BCG活化巨噬细胞膜表面新蛋白NMAAP1、Trim59的克隆、表达及功能鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
巨噬细胞是一类广泛存在于组织中的单核吞噬细胞,它是机体内天然免疫的第一道屏障。同时,巨噬细胞在免疫监视中也发挥重要作用。巨噬细胞可以通过分泌如TNF、NO等杀伤性效应分子来杀伤肿瘤细胞;另一方面,巨噬细胞可以通过细胞间接触来直接杀伤肿瘤细胞,而对于巨噬细胞的直接杀伤活性的机制研究一直是肿瘤免疫的一个重要领域。通过对已经鉴定出来的细胞膜表面杀伤效应分子的研究发现,封闭这些效应分子后巨噬细胞仍然具有很强的肿瘤杀伤活性,这一现象提示说明巨噬细胞膜表面存在一些尚未为人所知的分子,这些分子在巨噬细胞杀伤肿瘤的进程中起关键作用。
     本实验室前期研究发现,BCG刺激活化的巨噬细胞可以杀伤MCA207肿瘤细胞,这一过程与其细胞膜表面特有的蛋白分子密切相关,通过SDS-PAGE联合质谱检测的方法对BCG刺激活化和TGC诱导活化的巨噬细胞膜蛋白进行比对,我们得到了454个在BCG刺激活化的巨噬细胞膜表面上调表达的蛋白。为了揭示这些分子在巨噬细胞杀伤肿瘤过程中的作用,我们从中选取了两个新蛋白NMAAP1和Trim59进行基因克隆及其功能研究。
     第一部分:
     首先对本实验室的前期成果进行了总结,并利用生物信息学的手段从中筛选出了两个待研究的新蛋白,其名称分别是NMAAP1和Trim59,并对这两个蛋白的潜在功能做了预测。
     结果:NMAAP1可以与DAPK结合,进而调控细胞凋亡的进程;另一方面,NMAAP1的同源家族成员kiaa1754可以与IP3R结合,进而调控钙离子通道,这一进程可能参与细胞分化;同时NMAAP1蛋白含有一个Mab-21结构域,在生物进化、系统发育等多方面都有这一结构的身影。另一个新蛋白Trim59的预测结果表明,这一蛋白含有几个可能参与分子间相互作用的结构,分别是ring finger、B-box以及卷曲螺旋,蛋白功能预测结果显示,Trim59可能与细胞间接触密切相关。
     第二部分:
     克隆并表达了这两个新蛋白,通过亲和层析的方法得到了两种纯化后的融合蛋白。然后利用这两个纯化后的蛋白作为抗原制备了多克隆抗体。利用Western-blotting检测了这两种抗体的特异性后,我们进行了免疫组化实验,对这两个蛋白在小鼠体内不同组织的分布进行了鉴定。
     结果:通过原核表达的方式,得到了两个融合蛋白,并利用其制备了多克隆抗体,SDS-PAGE电泳以及western-blotting结果表明所纯化的两个蛋白正是我们所需要的目的蛋白,同时也证明了我们的抗体具有很强的特异性。通过免疫组化,证明了我们的抗体可以和天然构象下的蛋白正常结合。同时也分析了两个蛋白在机体内不同组织的分布情况,结果显示:NMAAP1在胸腺组织中的表达量较高,这可能与IP3R可以调节TCR敏感性进而参与T细胞的活化相关。Trim59在脾脏组织中的表达量较高,提示Trim59可能在免疫系统中扮演重要角色;另外,在卵巢组织中也检测到大量的Trim59表达,提示Trim59可能在生殖系统中也有作用。
     第三部分:
     利用自制的多克隆抗体进行了抗体封闭细胞毒实验,对我们所选取的两个新蛋白在巨噬细胞杀伤肿瘤过程中所发挥的作用进行了初步研究。另外,我们克隆了Trim59的全长基因,并将其稳定转染于Raw264.7细胞,通过对转染前后的Raw264.7细胞生物学性状的研究来鉴定Trim59的具体功能。
     结果:通过抗体封闭细胞毒实验发现,我们所选取的蛋白Trim59在BCG刺激活化的巨噬细胞杀伤肿瘤的过程中起关键作用,而NMAAP1则在杀伤过程中几乎没有作用。为了进一步研究Trim59在杀伤过程中所扮演的角色,我们将Trim59转染后表达于Raw264.7细胞系,并检测了这一细胞的肿瘤杀伤活性。实验结果表明,Trim59并不直接参与杀伤。通过对转染后细胞的吞噬活力进行检测,发现Trim59可以促进巨噬细胞对异物的吞噬,这可能与Trim59可以促进巨噬细胞与其它分子之间相互作用有关。因而我们推断Trim59在巨噬细胞杀伤的过程中是一个辅助分子,它可以通过促进巨噬细胞与靶细胞接触来加强巨噬细胞的细胞毒作用。
     综上所述,NMAAP1在胸腺组织中表达量较高,但其在巨噬细胞直接杀伤肿瘤的过程中没有明显作用,结合它的分子结构我们预测,NMAAP1可能参与巨噬细胞的特异性分化。Trim59在脾脏及卵巢中的表达量很高,提示其可能与机体免疫及生殖相关;Trim59是巨噬细胞杀伤肿瘤过程中的关键效应分子,但它是以一个辅助效应分子的身份在起作用,Trim59本身可以促进巨噬细胞对异物的吞噬作用。
Macrophage is one of mononuclear cells in the body which widely exist in organizations; it is the first barrier of natural immune system. Macrophage also plays an important role in immune monitoring. Macrophages can secrete such as TNF, NO to kill cancer cells, on the other hand, macrophage could kill tumor cells directly through cell to cell contact,. The mechanism of this process is an important territory of tumor immunity. Up to date, lots of studies show that there must be some novel molecules on the membrane of macrophages, which mediate the cytotoxic process against tumor cells.
     In previous study, we found that BCG activated macrophages could kill MCA207 tumor cells through cell to cell contact. Membrane proteins from BCG activated macrophages and thioglycolate elicited macrophages were compared with a new method of SDS-page combine liquid chromatographytandem mass spectrometry. Comparisons resulted in a list of 454 proteins which were identified from BCG activated microphages only. From these proteins, we selected two novel proteins as our research targets.
     Part 1:
     We selected two novel proteins from our previous study using bioinformatics, named NMAAP1 and Trim59, and predicted the potential function of these two novel proteins.
     Result: NMAAP1 could combine with DAPK to mediate cell apoptosis; on the other hand, kiaa1754 (the homology member of NMAAP1) could combine to IP3R to mediate the Calcium Ion Channels, which might be the most important process in cell differentiation; meanwhile, NMAAP1 have a structure named Mab-21, which possibly mediate the organic evolution and phylogenetic development. Trim59 have several structures which might be involved in cell to cell contact.
     Part 2:
     We cloned and expressed the two proteins, and purified the proteins by affinity chromatography. Using these two proteins, we generated two polyclonal antibodies against these two proteins. After western-blotting detection, immunohistochemisty was processed.
     Result: In this study, we cloned the two novel proteins to generated fusion proteins in E. coil. The purified fusion proteins were applied for generation of polyclonal antibodies. Western-blotting detection showed that the polyclonal antibodies have high specificities to recognize target proteins. Using of the polyclonal antibodies, we detected the tissue distribution of these two novel proteins, and this process also showed our antibodies could combine to the nature protein. The results showed that NMAAP1 abundantly expressed in the thymus, which might be involved in T cell differentiation through IP3R combine to TCR. Trim59 abundantly expressed in the spleen, which indicate Trim59 is an important molecule in the immune system; on the other hand, Trim59 was detected from ovary, which indicate Trim59 might be involved in reproductive system.
     Part 3:
     We detected functions of the two novel proteins through antibodies blocked cell cytotoxicity. We cloned the full length of Trim59 and stably transfected it into Raw264.7 cell lines to investigate the function of Trim59.
     Result: Using the antibodies to block Trim59 on the membrane of BCG activated macrophages significantly reduced BCG activated macrophages’cytotoxicity against MCA207 tumor cells. This potentiated that Trim59 serves as an indispensable molecule in maintaining BCG activated macrophages’activity. However, blocking of NMAAP1 failed to down-regulate the cytotoxicity of BCG activated macrophages against MCA207 tumor cells. This result indicated that NMAAP1 is not the necessary molecule in BCG activated macrophages tumoricidal process.
     Overexpression of Trim59 in Raw264.7 cell line failed to lyse target MCA207 cells, which demonstrated Trim59 per se could not enhance macrophages cytotoxicity. Our results imply Trim59 might be an essential accessory molecule in mediating BCG activated macrophages tumoricidal functions. Interestingly, the phagocytosis of transfected Raw264.7 cells was enhanced notably; this might be related to the structure of Trim59, which have a ring finger domain, a B-box domain, and two coli-coli domains. We infer that Trim59 is an associated molecule, which promote macrophages to get in touch with tumor cells.
     Conclusion, NMAAP1 has a high expression in the thymus, and is not the necessary molecule in macrophages directly tumoricidal process, the structure of NMAAP1 indicate it might involved in the activate process. Trim59 has a high expression in spleen and ovary, which indicate Trim59 involved in immunization and reproduction. Trim59 is an indispensably molecule in macrophages tumoricidal process, and Trim59 act as an associated molecule in this process. On another hand, Trim59 could enhance the phagocytosis of macrophages.
引文
[1] N. Morrissette, E. Gold, and A. Aderem, The macrophage--a cell for all seasons. Trends Cell Biol 9 (1999) 199-201.
    [2] R.J. MacKay, and S.W. Russell, Protein changes associated with stages of activation of mouse macrophages for tumor cell killing. J Immunol 137 (1986) 1392-8.
    [3] S. Gordon, Alternative activation of macrophages. Nat Rev Immunol 3 (2003) 23-35.
    [4] R. Ko, H.D. Jang, and S.Y. Lee, GSK3beta Inhibitor Peptide Protects Mice from LPS-induced Endotoxin Shock. Immune Netw 10 99-103.
    [5] E.T. Rietschel, and H. Brade, Bacterial endotoxins. Sci Am 267 (1992) 54-61.
    [6] R.R. Schumann, S.R. Leong, G.W. Flaggs, P.W. Gray, S.D. Wright, J.C. Mathison, P.S. Tobias, and R.J. Ulevitch, Structure and function of lipopolysaccharide binding protein. Science 249 (1990) 1429-31.
    [7] M. Daans, R.J. Lories, and F.P. Luyten, Absence of GDF5 does not interfere with LPS Toll-like receptor signaling. Clin Exp Rheumatol 27 (2009) 495-8.
    [8] R. Medzhitov, P. Preston-Hurlburt, and C.A. Janeway, Jr., A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388 (1997) 394-7.
    [9] A. Morales, D. Eidinger, and A.W. Bruce, Intracavitary Bacillus Calmette-Guerin in the treatment of superficial bladder tumors. J Urol 116 (1976) 180-3.
    [10] M.D. Melekos, and G.D. Moutzouris, Intravesical therapy of superficial bladder cancer. Curr Pharm Des 6 (2000) 345-59.
    [11] P.K. Giri, and J.S. Schorey, Exosomes derived from M. Bovis BCG infected macrophages activate antigen-specific CD4+ and CD8+ T cells in vitro and in vivo. PLoS One 3 (2008) e2461.
    [12] D.L. Lamm, D.E. Thor, S.C. Harris, J.A. Reyna, V.D. Stogdill, and H.M. Radwin, Bacillus Calmette-Guerin immunotherapy of superficial bladder cancer. J Urol 124 (1980) 38-40.
    [13] A.M. Jackson, A.B. Alexandroff, M. McIntyre, K. Esuvaranathan, K. James, and G.D. Chisholm, Induction of ICAM 1 expression on bladder tumours by BCG immunotherapy. J Clin Pathol 47 (1994) 309-12.
    [14] M.P. Simons, M.A. O'Donnell, and T.S. Griffith, Role of neutrophils in BCG immunotherapy for bladder cancer. Urol Oncol 26 (2008) 341-5.
    [15] E.C. de Boer, W.H. de Jong, A.P. van der Meijden, P.A. Steerenberg, F. Witjes, P.D. Vegt, F.M. Debruyne, and E.J. Ruitenberg, Leukocytes in the urine after intravesical BCG treatment for superficial bladder cancer. A flow cytofluorometric analysis. Urol Res 19 (1991) 45-50.
    [16] G. Bai, D.D. Schaak, and K.A. McDonough, cAMP levels within Mycobacterium tuberculosis and Mycobacterium bovis BCG increase upon infection of macrophages. FEMS Immunol Med Microbiol 55 (2009) 68-73.
    [17] V. Vila-del Sol, C. Punzon, and M. Fresno, IFN-gamma-induced TNF-alpha expression is regulated by interferon regulatory factors 1 and 8 in mouse macrophages. J Immunol 181 (2008) 4461-70.
    [18] K.G. Nepple, H.A. Aubert, M.R. Braasch, and M.A. O'Donnell, Combination of BCG and interferon intravesical immunotherapy: an update. World J Urol 27 (2009) 343-6.
    [19] T. Utsugi, A.J. Schroit, J. Connor, C.D. Bucana, and I.J. Fidler, Elevated expression of phosphatidylserine in the outer membrane leaflet of human tumor cells and recognition by activated human blood monocytes. Cancer Res 51 (1991) 3062-6.
    [20] A. Elnemr, T. Ohta, A. Yachie, S. Fushida, I. Ninomiya, G.I. Nishimura, M. Yamamoto, S. Ohkuma, and K. Miwa, N-ethylmaleimide-enhanced phosphatidylserine externalization of human pancreatic cancer cells and immediate phosphatidylserine-mediated phagocytosis by macrophages. Int J Oncol 16 (2000) 1111-6.
    [21] S. Jaiswal, M.P. Chao, R. Majeti, and I.L. Weissman, Macrophages as mediators of tumor immunosurveillance. Trends Immunol 31 212-9.
    [22] G.M. Shaw, P.C. Levy, and A.F. Lobuglio, Human monocyte cytotoxicity to tumor cells. I. Antibody-dependent cytotoxicity. J Immunol 121 (1978) 573-8.
    [23] I. Kawase, K. Komuta, T. Ogura, H. Fujiwara, T. Hamaoka, and S. Kishimoto, Murine tumor cell lysis by antibody-dependent macrophage-mediated cytotoxicity using syngeneic monoclonal antibodies. Cancer Res 45 (1985) 1663-8.
    [24] M. Brockhaus, H.J. Schoenfeld, E.J. Schlaeger, W. Hunziker, W. Lesslauer, and H. Loetscher, Identification of two types of tumor necrosis factor receptors on human cell lines by monoclonal antibodies. Proc Natl Acad Sci U S A 87 (1990) 3127-31.
    [25] L.A. Tartaglia, and D.V. Goeddel, Two TNF receptors. Immunol Today 13 (1992) 151-3.
    [26] J.Y. Jeong, and D.M. Jue, Chloroquine inhibits processing of tumor necrosis factor in lipopolysaccharide-stimulated RAW 264.7 macrophages. J Immunol 158 (1997) 4901-7.
    [27] G. Monastra, A. Cabrelle, A. Zambon, A. Rosato, B. Macino, D. Collavo, and P. Zanovello, Membrane form of TNF alpha induces both cell lysis and apoptosis in susceptible target cells. Cell Immunol 171 (1996) 102-10.
    [28] R.A. Marr, C.L. Addison, D. Snider, W.J. Muller, J. Gauldie, and F.L. Graham, Tumour immunotherapy using an adenoviral vector expressing a membrane-bound mutant of murine TNF alpha. Gene Ther 4 (1997) 1181-8.
    [29] J.C. Drapier, and J.B. Hibbs, Jr., Differentiation of murine macrophages to express nonspecific cytotoxicity for tumor cells results in L-arginine-dependent inhibition of mitochondrial iron-sulfur enzymes in the macrophage effector cells. J Immunol 140 (1988) 2829-38.
    [30] Y. Henry, M. Lepoivre, J.C. Drapier, C. Ducrocq, J.L. Boucher, and A. Guissani,EPR characterization of molecular targets for NO in mammalian cells and organelles. FASEB J 7 (1993) 1124-34.
    [31] K.D. Kroncke, K. Fehsel, T. Schmidt, F.T. Zenke, I. Dasting, J.R. Wesener, H. Bettermann, K.D. Breunig, and V. Kolb-Bachofen, Nitric oxide destroys zinc-sulfur clusters inducing zinc release from metallothionein and inhibition of the zinc finger-type yeast transcription activator LAC9. Biochem Biophys Res Commun 200 (1994) 1105-10.
    [32] C. Richter, V. Gogvadze, R. Schlapbach, M. Schweizer, and J. Schlegel, Nitric oxide kills hepatocytes by mobilizing mitochondrial calcium. Biochem Biophys Res Commun 205 (1994) 1143-50.
    [33] L. Toujas, J.G. Delcros, E. Diez, N. Gervois, G. Semana, G. Corradin, and F. Jotereau, Human monocyte-derived macrophages and dendritic cells are comparably effective in vitro in presenting HLA class I-restricted exogenous peptides. Immunology 91 (1997) 635-42.
    [34] V. Apostolopoulos, N. Barnes, G.A. Pietersz, and I.F. McKenzie, Ex vivo targeting of the macrophage mannose receptor generates anti-tumor CTL responses. Vaccine 18 (2000) 3174-84.
    [35] G. Biozzi, C. Stiffel, B.N. Halpern, and D. Mouton, [Effect of inoculation with Calmette-Guerin bacillus on the development of Ehrlich ascites tumor in the mouse.]. C R Seances Soc Biol Fil 153 (1959) 987-9.
    [36] D.M. Pinson, T.A. Phillips, J.L. Pace, R.J. MacKay, and S.W. Russell, Activation-associated marker proteins: peptide mapping and their expression in macrophage cell lines. Biochem Biophys Res Commun 176 (1991) 882-6.
    [37] R.J. MacKay, J.L. Pace, M.A. Jarpe, and S.W. Russell, Macrophage activation-associated proteins. Characterization of stimuli and conditions needed for expression of proteins 47b, 71/73, and 120. J Immunol 142 (1989) 1639-45.
    [38] T.A. Phillips, D.A. Kujubu, R.J. MacKay, H.R. Herschman, S.W. Russell, and J.L. Pace, The mouse macrophage activation-associated marker protein, p71/73, is an inducible prostaglandin endoperoxide synthase (cyclooxygenase). J Leukoc Biol 53 (1993) 411-9.
    [39] K. Tsung, J.P. Dolan, Y.L. Tsung, and J.A. Norton, Macrophages as effector cells in interleukin 12-induced T cell-dependent tumor rejection. Cancer Res 62 (2002) 5069-75.
    [40] Y. Luo, H. Yamada, D.P. Evanoff, and X. Chen, Role of Th1-stimulating cytokines in bacillus Calmette-Guerin (BCG)-induced macrophage cytotoxicity against mouse bladder cancer MBT-2 cells. Clin Exp Immunol 146 (2006) 181-8.
    [41] A.M. Hicks, M.C. Willingham, W. Du, C.S. Pang, L.J. Old, and Z. Cui, Effector mechanisms of the anti-cancer immune responses of macrophages in SR/CR mice. Cancer Immun 6 (2006) 11.
    [42] L. Zhang, Y. Lun, D. Yan, L. Yu, W. Ma, B. Du, and X. Zhu, Proteomic analysis of macrophages: a new way to identify novel cell-surface antigens. J Immunol Methods 321 (2007) 80-5.
    [43] L. Zhang, H. Zhu, Y. Lun, D. Yan, L. Yu, B. Du, and X. Zhu, Proteomic analysis of macrophages: a potential way to identify novel proteins associated with activation of macrophages for tumor cell killing. Cell Mol Immunol 4 (2007) 359-67.
    [44]张领兵,巨噬细胞接触依赖性杀伤机制的研究及活化相关膜蛋白的鉴定. [D]长春:吉林大学(2007).
    [45] M.R. Forman, S.M. Greene, N.E. Avis, S.H. Taplin, P. Courtney, P.A. Schad, B.W. Hesse, and D.M. Winn, Bioinformatics: Tools to accelerate population science and disease control research. Am J Prev Med 38 646-51.
    [46] T.L. Blundell, B.L. Sibanda, R.W. Montalvao, S. Brewerton, V. Chelliah, C.L. Worth, N.J. Harmer, O. Davies, and D. Burke, Structural biology and bioinformatics in drug design: opportunities and challenges for target identification and lead discovery. Philos Trans R Soc Lond B Biol Sci 361 (2006) 413-23.
    [47] A.J. Carpy, and N. Marchand-Geneste, Structural e-bioinformatics and drug design. SAR QSAR Environ Res 17 (2006) 1-10.
    [48] M.S. Cohen, C. Zhang, K.M. Shokat, and J. Taunton, Structural bioinformatics-based design of selective, irreversible kinase inhibitors. Science 308 (2005) 1318-21.
    [49] K.A. Taylor, and R.M. Glaeser, Retrospective on the early development of cryoelectron microscopy of macromolecules and a prospective on opportunities for the future. J Struct Biol 163 (2008) 214-23.
    [50] N. Hirokawa, and Y. Noda, Intracellular transport and kinesin superfamily proteins, KIFs: structure, function, and dynamics. Physiol Rev 88 (2008) 1089-118.
    [51] A.V. Tolmachev, M.E. Monroe, S.O. Purvine, R.J. Moore, N. Jaitly, J.N. Adkins, G.A. Anderson, and R.D. Smith, Characterization of strategies for obtaining confident identifications in bottom-up proteomics measurements using hybrid FTMS instruments. Anal Chem 80 (2008) 8514-25.
    [52] H. Wang, and S.M. Hanash, Increased throughput and reduced carryover of mass spectrometry-based proteomics using a high-efficiency nonsplit nanoflow parallel dual-column capillary HPLC system. J Proteome Res 7 (2008) 2743-55.
    [53] Q.Y. Yin, P.W. de Groot, C.G. de Koster, and F.M. Klis, Mass spectrometry-based proteomics of fungal wall glycoproteins. Trends Microbiol 16 (2008) 20-6.
    [54] R.B. Jacobsen, K.L. Sale, M.J. Ayson, P. Novak, J. Hong, P. Lane, N.L. Wood, G.H. Kruppa, M.M. Young, and J.S. Schoeniger, Structure and dynamics of dark-state bovine rhodopsin revealed by chemical cross-linking and high-resolution mass spectrometry. Protein Sci 15 (2006) 1303-17.
    [55] A. Sinz, Chemical cross-linking and mass spectrometry for mapping three-dimensional structures of proteins and protein complexes. J Mass Spectrom 38 (2003) 1225-37.
    [56] D. Mouradov, G. King, I.L. Ross, J.K. Forwood, D.A. Hume, A. Sinz, J.L.Martin, B. Kobe, and T. Huber, Protein structure determination using a combination of cross-linking, mass spectrometry, and molecular modeling. Methods Mol Biol 426 (2008) 459-74.
    [57] F.W. McLafferty, E.K. Fridriksson, D.M. Horn, M.A. Lewis, and R.A. Zubarev, Techview: biochemistry. Biomolecule mass spectrometry. Science 284 (1999) 1289-90.
    [58] M. Trester-Zedlitz, K. Kamada, S.K. Burley, D. Fenyo, B.T. Chait, and T.W. Muir, A modular cross-linking approach for exploring protein interactions. J Am Chem Soc 125 (2003) 2416-25.
    [59] Z. Chang, J. Kuchar, and R.P. Hausinger, Chemical cross-linking and mass spectrometric identification of sites of interaction for UreD, UreF, and urease. J Biol Chem 279 (2004) 15305-13.
    [60] S. Kalkhof, C. Ihling, K. Mechtler, and A. Sinz, Chemical cross-linking and high-performance Fourier transform ion cyclotron resonance mass spectrometry for protein interaction analysis: application to a calmodulin/target peptide complex. Anal Chem 77 (2005) 495-503.
    [61] A. Schmidt, S. Kalkhof, C. Ihling, D.M. Cooper, and A. Sinz, Mapping protein interfaces by chemical cross-linking and Fourier transform ion cyclotron resonance mass spectrometry: application to a calmodulin / adenylyl cyclase 8 peptide complex. Eur J Mass Spectrom (Chichester, Eng) 11 (2005) 525-34.
    [62] X. Zhao, L. Zhang, D. Yan, X. Feng, D. Chu, B. Li, B. Du, and X. Zhu, Phylogenetic analysis and prokaryotic expression of NMAAP1 derived from BCG-activated murine macrophages. Comp Immunol Microbiol Infect Dis (2010), doi.org/10.1016/j.cimid.2010.04.002.
    [63] N. Nikolaidis, D. Chalkia, D.N. Watkins, R.K. Barrow, S.H. Snyder, D.B. van Rossum, and R.L. Patterson, Ancient origin of the new developmental superfamily DANGER. PLoS One 2 (2007) e204.
    [64] K.L. Chow, D.H. Hall, and S.W. Emmons, The mab-21 gene of Caenorhabditis elegans encodes a novel protein required for choice of alternate cell fates. Development 121 (1995) 3615-26.
    [65] R. Yamada, Y. Mizutani-Koseki, H. Koseki, and N. Takahashi, Requirement for Mab21l2 during development of murine retina and ventral body wall. Dev Biol 274 (2004) 295-307.
    [66] R.L. Wong, and K.L. Chow, Depletion of Mab21l1 and Mab21l2 messages in mouse embryo arrests axial turning, and impairs notochord and neural tube differentiation. Teratology 65 (2002) 70-7.
    [67] D.B. van Rossum, R.L. Patterson, K.H. Cheung, R.K. Barrow, V. Syrovatkina, G.S. Gessell, S.G. Burkholder, D.N. Watkins, J.K. Foskett, and S.H. Snyder, DANGER, a novel regulatory protein of inositol 1,4,5-trisphosphate-receptor activity. J Biol Chem 281 (2006) 37111-6.
    [68] D. Fraiman, and S.P. Dawson, A model of IP3 receptor with a luminal calcium binding site: stochastic simulations and analysis. Cell Calcium 35 (2004) 403-13.
    [69] M. Chalmers, M.J. Schell, and P. Thorn, Agonist-evoked inositol trisphosphate receptor (IP3R) clustering is not dependent on changes in the structure of the endoplasmic reticulum. Biochem J 394 (2006) 57-66.
    [70] V. Vanderheyden, B. Devogelaere, L. Missiaen, H. De Smedt, G. Bultynck, and J.B. Parys, Regulation of inositol 1,4,5-trisphosphate-induced Ca2+ release by reversible phosphorylation and dephosphorylation. Biochim Biophys Acta 1793 (2009) 959-70.
    [71] M.J. Berridge, P. Lipp, and M.D. Bootman, The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 1 (2000) 11-21.
    [72] J. Hirota, M. Baba, M. Matsumoto, T. Furuichi, K. Takatsu, and K. Mikoshiba, T-cell-receptor signalling in inositol 1,4,5-trisphosphate receptor (IP3R) type-1-deficient mice: is IP3R type 1 essential for T-cell-receptor signalling? Biochem J 333 ( Pt 3) (1998) 615-9.
    [73] T. Sugiyama, A. Furuya, T. Monkawa, M. Yamamoto-Hino, S. Satoh, K. Ohmori, A. Miyawaki, N. Hanai, K. Mikoshiba, and M. Hasegawa, Monoclonal antibodies distinctively recognizing the subtypes of inositol 1,4,5-trisphosphate receptor: application to the studies on inflammatory cells. FEBS Lett 354 (1994) 149-54.
    [74] T. Monkawa, A. Miyawaki, T. Sugiyama, H. Yoneshima, M. Yamamoto-Hino, T. Furuichi, T. Saruta, M. Hasegawa, and K. Mikoshiba, Heterotetrameric complex formation of inositol 1,4,5-trisphosphate receptor subunits. J Biol Chem 270 (1995) 14700-4.
    [75] T. Jayaraman, and A.R. Marks, T cells deficient in inositol 1,4,5-trisphosphate receptor are resistant to apoptosis. Mol Cell Biol 17 (1997) 3005-12.
    [76] T. Jayaraman, E. Ondriasova, K. Ondrias, D.J. Harnick, and A.R. Marks, The inositol 1,4,5-trisphosphate receptor is essential for T-cell receptor signaling. Proc Natl Acad Sci U S A 92 (1995) 6007-11.
    [77] E. Vermassen, K. Van Acker, W.G. Annaert, B. Himpens, G. Callewaert, L. Missiaen, H. De Smedt, and J.B. Parys, Microtubule-dependent redistribution of the type-1 inositol 1,4,5-trisphosphate receptor in A7r5 smooth muscle cells. J Cell Sci 116 (2003) 1269-77.
    [78] S.E. Baird, D.H. Fitch, I.A. Kassem, and S.W. Emmons, Pattern formation in the nematode epidermis: determination of the arrangement of peripheral sense organs in the C. elegans male tail. Development 113 (1991) 515-26.
    [79] Y.M. Wong, and K.L. Chow, Expression of zebrafish mab21 genes marks the differentiating eye, midbrain and neural tube. Mech Dev 113 (2002) 149-52.
    [80] M. Mariani, D. Baldessari, S. Francisconi, L. Viggiano, M. Rocchi, V. Zappavigna, N. Malgaretti, and G.G. Consalez, Two murine and human homologs of mab-21, a cell fate determination gene involved in Caenorhabditis elegans neural development. Hum Mol Genet 8 (1999) 2397-406.
    [81] S.H. Ho, G.M. So, and K.L. Chow, Postembryonic expression of Caenorhabditis elegans mab-21 and its requirement in sensory ray differentiation. Dev Dyn 221 (2001) 422-30.
    [82] R. Chang, X. Xu, and M.D. Li, Molecular cloning, mapping and characterization of a novel mouse RING finger gene, Mrf1. Gene 291 (2002) 241-9.
    [83] B.A. Reddy, L.D. Etkin, and P.S. Freemont, A novel zinc finger coiled-coil domain in a family of nuclear proteins. Trends Biochem Sci 17 (1992) 344-5.
    [84] K.L. Borden, RING fingers and B-boxes: zinc-binding protein-protein interaction domains. Biochem Cell Biol 76 (1998) 351-8.
    [85] N.A. Quaderi, S. Schweiger, K. Gaudenz, B. Franco, E.I. Rugarli, W. Berger, G.J. Feldman, M. Volta, G. Andolfi, S. Gilgenkrantz, R.W. Marion, R.C. Hennekam, J.M. Opitz, M. Muenke, H.H. Ropers, and A. Ballabio, Opitz G/BBB syndrome, a defect of midline development, is due to mutations in a new RING finger gene on Xp22. Nat Genet 17 (1997) 285-91.
    [86] K. Avela, M. Lipsanen-Nyman, N. Idanheimo, E. Seemanova, S. Rosengren, T.P. Makela, J. Perheentupa, A.D. Chapelle, and A.E. Lehesjoki, Gene encoding a new RING-B-box-Coiled-coil protein is mutated in mulibrey nanism. Nat Genet 25 (2000) 298-301.
    [87] F. Grignani, V. Gelmetti, M. Fanelli, D. Rogaia, S. De Matteis, F.F. Ferrara, D. Bonci, C. Nervi, and P.G. Pelicci, Formation of PML/RAR alpha high molecular weight nuclear complexes through the PML coiled-coil region is essential for the PML/RAR alpha-mediated retinoic acid response. Oncogene 18 (1999) 6313-21.
    [88] B. Le Douarin, C. Zechel, J.M. Garnier, Y. Lutz, L. Tora, P. Pierrat, D. Heery, H. Gronemeyer, P. Chambon, and R. Losson, The N-terminal part of TIF1, a putative mediator of the ligand-dependent activation function (AF-2) of nuclear receptors, is fused to B-raf in the oncogenic protein T18. Embo J 14 (1995) 2020-33.
    [89] S. Cainarca, S. Messali, A. Ballabio, and G. Meroni, Functional characterization of the Opitz syndrome gene product (midin): evidence for homodimerization and association with microtubules throughout the cell cycle. Hum Mol Genet 8 (1999) 1387-96.
    [90] J.A. Dyck, G.G. Maul, W.H. Miller, Jr., J.D. Chen, A. Kakizuka, and R.M. Evans, A novel macromolecular structure is a target of the promyelocyte-retinoic acid receptor oncoprotein. Cell 76 (1994) 333-43.
    [91] T. Cao, E. Duprez, K.L. Borden, P.S. Freemont, and L.D. Etkin, Ret finger protein is a normal component of PML nuclear bodies and interacts directly with PML. J Cell Sci 111 ( Pt 10) (1998) 1319-29.
    [92] G. Buchner, E. Montini, G. Andolfi, N. Quaderi, S. Cainarca, S. Messali, M.T. Bassi, A. Ballabio, G. Meroni, and B. Franco, MID2, a homologue of the Opitz syndrome gene MID1: similarities in subcellular localization and differences in expression during development. Hum Mol Genet 8 (1999) 1397-407.
    [93] S. Schweiger, J. Foerster, T. Lehmann, V. Suckow, Y.A. Muller, G. Walter, T. Davies, H. Porter, H. van Bokhoven, P.W. Lunt, P. Traub, and H.H. Ropers, The Opitz syndrome gene product, MID1, associates with microtubules. ProcNatl Acad Sci U S A 96 (1999) 2794-9.
    [94] S. Zhong, P. Salomoni, and P.P. Pandolfi, The transcriptional role of PML and the nuclear body. Nat Cell Biol 2 (2000) E85-90.
    [95] A. Reymond, G. Meroni, A. Fantozzi, G. Merla, S. Cairo, L. Luzi, D. Riganelli, E. Zanaria, S. Messali, S. Cainarca, A. Guffanti, S. Minucci, P.G. Pelicci, and A. Ballabio, The tripartite motif family identifies cell compartments. Embo J 20 (2001) 2140-51.
    [96] H. Peng, G.E. Begg, D.C. Schultz, J.R. Friedman, D.E. Jensen, D.W. Speicher, and F.J. Rauscher, 3rd, Reconstitution of the KRAB-KAP-1 repressor complex: a model system for defining the molecular anatomy of RING-B box-coiled-coil domain-mediated protein-protein interactions. J Mol Biol 295 (2000) 1139-62.
    [97] P.S. Freemont, I.M. Hanson, and J. Trowsdale, A novel cysteine-rich sequence motif. Cell 64 (1991) 483-4.
    [98] R. Lovering, I.M. Hanson, K.L. Borden, S. Martin, N.J. O'Reilly, G.I. Evan, D. Rahman, D.J. Pappin, J. Trowsdale, and P.S. Freemont, Identification and preliminary characterization of a protein motif related to the zinc finger. Proc Natl Acad Sci U S A 90 (1993) 2112-6.
    [99] M. Takahashi, Y. Inaguma, H. Hiai, and F. Hirose, Developmentally regulated expression of a human "finger"-containing gene encoded by the 5' half of the ret transforming gene. Mol Cell Biol 8 (1988) 1853-6.
    [100] M. Kanno, M. Hasegawa, A. Ishida, K. Isono, and M. Taniguchi, mel-18, a Polycomb group-related mammalian gene, encodes a transcriptional negative regulator with tumor suppressive activity. Embo J 14 (1995) 5672-8.
    [101] K.L. Borden, and P.S. Freemont, The RING finger domain: a recent example of a sequence-structure family. Curr Opin Struct Biol 6 (1996) 395-401.
    [102] B.N. Kang, A.S. Ahmad, S. Saleem, R.L. Patterson, L. Hester, S. Dore, and S.H. Snyder, Death-associated protein kinase-mediated cell death modulated by interaction with DANGER. J Neurosci 30 93-8.
    [103] K.L. Borden, S.R. Martin, N.J. O'Reilly, J.M. Lally, B.A. Reddy, L.D. Etkin, and P.S. Freemont, Characterisation of a novel cysteine/histidine-rich metal binding domain from Xenopus nuclear factor XNF7. FEBS Lett 335 (1993) 255-60.
    [104] B. Stancevic, and R. Kolesnick, Ceramide-rich platforms in transmembrane signaling. FEBS Lett 584 1728-40.
    [105] A. Holt, and J.A. Killian, Orientation and dynamics of transmembrane peptides: the power of simple models. Eur Biophys J 39 609-21.
    [106] P. Raghu, and G. Hasan, The inositol 1,4,5-triphosphate receptor expression in Drosophila suggests a role for IP3 signalling in muscle development and adult chemosensory functions. Dev Biol 171 (1995) 564-77.
    [107] M.S. Ota, Y. Kaneko, K. Kondo, S. Ogishima, H. Tanaka, K. Eto, and T. Kondo, Combined in silico and in vivo analyses reveal role of Hes1 in taste cell differentiation. PLoS Genet 5 (2009) e1000443.
    [108] G. Ullah, P. Jung, and K. Machaca, Modeling Ca2+ signaling differentiationduring oocyte maturation. Cell Calcium 42 (2007) 556-64.
    [109] A. Klug, Zinc finger peptides for the regulation of gene expression. J Mol Biol 293 (1999) 215-8.
    [110] T.M. Hall, Multiple modes of RNA recognition by zinc finger proteins. Curr Opin Struct Biol 15 (2005) 367-73.
    [111] R.S. Brown, Zinc finger proteins: getting a grip on RNA. Curr Opin Struct Biol 15 (2005) 94-8.
    [112] R. Gamsjaeger, C.K. Liew, F.E. Loughlin, M. Crossley, and J.P. Mackay, Sticky fingers: zinc-fingers as protein-recognition motifs. Trends Biochem Sci 32 (2007) 63-70.
    [113] J.M. Matthews, and M. Sunde, Zinc fingers--folds for many occasions. IUBMB Life 54 (2002) 351-5.
    [114] D.A. Vandeputte, C.B. Meije, M. van Dartel, S. Leenstra, I.J.-K. H, P.K. Das, D. Troost, D.A. Bosch, F. Baas, and T.J. Hulsebos, GOA, a novel gene encoding a ring finger B-box coiled-coil protein, is overexpressed in astrocytoma. Biochem Biophys Res Commun 286 (2001) 574-9.
    [115] A.E. El-Husseini, D. Kwasnicka, T. Yamada, S. Hirohashi, and S.R. Vincent, BERP, a novel ring finger protein, binds to alpha-actinin-4. Biochem Biophys Res Commun 267 (2000) 906-11.
    [116] A.P. Chiang, J.S. Beck, H.J. Yen, M.K. Tayeh, T.E. Scheetz, R.E. Swiderski, D.Y. Nishimura, T.A. Braun, K.Y. Kim, J. Huang, K. Elbedour, R. Carmi, D.C. Slusarski, T.L. Casavant, E.M. Stone, and V.C. Sheffield, Homozygosity mapping with SNP arrays identifies TRIM32, an E3 ubiquitin ligase, as a Bardet-Biedl syndrome gene (BBS11). Proc Natl Acad Sci U S A 103 (2006) 6287-92.
    [117] J.F. Kane, Effects of rare codon clusters on high-level expression of heterologous proteins in Escherichia coli. Curr Opin Biotechnol 6 (1995) 494-500.
    [118] J. Sambrook , D.R. (5 Dec 2000). molecular cloning 3 Cold Spring Harbor Laboratory Press,U.S.,3rd edition.
    [119] M. John Rogers, Rare codon usage in Escherichia coli and the expression of potentially toxic genes. Parasitol Today 12 (1996) 124; author reply 124-5.
    [120] A.M. Baca, and W.G. Hol, Overcoming codon bias: a method for high-level overexpression of Plasmodium and other AT-rich parasite genes in Escherichia coli. Int J Parasitol 30 (2000) 113-8.
    [121] Overcoming the codon bias of E. coli for enhanced protein expression.
    [122] M.H. Bre, R. Pepperkok, T.E. Kreis, and E. Karsenti, Cellular interactions and tubulin detyrosination in fibroblastic and epithelial cells. Biol Cell 71 (1991) 149-60.
    [123] R. Evans, and P. Alexander, Role of macrophages in tumour immunity. II. Involvement of a macrophage cytophilic factor during syngeneic tumour growth inhibition. Immunology 23 (1972) 627-36.
    [124] S.M. Burden-Gulley, T.J. Gates, A.M. Burgoyne, J.L. Cutter, D.T. Lodowski, S. Robinson, A.E. Sloan, R.H. Miller, J.P. Basilion, and S.M. Brady-Kalnay, Anovel molecular diagnostic of glioblastomas: detection of an extracellular fragment of protein tyrosine phosphatase micro. Neoplasia 12 305-16.
    [125] T. Espevik, and J. Nissen-Meyer, Tumour necrosis factor-like activity on paraformaldehyde-fixed monocyte monolayers. Immunology 61 (1987) 443-8.
    [126] J.A. Hamerman, and A. Aderem, Functional transitions in macrophages during in vivo infection with Mycobacterium bovis bacillus Calmette-Guerin. J Immunol 167 (2001) 2227-33.
    [127] N. Vitale, G. Pacheco-Rodriguez, V.J. Ferrans, W. Riemenschneider, J. Moss, and M. Vaughan, Specific functional interaction of human cytohesin-1 and ADP-ribosylation factor domain protein (ARD1). J Biol Chem 275 (2000) 21331-9.
    [128] J.F. Rual, K. Venkatesan, T. Hao, T. Hirozane-Kishikawa, A. Dricot, N. Li, G.F. Berriz, F.D. Gibbons, M. Dreze, N. Ayivi-Guedehoussou, N. Klitgord, C. Simon, M. Boxem, S. Milstein, J. Rosenberg, D.S. Goldberg, L.V. Zhang, S.L. Wong, G. Franklin, S. Li, J.S. Albala, J. Lim, C. Fraughton, E. Llamosas, S. Cevik, C. Bex, P. Lamesch, R.S. Sikorski, J. Vandenhaute, H.Y. Zoghbi, A. Smolyar, S. Bosak, R. Sequerra, L. Doucette-Stamm, M.E. Cusick, D.E. Hill, F.P. Roth, and M. Vidal, Towards a proteome-scale map of the human protein-protein interaction network. Nature 437 (2005) 1173-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700