased blood parallel pathway, and lead to increased peripheral vascular resistance, thereby promoting the continued increase in arterial blood pressure, reduced microvessel density, but also enables organizations to the level of physical energy metabolism, storage capacity and material exchange capacity decreased, leading to target organ damage at the same time. The main purpose of this study:first, to explore effect of Modified ZhenXuanFang on blood pressure in experimental and clinical research,senong, to explore effects of Modified ZhenXuanFang on microvascular system and other mechanism.
     ChapterⅠThe study of the effect of Modified ZhenXuanFang on blood pressure of spontaneously hypertensive rats
     Objective To explore the effect of Modified ZhenXuanFang on blood pressure of spontaneously hypertensive rats
     Methods 50 male SHRs were randomly assigned to 5 groups namely the low-dose,the middle-dose and high-dose Modified ZhenXuanFang group,the captopril group and SHR control group, Blood pressure and heart rate were recorded from the tail at the beginning and every 2 weeks during 12 weeks treatment. At the end of the experiment, animals were sacrificed.the plasma AngⅡconcentration were measured.
     Rusults Test of between-subjects effect in decreasing blood pressure indicate: significant differences were seen in the differences groups of SHR (F=54.557,P= 0.000),When compared with control group, the low-dose groups (P=0.001),the middle-dose (P=0.000) and high-dose (P=0.000) Modified ZhenXuanFang group,the captopril group (P=0.000) all show significant differences in decreasing blood pressure of spontaneously hypertensive rats.When compared with high-dose Modified ZhenXuanFang group, the low-dose groups show significantly higher blood pressure (P=0.029), the captopril group show significantly lower blood pressure (P =0.001),and no significant differences were seen in middle-dose group (P= 0.249).Significant differences were seen in differences time (F= 209.221,P=0.000).There were no significant differences in blood pressure at the beginning (F=0.850,P=0.501) and significant differences were seen in blood pressure in differences group on second week (F=59.646,P=0.000),fourth week (F=56.970,P=0.000),sixth week (F=45.251,P=0.000),eighth week (F= 45.546,P=0.000),tenth week (F=57.358,P=0.000),twelfth week (F= 75.150,P=0.000).When compared with control group, the low-dose (second week P =0.089,fifth week P=0.002,sixth week P=0.000,eighth week P=0.000,ten week P=0.000,twelfth week P=0.000),the middle-dose (second week P=0.001,fifth week P=0.000,sixth week P=0.000,eighth week P=0.000,ten week P=0.000,twelfth week P=0.000),high-dose (second week P=0.000,fifth week P=0.000,sixth week P=0.000,eighth week P=0.000,ten week P=0.000,twelfth week P=0.000) Modified ZhenXuanFang group and the captopril group (second week P=0.000,fifth week P=0.000,sixth week P=0.000,eighth week P=0.000,ten week P=0.000,twelfth week P=0.000) all show significant in lowering blood pressure.
     The high-dose group show the best effect in reduction in blood pressure and show significant differences compared with the low-dose (P=0.000) and middle-dose groups (P=0.001) and no significant differences compared with captoril group (P=0.020)in decreasing blood pressure in 12 weeks. the captopril group were more significant in reduction in blood pressure at other times (second week P= 0.000,fifth week P=0.000,sixth week P=0.000,eighth week P=0.000,ten week P=0.000).Ttraditional Chinese medicine group could steady decrease blood pressure in the experiment,and captoril group could quickly decrease blood pressure. Time and group show significant crossover effect (F=25.646,P=0.000)
     Test of between-subjects effect in decreasing blood pressure indicate:significant differences were seen in the differences groups of SHR(F=11.594,P=0.000); When compared with control group, the low-dose groups (P=0.004),the middle-dose (P =0.000) and high-dose (P=0.000) Modified ZhenXuanFang group all show significant differences in decreasing heart rate of spontaneously hypertensive rats. no significant differences was seen in captoril group(P=0.297). When compared with high-dose Modified ZhenXuanFang group, the low-dose group (P=0.209) and middle-dose group (P=0.596) show no significant differences in heart rate of spontaneously hypertensive rats.
     Significant differences were seen in differenent time (F=40.907,P=0.000).
     There were no significant differences in heart rate at the beginning (F= 0.981,P=0.427) and significant differences were seen in heart rate in differences group on second week (F=3.911,P=0.008).fourth week (F=7.220,P=0.000),sixth week (F=8.949,P=0.000),eighth week (F=9.179,P=0.000),tenth week (F= 12.621,P=0.000),twelfth week (F=30.622,P=0.000).When compared with control group, the low-dose (second week P=0.045,fifth week P=0.006,sixth week P=0.005,eighth week P=0.000,ten week P=0.000,twelfth week P=0.000),the middle-dose (second week P=0.002,fifth week P=0.001,sixth week P=0.000,eighth week P=0.000,ten week P=0.000,twelfth week P=0.000),high-dose (second week P =0.002,fifth week P=0.000,sixth week P=0.000,eighth week P=0.000,ten week P=0.000,twelfth week P=0.000) Modified ZhenXuanFang group all show significant in decreasing heart rate. the captopril group show no significant differences (second week P=0.068,fifth week P=0.343,sixth week P=0.448,eighth week P=0.210,ten week P=0.416,twelfth week P=0.358) at any time in the experiment.
     Time and group show significant crossover effect (F=7.449,P=0.000)
     Test of between-subjects effect in plasma AngⅡconcentration indicate: significant differences were seen in differenent in different group (F= 7.047,P=0.000), When compared with control group, the low-dose (P=0.015), middle-dose (P=0.006), high-dose (P=0.000) Modified ZhenXuanFang group and captopril group (P=0.000) all show significant differences in plasma AngⅡconcentration of spontaneously hypertensive rats. When compared with high-dose Modified ZhenXuanFang group, the low-dose group (P=0.142),the middle-dose (P=0.257) and the captopril group (P=0.359) show no significant differences in decreasing plasma AngⅡconcentration of spontaneously hypertensive rats
     Conclusion Modified zhenxuan granules could decrease blood pressure of spontaneously hypertensive rats, perhaps by decreasing heart rate and plasma AngⅡconcentration.
     ChapterⅡThe study of the effect of Modified ZhenXuanFang on endothelial function in spontaneously hypertensive rats
     Objective To explore the effect of Modified ZhenXuanFang on blood pressure of spontaneously hypertensive rats By measuring noninvasively endothelial function in the auricular skin microcirculation by monitoring with a laser-Doppler system the blood flow changes induced by warming of the skin and biosynthesis and bioavailability of NO.
     Methods 50 male SHRs were randomly assigned to 5 groups namely the low-dose,the middle-dose and high-dose groups Modified zhenxuan fang group,the captopril group and SHR control group.At the end of the experiment, animals were anesthetized and measured auricular skin blood flow changes by Laser Doppler system before and after local warming.Then animals were sacrificed. The plasma NO concentration,arteriae aorta nitric oxide synthase (NOS) activity and arteriae aorta cyclic guanylic acid (cGMP) concentration were measured.
     Rusults The baseline auricular skin blood flow perfusion units show no Significant differences in the differences groups of SHR (F=0.633,P=0.641).
     The basis of blood flow as a covariate, using analysis of covariance, we find auricular skin blood flow perfusion units were significantly different in each group (F=55.40,P=0.000). Compared with the control group, the low-dose (P=0.000),the middle-dose (P=0.000), high-dose group (P=0.000) Modified zhenxuan fang group and the captopril group (P=0.000) could improve auricular skin blood flow perfusion units of SHR. high-dose group could improve auricular skin blood flow perfusion units compared with other groups (P=0.000).captopril and low dose group show no significant difference in auricular skin blood perfusion units (P= 0.450).the rate of change of the auricular microvascular perfusion units differences (χ2=39.692, P=0.000) before and after local warming, the control group increased blood flow perfusion units at least, followed by captopril group, low dose group, middle dose group and high dose group.
     The plasma NO (F=3.400, P=0.016), aortic NOS activity (F=2.892, P= 0.033) and aortic cGMP content (F=8.195, P=0.000) were significantly different.
     Compared with the control group, Modified ZhenXuanFang low dose group SHR plasma NO (P=0.058), aortic NOS activity (P=0.070) had no significant difference, Modified ZhenXuanFang middle dose group (P=0.007), high dose group (P=0.006) and captopril group (P=0.002) were able to significantly increase the plasma NO concentration in SHR,modified ZhenXuanFang middle dose (P=0.022), high dose group (P=0.009) and captopril group (P=0.004) were able to significantly increase aortic NOS activity. Compared with the high dose group, modified Zhenxuan low-dose (P=0.254), middle dose group (P=0.958) and captopril group (P=0.731) showed no significant difference in plasma NO, modified Zhenxuan low-dose group (P=0.393), middle dose group (P=0.734), captopril group (P= 0.737) show no significant difference in aortic NOS activity.
     Compared with the control group, modified Zhenxuan low-dose group (P= 0.000), middle dose group(P=0.000), high dose group (P=0.000) and captopril group (P=0.009) could increase aortic cGMP concentration; Compared with Modified ZhenXuanFang high dose group, low dose group (P=0.306), middle dose group (P=0.905) show no significant differences in aortic cGMP, the captopril group was lower(P=0.035) in Aortic cGMP concentration,
     Conclusion Modified ZhenXuanFang could affecte NO/NOS/cGMP biosynthesis and bioavailability of SHR, increase the SHR rat auricular microvascular perfusion to improve endothelial function.
     ChapterⅢThe study of modified ZhenXuanFang on SHR myocardial matrix metalloproteinase-2 and left ventricular remodeling
     Objective:To explore the effect of Modified ZhenXuanFang on left ventricular remodeling and possible mechanisms by observing spontaneously hypertensive rats left ventricular mass, left ventricular mass index, left ventricular collagen concentration, myocardial expression of MMP-2 after treatment.
     Methods 50 male SHRs were randomly assigned to 5 groups namely the low-dose,the middle-dose and high-dose Modified ZhenXuanFang group,the captopril group and SHR control group, At the end of the experiment, animals were sacrificed. electronic balance to take the quality of left ventricular and ventricular septal left ventricular mass, left ventricular mass index (LVMD=left ventricular mass (g)/ body weight (kg). Weighed 50mg of left ventricular tissue to detect hydroxyproline, other left ventricular tissue was washed in 4℃saline,dried, weighed, and 4% paraformaldehyde solution fixed and paraffin embedded and detected myocardial MMP-2 protein by immunohistochemistry.
     Results:Weight:animals'weight differ among groups (F=3.548, P=0.013), compared with captopril group, Modified ZhenXuanFang low dose group (P= 0.003),middle dose group (P=0.034), high dose group (P=0.004) and control group (P=0.004) weight heavier, compared with Modified ZhenXuanFang high dose group, low dose group (P=0.904), middle dose group (P=0.401), control group (P=1.000) weight show no significant difference.
     Left ventricular mass:Left ventricular mass differ among the groups (F= 10.868, P=0.000); compared with the control group, modified ZhenXuanFang low dose group (P=0.001), middle dose group (P=0.000), high dose group (P=0.000), captopril group (P=0.000) decreased left ventricular mass significantly; Compared with modified ZhenXuanFang high dose group, low dose group (P=0.013) left ventricular mass increased, the middle dose group (P=0.237), captopril group (P= 0.082) left ventricular mass show no signifcant differences.
     Left ventricular mass index:the group left ventricular mass index differ among the groups (F=9.550, P=0.000); compared with the control group, modified ZhenXuanFang low dose group (P=0.001), middle dose group (P=0.000), high dose group (P=0.000), captopril group (P=0.001) significantly reduced left ventricular mass index; compared with modified ZhenXuanFang high dose group, low dose group (P=0.019), captopril group (P=0.017) left ventricular mass index increase,middle dose group (P=0.198) show no significant difference in left ventricular mass index.
     Myocardial expression of MMP-2 protein were significantly different among the groups (F=170.854, P=0.000), compared with the control group, modified ZhenXuanFang low dose group (P=0.037), middle group (P=0.000), high dose group (P=0.000), captopril group (P=0.000) were able to reduce the myocardial expression of MMP-2 protein; and compared with the high dose group, low dose group (P=0.000), middle dose group (P=0.000), captopril group (P=0.000) myocardial MMP-2 protein expression were up regulation.
     Left ventricular myocardial collagen concentration were significantly different (F=25.535, P=0.000), compared with the control group, modified ZhenXuanFang low dose group (P=0.000), middle dose group(P=0.000), high dose group (P= 0.000), captopril group (P=0.000) left ventricular collagen concentration decreased. Compared with modified ZhenXuanFang low dose group, low dose group (P= 0.012), captopril group (P=0.004) increase in the concentration of collagen, the middle dose group show no significant difference (P=0.285)
     Left ventricular mass was significantly correlated with end blood pressure (r= 0.645, P=0.000),left ventricular mass index was significantly correlated with end blood pressure (r=0.580, P=0.000).
     Conclusion:Modified ZhenXuanFang could reduce the expression of matrix metalloproteinase-2, lower left ventricular mass, reduced left ventricular mass index and left ventricular collagen concentration
     ChapterⅣThe study of modified ZhenXuanFang on microvascular rarefaction in heart,brain and kidney of SHR
     Objective To explore Modified ZhenXuanFang on microvessel density in hypertension and its possible mechanism by observing the Modified ZhenXuanFang group, captopril group, spontaneously hypertensive rats control group myocardial, cerebral and renal microvessel density.
     Methods 50 male SHRs were randomly assigned to 5 groups namely the low-dose,the middle-dose and high-dose Modified ZhenXuanFang group,the captopril group and SHR control group, At the end of the experiment, animals were sacrificed, left ventricular tissue was washed in 4℃saline,dried, weighed, and 4% paraformaldehyde solution fixed and paraffin embedded, At the same time separating the brain, kidney, respectively, after weighing, cut along the coronal plane, and immediately put into 4% paraformaldehyde solution fixed and paraffin-embedded sections,CD34 immunohistochemical staining to detect myocardial, cerebral, renal MVD
     Results Myocardial microvessel density in each group were significantly different (F=5.212, P=0.002). Compared with the control group, the low dose fang group (P=0.029), middle dose group (P=0.024), high dose Modified zhenxuan group (P=0.000), captopril group (P=0.032) were able to improve the SHR cerebral microvessel density. Compared with high-dose Modified ZhenXuanFang group,low dose group (P=0.026), middle dose group (P=0.031), captopril group (P=0.023) SHR cerebral microvessel density show no significant difference
     Cerebral microvessel density in each group were significantly different (F=22.793,P=0.000). Compared with the control group, the low dose group (P= 0.000), middle dose group(P=0.000), high dose Modified ZhenXuanFang group (P= 0.000), captopril group (P=0.007) were able to improve the cerebral microvessel density. Compared with high-dose Modified ZhenXuanFang group, low dose group (P=0.030), captopril group (P=0.000) cerebral microvessel density decreased,the middle dose group show no significant difference (P=0.080).
     Peritubular microvessel density in each group were significantly different (F= 26.820, P=0.000). Compared with the control group, the low dose group (P=0.000), middle dose group (P=0.000),high dose group (P=0.000), captopril group (P= 0.000) were able to improve the SHR Peritubular microvessel density. Compared with high-dose Modified ZhenXuanFang group, low dose group (P=0.003), captopril group (P=0.001) Peritubular microvessel density decreased, the middle dose group show no significant difference (P=0.093).
     Glomerular microvessel density in each group were significantly different (F =29.766, P=0.000). Compared with the control group, the low dose group (P= 0.000), middle dose group (P=0.000),high dose group (P=0.000), captopril group (P=0.000) were able to improve the SHR glomerular microvessel density. Compared with high-dose Modified ZhenXuanFang group, low dose group (P=0.003), captopril group (P=0.001) SHR glomerular microvessel density decreased, the middle dose group show no significant difference (P=0.076).
     Peritubular and glomerular microvessel density all correlated with end blood pressure, respectively (r=-0.427, P=0.003) and (r=-0.500, P=0.000), myocardial (r=-0.172, P=0.247), cerebral tissue (r=-0.255, P=0.084) microvessel density was not related with end blood pressure.
     Conclusion All dose Modified ZhenXuanFang group can improve the main target organs cardiac, cerebral, renal microvessel density, high-dose group improve cerebral microvascular best, middle and high dose group improve myocardial, peritubular, glomerular microvessel density best. Modified ZhenXuanFang was superior to captopril in improving microvessel density. glomerular and peritubular microvessel density correlated with end blood pressure.
     Clinical part The study of the effect of Modified ZhenXuanFang on essential hypertension
     Objective To explore the clinical effectiveness of lowering blood pressure and safety of Modified ZhenXuanFang by study the effect of Modified ZhenXuanFang on essential hypertension and TCM Symptom scores.
     Methods All patients from the Henan hypertension hospital (Henan Academy of Traditional Chinese Medicine Hospital) out-patient department and in-patient department, either sex, aged 18-65 years old, a total of 90 cases. Test line with clinical trials of medical ethics, all patients enter clinical trials after informed consent.All the hypertensive patients should be consistent with low-risk or middle-risk group(1-2) diagnosis and ganhuokangsheng or tanshiyongshen of Chinese medicine diagnosis.90 cases were randomly divided into treatment group and captopril group,45 cases of Chinese medicine treatment group and 45 cases of captopril group, treatment for 4 weeks. Medicines for the Treatment of Modified ZhenXuanFang, the control group for captopril tablets (12.5mg,.b.i.d) for 4 weeks. The blood pressure, the symptom score and the safety index were measured before and after treatment. the gender (χ2=3.455,P=0.063), age (t=0.429, P=0.669)and Course of disease (t=-1.157, P=0.251), systolic blood pressure (Z=-0.543, P= 0.587), diastolic blood pressure (Z=-1.091, P=0.275),TCM syndrome score (Z=-0.734, P=0.463)show no significant difference in two groups before treatment.
     Results Systolic blood pressure were significantly different at different times (F=369.678, P=0.000), systolic blood pressure change between the two groups was not significantly different (F=0.132, P=0.719), Time and group show no significant crossover effect (F=1.120, P=0.297). Diastolic blood pressure were significantly different at different times (F=50.230, P=0.000), diastolic blood pressure change between the two groups was not significantly different (F=4.010, P=0.053). Time and group show no significant crossover effect (F=0.005, P=0.944).
     TCM syndrome score in different time points were significantly different (F= 368.841, P=0.000), TCM syndrome score between the two groups were significantly different (F=10.462,P=0.003). Time and group show significant crossover effect (F =59.588, P=0.000). Antihypertensive effect in two groups show no significant difference (Z=-0.759, P=-0.448). Treatment group was superior to the control group in relieving syndromes (Z=-5.147, P=0.000). Safety evaluation:two patients laboratory indexes were safe before and after trail, the captopril group removed 1 case because of erythra,6 cases of loss due to cough,7 cases were removed because of stopping to take chinese medicine in Modified ZhenXuanFang.
     Conclusion Modified ZhenXuanFang and captopril (12.5mg/d) could lower blood pressure, the two groups showed no significant difference in lower systolic and diastolic blood pressure. Two medicine could relieving syndromes both, modified ZhenXuanFang was superior to captopril in relieving syndromes
引文
[1]王安才,汪俊元,曹晓霞,李俊,吴明,成蓓.自发性高血压大鼠一侧颈动脉去外膜后结构和功能的变化[J].中国病理生理杂志,2007,(2):311-312.
    [2]Kim-Mitsuyama, Shokei, Yamamoto, Eiichiro,et al.Critical Role of Angiotensin Ⅱ in Excess Salt-Induced Brain Oxidative Stress of Stroke-Prone Spontaneously Hypertensive Rats[J]. Stroke.2005,36(5):1083-1088.
    [3]王中华,张剑,陈书山,隽洪玲.原发性高血压患者血管紧张素Ⅱ和一氧化氮含量变化及与动态血压节律的关系[J].临床心血管病杂志,2003,(8):27-18.
    [4]陈新宇,刘越美,谢海波,喻斌,谢小兵.养肝清肝平肝法干预原发性高血压患者血压及血管紧张素Ⅱ的变化(英文)[J].中国临床康复,2006,(27):178-180.
    [5]雷燕,卢全生,马晓昌,陈可冀.清心胶囊治疗轻中度高血压病的临床研究[J].中国中西医结合杂志,2005,(2):114-116.
    [6]吴增颖,李强,杨斌武,王志禄,张钲.缬沙坦、苯那普利、非洛地平治疗高血压左室肥厚[J].中华高血压杂志,2007,(8):641-642.
    [7]戴庆麟.高血压的普查及防治[J].中国医刊,1980,(11):10-11.
    [8]石京山,余俊先,陈修平,徐瑞霞,.钩藤总碱、钩藤碱和异钩藤碱的药理作用[J]. Acta Pharmacologica Sinica,2003,(2):97-99.
    [9]贺玉琢.钩藤散对自发性高血压大鼠的降压作用:钩藤及石膏的作用[J].国外医学.中医中药分册,2003,(6):45-46.
    [10]郑平香,张贵平,张维文.少棘巨蜈蚣对某些动物血压的影响[J].广州医学院学报,1996,(1):17-19.
    [11]陈昌瑜,顾崇刚.蜈蚣(402)提取物对心血管作用的实验观察[J].中药药理与临床,1985,(0):125.
    [12]陈金鹏,李金良,刘天平,王好芹,李莉.蜈蚣熄风汤治疗高血压病的临床观察[J].福建中医药,2008,(6):34-35.
    [13]岗田信道:当归(Ligusticun Acutilobum Sieb.et Zuee)当归对家兔眼压的影响的实验研究[J].临床眼科,1965,19:279.
    [14]Hitomi, Hirofumi a, Kiyomoto,Hideyasu a,et al. Angiotensin II and oxidative stress[J]. Current Opinion in Cardiology.2007,22(4):311-315.
    [15]Seccia, Teresa M a; Maniero, Carmen a,et al. Role of angiotensin Ⅱ, endothelin-1 and L-type calcium channel in the development of glomerular, tubulointerstitial and perivascular fibrosis[J].Journal of Hypertension. 2008,26(10):2022-2029.
    [16]Didion, Sean P. PhD,Faraci, Frank M. PhD.Angiotensin Ⅱ Produces Superoxide-Mediated Impairment of Endothelial Function in Cerebral Arterioles[J].Stroke.2003,34(8):2038-2042.
    [17]鹿克风,吕琳,刘继东,周衍菊,王克平,朱兴雷.培哚普利对自发性高血压大鼠内源性一氧化碳的影响[J].中华高血压杂志,2007,(3):50-51.
    [1]Mohammad Ali Newaz,N. N. A. Nawal.a-tocopherol increased nitric oxide synthase activity in blood vessels of spontaneously hypertensive rats[J]. American Journal of Hypertension,1999,12(8):839-844.
    [2]Daisuke Ito PT, Osamu Ito MD, PhD,et al. Effects of Exercise Training on Blood Pressure and Renal Nitric Oxide Synthases in Spontaneously Hypertensive Rats[J].Archives of Physical Medicine and Rehabilitation,2007, 88(9):17.
    [3]Qing-Quan Chen Dai Li, Ren Guo.Decrease in the synthesis and release of calcitonin gene-related peptide in dorsal root ganglia of spontaneously hypertensive rat:Role of nitric oxide synthase inhibitors[J].Cardiovascular Pharmacology,2008,596(1-3):132-137.
    [4]Ahlers C, Finch S, Marshall T, et al.Impaired L-arginine transport and endothelial function in hypertensive and genetically predisposed normotensive subjects[J].Circulation.2004,110:3680-3686.
    [5]Yang Z, Venardos K, Jones E, et al. Identification of a novel polymorphism in the 3'UTR of the L-arginine transporter gene SLC7A1 Contribution to hypertension and endothelial dysfunction[J].Circulation,2007,115:1269-1274.
    [6]Landmesser U,Hornig B,Drexler H. Endothelial function:a critical determinant in atherosclerosis? [J].Circulation 2004,109(21 Suppl 1):Ⅱ27-Ⅱ33.
    [7]Christen Samuel,Delachaux,Anne Dischl,Benoit Golay,et al.Dose-Dependent Vasodilatory Effects of Acetylcholine and Local Warming on Skin Microcirculation[J].Journal of Cardiovascular phamacology,2004,44(6),2004: 659-664.
    [8]赵宝路.一氧化氮自由基[M].北京,科学出版社,2008:214-215.
    [9]缪朝玉,沈甫明,苏定冯.遗传性高血压大鼠和L-NAME性高血压大鼠的血压 波动性升高(英文)[J]. Acta Pharmacologica Sinica,2001,(2):21-23.
    [10]N. D. Vaziri, X. Q. Wang, Z. Ni, S. Kivlighn and S. Shahinfar.Effects of aging and AT-1 receptor blockade on NO synthase expression and renal function in SHR[J].Biochimica et Biophysica Acta (BBA)-Molecular Cell Research.2002, 2(1592):153-161.
    [11]查彩琴,郭国庆,沈伟哉,曾纪宁,梁一鸣.自发性高血压大鼠血浆一氧化氮水平的变化(英文)[J].中国临床康复,2004,(10):1990-1993.
    [12]郭益民,朱小南,潘敬运.一氧化氮改变肾性高血压大鼠主动脉功能[J].生理学报,2000,52(3):243-246.
    [13]Nava Eduardo, Farre Antonio L, Moreno Carol, et al.Alterations to the nitric oxide pathway in the spontaneously hypertensive rat[J].journal of hypertension,1998,16(5):609-615.
    [14]Martin E,Davis K.Cellular signaling with nitric oxide and cyclic guanosine monophosphate[J].semin perinatol,2002,24:2-6.
    [15]Taddei S, VirdisA, MatteiP, et a.l Vasodilation to aect-lylcholine in primary and secondary forms of human hyper-tension[J].Hypertension,1993,21:929-933.
    [16]KitazonoT, FaraciFM, Heistad DD.L-arginine restoredilator responses of the basilar artery toACh during chronic hypertension[J].Hypertension,1996,27(4): 893-896.
    [17]陈永健,周永列,胡庆丰,邱莲女.高血压病人血管内皮标志物与内皮依赖性血管舒张功能的关系[J].放射免疫学杂志,2009,(6):137-139.
    [18]段留法,郑秋甫,张丽萍,曾强,范英鲜,唐朝枢.自发性高血压大鼠血管内皮功能不全发生机理实验研究[J].中国康复理论与实践,2005,(6):45-47.
    [19]Taddei S, Virdis A, Mattei P, et al. Defective L-arginine-nitric oxide pathway in offspring of essential hypertensive patients[J]. Circulation 1996,94:1298-1303.
    [20]Ahlers C, Finch S, Marshall T, et al. Impaired L-arginine transport and endothelial function in hypertensive and genetically predisposed normotensive subjects[J].Circulation 2004,110:3680-3686.
    [21]Yang Z, Venardos K, Jones E, et al. Identification of a novel polymorphism in the 3'UTR of the L-arginine transporter gene SLC7A1 Contribution to hypertension and endothelial dysfunction[J]. Circulation 2007,115:1269-1274.
    [22]Kellogg DL Jr, Liu Y, Kosiba IF, et al. Role of nitric oxide in the vascular effects of local warming of the skin in humans[J].J Appl Physiol.1999,86:1185-1190.
    [23]Minson CT, Berry LT, Joyner MJ. Nitric oxide and neurally mediated regulation of skin blood flow during local heating[J].J Appl Physiol.2001,91:1619-1626.
    [24]Christen Samuel,Delachaux,Anne Dischl,Benoit Golay,et al.Dose-Dependent Vasodilatory Effects of Acetylcholine and Local Warming on Skin Microcirculation[J].Journal of Cardiovascular phamacology,2004,44(6),2004: 659-664.
    [25]Yavuz D, Koc M, Toprak A, et al. Effects of ACE inhibition and ATlreceptor antagonism on endothelial function and insulin sen-sitivity in essential hypertensive patients[J].J Renin-Angiotensin-Aldosterone System,2003,4:197-203.
    [26]On YK, Kim CH, Oh BH, et al. Effects of antgiotension conver-ting enzyme inhibitor and calcium antagonist on endothelial func-tion in patients with essential hypertension[J].Hypertens Res,2002.25:365-371.
    [27]李雷,夏勇,李东野,陈静,杨荣礼,汪敏,.吲哒帕胺对高血压患者肱动脉血流介导的舒张功能的影响[J].高血压杂志,2006,(3):12-13.
    [28]H. G Bohlen, X. Zhou, J. L. Unthank, S. J. Miller, and R. Bills.Transfer of nitric oxide by blood from upstream to downstream resistance vessels causes microvascular dilation[J].Am J Physiol Heart Circ Physiol.2009,297(4): H1337-H1346.
    [29]M. Kelm.Flow-mediated dilatation in human circulation:diagnostic and therapeutic aspects[J].Am J Physiol Heart Circ Physiol, January 1,2002,282(1): 1-5.
    [30]宗超,王岚英,张勇,韩江哲,骆秉铨,.辛伐他汀对高血压患者血管内皮功能的影响[J].现代中西医结合杂志,2009,(34):25-27.
    [31]徐军霞,林金秀,苏津自,陈玲.维生素C和维生素E对急性糖负荷致原发性高血压血管内皮功能损害的保护作用[J].中国动脉硬化杂志,2004,(2):32-33.
    [32]郑建普,高月红,朱春赞,可燕,卞卡,.黄嘌呤氧化酶对血管内皮功能障碍的影响[J].中华高血压杂志,2007,(1):61-63.
    [33]刘磊,郑振声,钱学贤,周少春,伍贵富,靳亚非,赵顺卿,张苗青,柳俊,何建桂,杨世方,詹澄扬,方典秋.高血压患者与正常血压者皮肤微血管对乙酰胆碱和硝普钠反应性比较[J].高血压杂志,2001,(3):187-189.
    [34]赵静,傅汉菁,沈英华,.不同阻断压力和时间对2型糖尿病患者皮肤反应性充血影响的初步比较[J].微循环学杂志,2009,(1):39-41.
    [35]冯雅娟,傅汉菁,刘晓燕,.2型糖尿病患者皮肤微血流改变与病程的关系[J].微循环学杂志,2007,(2):21-23.
    [36]周颖,陈虹,杜华,景富春,.复方苦豆子对自发性高血压大鼠血压及血清NO含量的影响[J].石河子大学学报(自然科学版),2007,(1):28-29.
    [37]郭益民,陈然,李旭,张玉青,.一氧化氮对肾性高血压大鼠主动脉收缩功能的影响[J].中国病理生理杂志,2006,(7):22-25.
    [38]霍泳宁,黄一平,蔡雪珠,卞慧敏.生地对大鼠血浆中SOD GST—PX活性丙二醛含量的影响[J].辽宁中医学院学报,2005,(1):68-69.
    [39]罗蓉,金龙,田雪松,卫玉玲,李伟,郑天珍,瞿颂义.钩藤水煎剂对高脂性肥胖大鼠体质量、进食量、血糖、胰岛素及抗氧化能力的影响(英文)[J].中国临 床康复,2005,(31):246-248.
    [40]任克军,吴永贵,方芳,董婧,齐向明,梁超,张炜,.白芍总苷对糖尿病大鼠肾组织白介素1与肿瘤坏死因子α表达的影响[J].中华肾脏病杂志,2007,(11):747-748.
    [41]龚一萍,倪美文,宋宵红,等.天麻钩藤饮对高血压肝阳上亢证大鼠一氧化氮、内皮素干预作用的研究[J].中国中医药信息杂志,2004,11(2):127.
    [42]王志强,张学平,张怀印,张伟,.化痰通络法改善颈动脉粥样硬化患者血管内皮功能研究[J].辽宁中医药大学学报,2009,(8):8-9.
    [43]李必强,姚恩辉.通心络对自发性高血压大鼠血浆.NO、ET及血管平滑肌iNOS表达的影响[J].福建中医学院学报,2009,(4):53-55.
    [1]Matsusaka H,Ide T,Matsushima S,et al.Targeted deletion of matrix metalloproteinase 2 ameliorates myocardial remodeling inmice with chronic pressure overload[J].Hypertension,2006,47:711-717.
    [2]Y. Iwanaga, T. Aoyama, Y. Kihara, Y. Onozawa, T. Yoneda and S. Sasayama.Excessive activation of matrix metalloproteinases coincides with left ventricular remodeling during transition from hypertrophy to heart failure in hypertensive rats[J]. J. Am. Coll. Cardiol.2002,39:1384-1391.
    [3]K. Masutomo, N. Makino and M.S. Fushiki. Effects of losartan on the collagen degradative enzymes in hypertrophic and congestive types of cardiomyopathic hamsters[J]. Mol. Cell. Biochem.2001,224:19-27.
    [4]D.A. Siwik, P.J. Pagano and W.S. Colucci, Oxidative stress regulates collagen synthesis and matrix metalloproteinase activity in cardiac fibroblasts[J].Am. J. Physiol:Cell Physiol,2001,280:53-60.
    [5]D.A. Siwik and W.S.Colucc.Regulation of matrix metalloproteinases by cytokines and reactive oxygen/nitrogen species in the myocardium[J].Heart Fail. Rev,2004,9:43-51.
    [6]金凌皎,伍道能.加减天麻钩藤饮对高血压心脏病患者血压、心功能、心室重塑的影响[J].湖南中医杂志,2006,(6):3-5.
    [7]吴天敏.复方丹参滴丸与福辛普利联用对自发性高血压大鼠左室纤维化的影响[J].中西医结合心脑血管病杂志,2004,11(2):645-647.
    [8]Dorn GW Ⅱ, Robbins J, Sugden PH. Phenotyping hypertrophy[J].eschew obfuscation.Circ Res,2003,92:1171-1175.
    [9]Devereux RB, Savage DD, Sachs I, Laragh JH. Relation of hemodynamic load to left ventricular hypertrophy and performance in hypertension[J].Am J Cardiol,1983,51:171-176.
    [10]Suzanne Oparil Michael A,Weber.Hypertension[M],北京:北京大学医学出版社,2008:265.
    [11]Matsusaka H,Ide T,Matsushima S,et al.Targeted deletion of matrix metalloproteinase 2 ameliorates myocardial remodeling in mice with chronic pressure overload[J].Hypertension,2006,47:711-717.
    [12]Mujumdar VS,Smiley LM,Tyagi SC.Activation of matrix metalloproteinase dilates and decreases cardiac tensile strength[J].Int J Cardiol,2001,79:277-286.
    [13]Tsioufis C,Stefanadis C,Toutouza M,et al.Microalbuminuria is associated with unfavorable cardiac geometic adaptations in essential hypertensive subjects[J].J Hum Hypertens,2002,16(4):249.
    [14]李占玉,孙伟,丁振灿,.左旋氨氯地平对老年性高血压病和左室重塑的影响[J].山东医药,2005,(31):31-34.
    [15]M.J. Eagleton,N. Ballard, E. Lynch, S.D. Srivastava, GR. Upchurch Jr and J.C. Stanley, Early increased MT1-MMP expression and late MMP-2 and MMP-9 activity during Angiotensin Ⅱ induced aneurysm formation[J].J Surg Res 2006,135 (2):345-351.
    [16]Rui-wei Guo, Li-xia Yang, et al. Angiotensin Ⅱ induces matrix metalloproteinase expression via a nuclear factor-kappaB-dependent pathway in vascular smooth muscle cells[J].Regulatory Peptides,2008,1-3,(147):37-44.
    [17]肖云彬,黄红林,秦旭平,刘代华.氯沙坦对高血压大鼠心肌MMP-2、Ⅲ型胶原和JNK1/2表达的影响[J].高血压杂志,2004,(6):551-553.
    [18]张廷星,苏津自,芮红兵,王华军,吴可贵.卡托普利对自发性高血压大鼠心血管重塑的影响[J].福建医科大学学报,2001,(3):13-15.
    [19]SatoR,Hlrata Y.Inhibitionof VSMC porliefration by nitrieoxide[J].Nippon Rinsho, 2004,62(Suppl919):496-9.
    [20]Simko F,Simko J.The potential role of nitric oxide in the hypertrophic growth of the left ventricle[J].Physiol Res,2000,49:37-46.
    [21]杨艳秋,宋建国,杨伟民,曹淑杰,吴绥生.胰激肽释放酶和缬沙坦对自发性高血压大鼠左室肥厚、一氧化氮及血管紧张素Ⅱ水平的影响[J].广东医学,2006,(11):1653-1654.
    [22]杜军,陈长勋.中药干预心室重构的一氧化氮途径研究进展[J].中西医结合学报,2007,(6):702-703.
    [23]G Derosa,A.EG Cicero,A. D'Angelo,et al. MMP-2,-9 and TIMP-1 in patients with hypertension before and after doxazosin therapy[J].Nutrition, Metabolism & Cardiovascular Diseases,2005,(15) Supplement 1:s10.
    [24]汤圣兴,祁述善,周胜华,徐浩,王安才.阿托伐他汀对自发性高血压大鼠心室重塑的作用及机制[J].中国病理生理杂志,2006,(8):1535-1539.
    [25]武新民,李茹香.阿托伐他汀对肾血管性高血压大鼠心肌纤维化及TGF-β_1表达的影响[J].山西医科大学学报,2008,(2):116-119.
    [26]葛长江,吕树铮,陈韵岱,田峰,陈欣.辛伐他汀对高血压合并高胆固醇血症患者血压和左室重塑的影响[J].北京医学,2007,(10).915-919.
    [27]李才.器官纤维化基础与临床[M].北京:人民卫生出版社,2003:255-257.
    [28]许明,杨汉东,闵新文,李东峰,陈欣,.卡托普利对自发性高血压大鼠心脏MMP-9和TIMP-1表达的影响[J].中国现代医学杂志,2008,(17).:45-47.
    [29]任克军,吴永贵,方芳,董婧,齐向明,梁超,张炜.白芍总苷对糖尿病大鼠肾组织白介素1与肿瘤坏死因子α表达的影响[J].中华肾脏病杂志,2007,(11);747-748.
    [30]钱岳晟,李燕,高平进,顾天华,张照英,吴永杰.川芎、黄芪对自发性高血压大鼠胸主动脉外膜成纤维细胞增殖的影响[J].中国中西医结合杂志,2003,(S1):24-26.
    [1]Struijker Boudier H. A, le Noble J. L,Messing M.W, Huijberts M. S, le Noble, F. A. and van Essen H. The microcirculation and hypertension[J].J Hypertens. 1992,10(Suppl):S147-S156.
    [2]Levy BI, Ambrosio G, Pries AR, Struijker-Boudier HAJ. Microcirculation in hypertension-a new target for treatment?[J].Circulation.2001,104:735-740.
    [3]Struijker Boudier HA,le Noble JL,Messing MW, Huijberts MS,le Noble FA, van Essen H. The microcirculation and hypertension[J].J Hypertens.1992,10 (suppl):S147-S156.
    [4]Cohuet, G. and Struijker-Boudier, H. Mechanisms of target organ damage caused by hypertension:therapeutic potential [J].Pharmacol Ther,2006,111: 81-98.
    [5]Sabino Bruno MSc Lessa, Marcos A MD PhD, Nascimento Alessandro R MSc,Rodrigues. Effects of Antihypertensive Drugs on Capillary Rarefaction in Spontaneously Hypertensive Rats:Intravital Microscopy and Histologic Analysis[J]. Journal of Cardiovascular Pharmacology,2008,51:402-409.
    [6]Battegay EJ, de Miguel LS, Petrimpol M, et al.Effects of anti-hypertensive drugs on vessel rarefaction[J].Curr Opin Pharmacol,2007,7:151-157.
    [7]WEIDNER N. Introtumormicrovessel density as aprognosifactor in cancer[J].Am J Pathol,1995,147(1):9-19.
    [8]Kang D H, Joly A H, Ohsw S, et al. Impaired angioginesin the remnant kidney model(1):potential role VEGF anTSP-1[J].J Am Soc Nephrol,2001,12: 1434-1447.
    [9]Podesser BK, Neumann F, Neumann M, Schreiner W, Wollenek G, MallingerR..Outer radius2wall thickness ratio, a postmorterm quantitative histology in human coronary arteries[J].Acta Anat,1998,163:63-68.
    [10]Oparil Suzanne,Weber Michael A. Hypertension[M],北京:北京大学医学出版社,2008:6:265.
    [11]Hutchins PM, Darnell AE. Observation of decreased number of small arterioles in spontaneously hypertension rats[J].Circ Res,1974,34/35 (suppll):161.
    [12]Joseph P, Walker, Brian R,Webb, David J,Shore,Angela C, Holton, David W, Edwards, Hugh V, Watt,Graham C.M. Impaired Micro vascular Dilatation and Capillary Rarefaction in Young Adults with a Predisposition to High Blood Pressure[J].Journal of Clinical Investigation,1997,99(8):1873-1879,,
    [13]T.F. Antonios, F.M. Rattray, D.R. Singer, N.D. Markandu, P.S. Mortimer and G.A. MacGregor.Rarefaction of skin capillaries in normotensive offspring of individuals with essential hypertension[J].Heart,2003,89:175-178.
    [14]Lombard JH, Frisbee JC, Greene AS, Hudetz AG, Roman RJ, Tonellato PJ. Microvascular flow and tissue PO2 in skeletal muscle of chronic reduced renal mass hypertensive rats[J].Am J Physiol,2000,279:H2295-H2302.
    [15]Sica DA. Angiogenesis inhibitors and hypertension:an emerging issue[J].J Clin Oncol 2006,24:1329-1331.
    [16]B. I. Levy.Blood pressure as a potential biomarker of the efficacy angiogenesis inhibitor[J].Ann. Onc,2009,20(2):200-203.
    [17]J.-J. Mourad, G. des Guetz, H. Debbabi, and B. I. Levy Blood pressure rise following angiogenesis inhibition by bevacizumab.A crucial role for microcirculation[J].Ann. Onc,2008,19(5):927-934.
    [18]江时森,顾小平,李辉.自发性高血压大鼠多器官微血管稀少动态观察[J].微循环技术杂志,1996,4(2):73-75.
    [19]I H Chen, Dovell R. Development of microvascular rarefaction in the spontaneously hypertension rats [J].AM J Physiol,1982,13:243-248.
    [20]Kubis N, Richer C, Domergue V, Giudicelli JF, Levy BI. Role of microvascular rarefaction in the increased arterial pressure in mice lacking for the endothelial nitric oxide synthase gene (eNOS3pt-/-) [J] J Hypertens,2002,20:1581-1587.
    [21]DeLano FA, Parks DA, Ruedi JM, Babior BM, Schmid-Schonbein GW. Microvascular display of xanthine oxidase and NADPH oxidase in the spontaneously hypertensive rat[J].Microcirculation,2006,13:551-566.
    [22]Kiefer FN, Misteli H, Kalak N, Tschudin K, Fingerle J, Van der Kooij M, Stumm M, Sumanovski LT, Sieber CC, Battegay EJ. Inhibition of NO biosynthesis, but not elevated blood pressure, reduces angiogenesis in rat models of secondary hypertension[J].Blood Press,2002,11:116-124.
    [23]Ichiki T. Role of renin angiotensin system in angiogenesis:it is still elusive[J]. Arterioscler Thromb Vasc Biol,2004,24:622-624.
    [24]Tran ED, Schmid-Schonbein GW. An in-vivo analysis of capillary stasis and endothelial apoptosis in a model of hypertension[J].Microcirculation,2007,8: 1-12.
    [25]Kobayashi N, DeLano FA, Schmid-Schonbein GW. Oxidative stress promotes endothelial cell apoptosis and loss of microvessels in the spontaneously hypertensive rats[J].Arterioscler Thromb Vasc Biol,2005,25:2114-2121.
    [26]S. J. Miller, L. E. Norton, M. P. Murphy, M. C. Dalsing, and J. L. Unthank.The role of the renin-angiotensin system and oxidative stress in spontaneously hypertensive rat mesenteric collateral growth impairment[J].Am J Physiol Heart Circ Physiol,2007,292:2523-2531.
    [27]Coker ML, Jolly JR, Joffs C, et al. Matrix metalloproteinase expression and activity in isolated myocytes after neurohormonal stimulation[J].Am J Physiology-Heart & Circulatory Physiol,2001,281:543-551.
    [28]沈庆乐,张存琪.血清基质金属蛋白酶与糖尿病血管病变的关系[J].中国微循环,2004,(5):349.
    [29]程训民,江时森,马瑞,宫剑滨,张启高,王立军,彭永平.高血压合并糖尿病对心肌微血管密度的影响[J].上海医学,2007,(S1):161.
    [30]Forder JP, Munzenmaier DH,Greene AS. Angiogenic protection from focal ischemia with angiotensin Ⅱ type 1 receptor blockade in the rat[J].Am J Physiol. 2005,288:1989-1996.
    [31]Silvestre JS, Bergaya S, Tamarat R, et al.Proangiogenic effect of angiotensin-converting enzyme inhibition is mediated by the bradykinin B(2) receptor pathway [J].Circ Res,2001,89:678-683.
    [32]Tsutsumi Y, Matsubara H, Masaki H, Kurihara H,etal. Angiotensin Ⅱ type 2 receptor overexpression activates the vascular kinin system and causes vasodilation[J].J Clin Invest,1999,104:925-935.
    [33]Heap SJ, Fulgenzi GL, Hudlicka O. Microcirculation in rat soleus muscle after eccentric exercise:Effects of nifedipine[J].Eur J Appl Physiol,2006,97:687-694.
    [34]许晴,路欣,诸定寿,史小林.显示微血管功能状态技术方法的比较研究[J].解剖学报,2003,(4):431-432.
    [35]付艳,刘凤英,刘秀华,刘力生.葛根素对自发性高血压大鼠脑微循环的影响[J].微循环学杂志,2005,(2):43-44.
    [36]吴以岭.络病学[M].北京:中国科学技术出版社,2004:73.
    [37]李文桐,邹俊杰,刘岩,李翔,孙亮亮,刘志民.通络方剂抗氧化作用及对大血管内皮细胞的保护[J].中国临床康复,2006,(35):54-56.
    [38]罗蓉.钩藤水煎剂对高脂性肥胖大鼠体质量、进食量、血糖、胰岛素及抗氧化能力的影响(英文)[J].中国临床康复,2005,(31):246-248.
    [39]冯亚,林炳辉,吴作干,汪碧萍,阮景绰.行气祛痰化浊中药对血小板聚集性红细胞变形性及血液粘度作用初探[J].福建中医学院学报,1998,(1):13-15.
    [40]Harry A,Struijker-Boudier.From Macrocirculation to Microcirculation:Benefits of Preterax[J].Am J Hypertens,2007,20:15S-18S.
    [41]E douard J Battegay.Effects of anti-hypertensive drugs on vessel rarefaction[J]. Cardiovascular and renal,2007,2:151-157.
    [1]刘力生.中国高血压病防治指南(2005年修订版)[M].北京:人民卫生出版社,2005:20-30.
    [2]王晓聪.天麻钩藤饮加味治疗中青年高血压病疗效观察[J].中医药临床杂志,2004,16(2):109-110.
    [3]郑梅生,张荣珍,胡素颖等.中药治疗高血压病的临床观察[J].中国中医基础医学杂志,2007,13(4):299-301.
    [4]倪战鹰.医学伦理审查在临床科研中的实践[J].中国医学伦理学,2006,19(3):41-42.
    [5]郑筱萸.中药新药临床研究指导原则[S].北京:中国医药科技出版社,2002:183-185.
    [6]周仲英.中医内科学[M].北京:中国中医药出版社,2003:260-270.
    [7]Isezuo SA.Systemic hypertension in blacks:an overview ofcurrent concepts of pathogenesis and management[J].NigerPostgrad Med J,2003,10(3):144-151.
    [8]Ruppert.V, Maisch B.Genetics of human hypertension[J].Herz,2003,28(8):655-626.
    [9]郭振球.高血压危险因素与微观证治学综合研究[J].山西中医,2001,(6):37-38.
    [10]张焱,陈咸川,何立人,童仙君,黄薇.痰湿壅塞证高血压病患者血管内皮依赖性舒张功能的超声研究[J].江西中医学院学报,2006,(1):26-28.
    [11]武文辉,吉中强,纪文岩.新血府逐瘀汤对高血压大鼠内皮功能及血栓前状态影响[J].中西医结合心脑血管病杂志,2007,(11):1084-1085.
    [12]龚一萍,倪美文,宋宵红等.天麻钩藤饮对高血压肝阳上亢证大鼠一氧化氮、内皮素干预作用的研究[J].中国中医药信息杂志,2004,11(2):127.
    [13]王志强,张学平,张怀印,张伟.化痰通络法改善颈动脉粥样硬化患者血管内皮功能研究[J].辽宁中医药大学学报,2009,(8):8-9.
    [14]石京山,余俊先,陈修平,徐瑞霞.钩藤总碱、钩藤碱和异钩藤碱的药理作用[J].Acta Pharmacologica Sinica,2003,(2):97-99.
    [15]贺玉琢.钩藤散对白发性高血压大鼠的降压作用:钩藤及石膏的作用[J].国外医学.中医中药分册,2003,(6):33-35.
    [16]郑平香,张贵平,张维文.少棘巨蜈蚣对某些动物血压的影响[J].广州医学院学报,1996,(1):17-19.
    [17]岗田信道.当归(Ligusticun Acutilobum Sieb.et Zuee)对家兔眼压的影响的实验研究.临床眼科,1965,19:279.
    [1]Treupel G Edinger A.Utersuchungen uber rhodan-verbindungen[J].Munchen Med Wchnschr,1900,6:717-767.
    [2]The ALLHAT Collaborartive Research Group.Major outcomes on high risk hypertension patients randomized to angiotension-coverting enzyme inhabitor or calcium channel blocker vs.diuretic.the Antihypertension and Lipid-lovering Treatment to Prevent Heart Attack Trial[J]. JAMA,2002,288:2981-2997.
    [3]Pro Richard Grimm MD, PhD.Diuretics Are Preferred Over Angiotensin II-Converting Enzyme Inhibitors For Initial Therapy of Uncomplicated Hypertension[J].American Journal of Kidney Diseases,2007,50(2):188-196.
    [4]刘力生.中国高血压病防治指南(2005年修订版)[M].北京:人民卫生出版社,2005:20-30.
    [5]TADDEI S, VIRDISA, GHIADONIL,etal.Effectof calcium an-tagonistorbeta blockade treatmenton nitric oxide-dependentvasodi-lation and oxidative stress in essential hypertensive patients [J].J Hypertens,2001,19(8):1379-1386.
    [6]B Dahlof, PS Sever, NR Poulter et al. the ASCOT investigators, Prevention of cardiovascular events with an antihypertensive regimen of amlodipine adding perindopril as required versus atenolol adding bendroflumethiazide as required, in the Anglo-Scandinavian Cardiac Outcomes Trial-Blood Pressure Lowering Arm (ASCOT-BPLA):a multicentre randomised controlled trial[J].Lancet,2005,366: 895-906.
    [7]Pessina, L. Ciccariello, F. Perrone, V. Stoico, G Gussoni, A. Scotti, M. Muggeo. Clinical efficacy and tolerability of alpha-blocker doxazosin as add-on therapy in patients with hypertension and impaired glucose metabolism[J].Nutrition, Metabolism and Cardiovascular Diseases,2006,2(16):137-147.
    [8]Da Cunha V,Tham DM,Martin McNulty B,et al.Enalapril attenuates angiotensin Ⅱ-induced atherosclero_sisand vascular inflammation [J].Atherosclerosis, 2005,178(1):9.
    [9]SrinivasanJ,Jayadev S,Kumaran D,at al.Effect of lo_sartan and enalapril on cognitive deficit caused byGoldblatt induced hypertension[J].IndianJExp Biol,2005,43(3):241.
    [10]杨进刚,胡大一.血管紧张素转换酶抑制剂与肾功能的临床评价[J].中国医院用药评价与分析,2004,4(4):198.
    [11]Vijayaraghavan K,Deedwania PC.The renin angiotens in system as a therapeutic target to prevent diabetesand its complications[J].Cardiol Clin,2005, 23(2):265.
    [12]Hudson M, Humphries K, Tu JV, et al. Angiotensin Ⅱ receptor blockers for the treatment of heart failure:a class effect?[J].Pharmacotherapy,2007,27:526-534.
    [13]刘国仗,马文君,王兵.高血压药物治疗的现状和展望.中华心血管病杂志,2003,31(2):157-158.
    [14]Christine Barrowclough, Gillian Haddock, Ruth Beardmore.Evaluating integrated MI and CBT for people with psychosis and substance misuse: recruitment, retention and sample characteristics of the MIDAS trial[J]. Addictive Behaviors,2009,7:387.
    [15]Thomas F,Luscher,Matthias B,et al.Endothelins andendothelin receptor antagonists:therapeutic considera-tions for a novel class of cardiovascular drugs[J].Circulation,2000,102(2):434.
    [16]Torre-Amione G.Yong J B.Durand J Hemodynamic effects of tezosentan,an intravenous dual endothelin receptor antagonist,in patients with classⅢand Ⅳ congestive heart failure[J].ACC Current Journal Review,2003,12(5):45.
    [17]吕伍文.中药治疗高血压病84例临床观察[J].中医药学报,2004,132(13):38.
    [18]秦建国,王亚红,梁晋普,等.郭维琴治疗高血压病经验[J].中医杂志,2007,48(7):586-587.
    [19]顾月珍,刘旭玲.高血压病的辨证治疗[J].黑龙江中医药,2007(2):27.
    [20]陈康远.六味地黄丸加减治疗原发性高血压337例疗效观察[J].新中医,2003,35(5):41-42.
    [21]朱健萍.柴胡加龙骨牡蛎汤治疗原发性高血压174例疗效观察[J].中医药信息,2003,20(5):60.
    [22]王晓聪.天麻钩藤饮加味治疗中青年高血压病疗效观察[J].中医药临床杂志,2004,16(2):109-110.
    [23]王平,毛利荣,张大成.平肝息风系列方治疗原发性高血压病疗效观察[J].中国民康医学,2007,19(5):406-407.
    [24]刘燕婉,陈国成.平肝降压汤治疗高血压头痛50例[J].吉林中医药,2007,27(3):18.
    [25]黑卫可.高冠平胶囊治疗冠心病合并高血压56例[J].陕西中医,2007,28(5):549.
    [26]郑梅生,张荣珍,胡素颖,等.中药治疗高血压病的临床观察[J].中国中医基础医学杂志,2007,13(4):299-301.
    [27]龚铭,廖晓阳,辛茂顺.醋柳黄酮对高血压游离钙及胰岛素敏感性的影响[J].现代中西医结合杂志,2000,9(14):1303-1306.
    [28]宋纯清,樊懿,黄伟晖等.钩藤中不同成分降压作用的差异[J].中草药,2000,31(10):762-764.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700