基于基片集成波导的宽带带通滤波器和Fabry-Perot谐振天线研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着基片集成波导(SIW)结构基础理论研究的不断发展完善,各种基于SIW的有源及无源器件研究工作进展迅速。滤波器(尤其是带通滤波器)和天线是其中两个重要的研究内容,也是无线通信系统中必不可少的两个重要元件:天线氮责发射和接受信号;滤波器需要滤除镜频一类的干扰信号,抑制杂散信号,以保证所需的频段上信息的完整性和正确性。超宽带(UWB)系统因其高速率数据传输、低能量密度和低传输能量的特点得到广泛应用,而UWB带通滤波器是其中的一个关键元件,高选择性的宽带带通滤波器可用来抑制不需要的信号,并改善UWB系统的性能。在高速的WLAN、卫星信号接收以及各种点对点无线连接应用中,都需要低成本的高增益平面天线。传统的通过天线阵列实现高增益的方法,要求复杂的馈电网络,并且影响天线效率,而Fabry-Perot(FP)谐振天线只需单个馈源即可实现高增益,因此受到广泛的关注。本文将基于基片集成波导结构,研究和分析高选择性的UWB带通滤波器和低剖面的基板集成Fabry-Perot谐振天线。
     首先综述了基片集成波导结构在滤波器设计中的应用和发展、Fabry-Perot谐振天线的发展历史和趋势。论文的第四章介绍了Fabry-Perot谐振天线的基本理论和工作原理,推导了双侧部分反射板组成的和单侧部分反射板的两种形式的Fabry-Perot皆振天线的基本特征参数,并对其实现低剖面化的机理进行了分类分析。论文的第二、三、五章分别针对IADGS级联HMSIW的高选择性超宽带滤波器、SIW/HMSIW加载ADGS的高选择性宽带滤波器和SIW槽馈电的基板集成亚波长Fabry-Perot皆振天线进行了分析和研究。
     级联高通/低通滤波器法是设计UWB带通滤波器的一种最直观的方法。论文首先介绍了具有准椭圆函数低通滤波特性的非对称缺陷地结构(ADGS),并对改进型的非对称缺陷地结构(IADGS)通带内回波损耗和带外抑制的改善,做出了合理的理论解释,进而给出了具有高截止频率的IADGS单元的设计步骤。接着,设计了多个IADGS单元组成的高选择性低通滤波器,并级联具有较宽纯主模工作频带的HMSIW高通结构,实现了通带约为5.8-10.6GHz的高选择性UWB带通滤波器。
     ADGS结构单元可直接应用到SIW的顶层或底层的金属宽边的中心线上,也可蚀刻在HMSIW的开放边界对应的金属地附近,同样能在高频端表现出准椭圆函数的带阻特性。这样就在天然高通的导波结构中加载了低通结构单元,或者叫带隙结构单元,可用来实现宽带的带通滤波器,结构更加紧凑。通过HMSIW加载ADGS单元同样实现了通带约为5.8-10.6GHz的高选择性UWB带通滤波器,SIW上层金属宽边加载ADGS则实现了具有高选择性的30%分数带宽C波段带通滤波器。
     最后提出并研究了一种新型的SIW槽馈电的基板集成亚波长Fabry-Perot谱振天线。采用基片集成波导上才层金属宽边开纵槽的激励形式,结合部分反射人工磁导体以及介质基板镇充腔,有效地降低了天线高度以适应普通PCB电路系统的要求。为进一步降低天线高度,空气腔被介质基片填充,形成一种新型的结构稳定的全基片集成的FP谐振天线,便于与电路板集成。研究分析了基片集成波导纵槽馈电形式对天线增益宽带的影响,与传统的长微带激励的贴片馈源形式相比,基片集成波导双纵槽馈源使得FP谐振天线的主波方向保持在正方向上,并且随频率变化不敏感;欧姆损耗和介质损耗都有明显的减小,捉高了天线的辐射效率。仿真和实验结果都表明,该天线具有低剖面、高增益、高效率和稳定的正方向辐射等一系列优点。同时,易于与电路板系统集成和结构鲁棒性好的特点又使其便于大规模的低成本生产。
With the development of the fundamental theory research of substrate integrated waveguide (SIW), studies on microwave and millimeter-wave components based on SIW have made great progress. Filter, especially the bandpass filter, and antenna are two important research areas among them. They are also the key components of wireless communication systems. The antenna is used for transmitting or receiving radio waves which carry signals through the air, while the main function of the filter is allowing the desired frequencies and eliminating the unwanted band including the image frequency, in order to ensure the integrity and correctivity of the signals in the required frequency range. Due to the advantages of high transmission data rate, low energy density and extremely low transmission energy, ultra wideband (UWB) techniques have been utilised for many applications. The UWB bandpass filter is a crux component of UWB system. The highly selective UWB bandpass filter rejects the unwanted signals and improves the UWB system performance. On the other hand, high-gain, low-cost planar antennas are preferred in the applications of wireless LAN, satellite reception and various point-to-point radio links. The conventional array antennas have primarily been good candidates, but their feeding network becomes complicated, and will decrease the antenna efficiency. Therefore, the high-gain Fabry-Perot resonator antennas with a simple feed have attracted a lot of interest. The dissertation will focus on the UWB bandpass filters with high selectivity and low-profile fully substrate-integrated Fabry-Perot resonator antennas based on SIW.
     Firstly, an overview of the development of the filter design based on SIW-like structures, and the historic background and trends of the Fabry-Perot resonator antennas is given. In Chapter4, the basic theory and operation principle of Fabry-Perot resonator antenna are introduced. The characteristic parameters are deducted for the FP antennas with two kinds of cavities, one is constructed from two partially reflection sheets (PRS), the other is comprised of a PRS and a totally reflective ground plane. Classification analysis on the low-profile mechanism is performed in detail. In Chapter2,3and5, highly selective UWB bandpass filters by cascading HMSIW and IADGS lowpass filter, highly selective wideband bandpass filters using ADGS-loaded SIW/HMSIW, and SIW-slot-fed substrate-integrated subwavelength Fabry-Perot resonator antennas are studied respectively.
     An intuitive approach has been proposed to design UWB bandpass filters by using cascaded highpass and lowpass filters. The asymmetric defected ground structure (ADGS) with quasi-ellptical response is introduced. Then the theoretical explanation on the advancement of the return loss and suppression level is made for the improved ADGS (IADGS). Accordingly, the design procedure for the IADGS with high cut-off frequency is suggested. Following that, two or three IADGS cells are employed for the lowpass filter design to achieve low return loss in the passband and good enough suppression level. At last, the sharp-transition IADGS lowpass filters are cascaded with the inherent steep-cutoff high-pass HMSIW section to realize highly selective UWB bandpass filters with the passband of about5.8-10.6GHz.
     When the ADGS cell is directly applied to the center of both the bottom and top broadwall of SIW, or the ground plane near the open boundary of HMSIW, the same quasi-elliptical band-reject performance can be observed in the upper band. So the ADGS cell integrated with SIW/HMSIW can be regarded as an EBG-loaded structure for the wideband bandpass filter design with a more compact size. An ADGS-loaded HMSIW UWB filter with a passband of about5.8-10.6GHz, and a C-band ADGS-loaded SIW wideband filter with a fractional passband of about30%are implemented, respectively, both with steep skirt selectivity.
     Finally, the novel SIW-slot-fed substrate-integrated subwavelength Fabry-Perot cavity (FPC) antennas are proposed and studied. The longitudinal slots symmetrically cut on the upper broadwall of the SIW are introduced to excite the FPC antennas. A ground plane and an artificial-magnetic-conductor-loaded partially reflective planar sheet act as two reflecting sheets of the FPC, which is fully filled with dielectric to decrease the cavity height to meet the need of integration with the circuit board. The effects of the SIW slot feed on the realized gain and gain bandwidth are analysed. As compared to the substrate-integrated FPC antenna with an embedded microstrip feeding patch, the main beam direction of the proposed antennas are shown to be insensitive to operating frequency and maintained at the boresight direction. Furthermore, the radiation efficiency is improved due to the significant reduction of dielectric loss and ohm loss. The simulated and measured results demonstrate that the proposed antennas have the merits of low profile, high gain, high efficiency, and consistent boresight radiation. Moreover, the easy integration with the circuit board and mechanical robustness make them suitable for low-cost mass production.
引文
[1]D. Deslandes, K. Wu,"Integrated microstrip and rectangular waveguide in planar form[J]," IEEE Microwave and Wireless Components Letters, vol.11, no.2, pp.68-70,2001.
    [2]J. Hirokawa, M. Ando, "Single-layer feed waveguide consisting of posts for plane TEM wave excitation in parallel plates[J]," IEEE Transactions on Antennas and Propagation, vol.46, no.5, pp.625-630,1998.
    [3]J. Hirokawa, M. Ando, "Sidelobe suppression in 76-GHz post-wall waveguide-fed parallel-plate slot arrays[J]," IEEE Transactions on Antennas and Propagation, vol.48, no.11, pp.1727-1732,2000.
    [4]H. Uchimura, T. Takenoshita, M. Fujii, "Development of a "laminated waveguide"[J]," IEEE Transactions on Microwave Theory and Techniques, vol.46, no.12, pp.2438-2443,1998.
    [5]Y. Cassivi, L. Perregrini, P. Arcioni, et al.."Dispersion characteristics of substrate integrated rectangular waveguide[J]," IEEE Microwave and Wireless Components Letters, vol.12, no.9, pp.333-335,2002.
    [6]Feng Xu, Yulin Zhang, Wei Hong, et al., "Finite-difference frequency-domain algorithm for modeling guided-wave properties of substrate integrated waveguide[J]," IEEE Transactions on Microwave Theory and Techniques, vol.51, no.11, pp.2221-2227,2003.
    [7]Feng Xu, Ke Wu, "Guided-wave and leakage characteristics of substrate integrated waveguide[J]," IEEE Transactions on Microwave Theory and Techniques, vol.53, no.1, pp.66-73,2005.
    [8]Chao-Hsiung Tseng, Tah-Hsiung Chu, "Measurement of frequency-dependent equivalent width of substrate integrated waveguide[J],' IEEE Transactions on Microwave Theory and Techniques, vol.54, no.4, pp. 1431-1437,2006.
    [9]D. Deslandes, K. Wu, "Accurate modeling, wave mechanisms, and design considerations of a substrate integrated waveguide[J]," IEEE Transactions on Microwave Theory and Techniques, vol.54, no.6, pp.2516-2526,2006.
    [10]W. Q. Che, L. Geng, K. A. Deng, et al., "Analysis and experiments of compact folded sub strate-integrated waveguide[J]," IEEE Transactions on Microwave Theory and Techniques, vol.56, no.1, pp.88-93,2008.
    [11]E. Arnieri, G. Amendola, "Analysis of substrate integrated waveguide structures based on the parallel-plate waveguide Green's function[J]," IEEE Transactions on Microwave Theory and Techniques, vol.56, no.7, pp. 1615-1623,2008.
    [12]X. H. Wu, A. A. Kishk, "Hybrid of Method of Moments and Cylindrical Eigenfunction Expansion to Study Substrate Integrated Waveguide Circuits[J]," IEEE Transactions on Microwave Theory and Techniques, vol. 56, no.10, pp.2270-2276,2008.
    [13]M. Bozzi, L. Perregrini, K. Wu, "Modeling of Conductor, Dielectric, and Radiation Losses in Substrate Integrated Waveguide by the Boundary Integral-Resonant Mode Expansion Method[J]," IEEE Transactions on Microwave Theory and Techniques, vol.56, no.12, pp.3153-3161,2008.
    [14]M. Bozzi, L. Perregrini, K. Wu, "Modeling of Radiation, Conductor, and Dielectric Losses in SIW Components by the BI-RME Method[C]," 3rd European Microwave Integrated Circuits Conference (EuMIC), Amesterdam, Netherlands,2008, pp.230-233.
    [15]M. Bozzi, L. Perregrini, K. Wu, "Modeling of Losses in Substrate Integrated Waveguide by Boundary Integral-Resonant Mode Expansion Method[C]," IEEE MTT-S International Microwave Symposium Digest, Atlanta, GA, 2008, pp.514-517.
    [16]Y. J. Cheng, K. Wu, W. Hong, "Power Handling Capability of Substrate Integrated Waveguide Interconnects and Related Transmission Line SystemsfJ]," IEEE Transactions on Advanced Packaging, vol.31, no.4, pp. 900-909,2008.
    [17]Q. H. Lai, C. Fumeaux, W. Hong, et al., "Characterization of the Propagation Properties of the Half-Mode Substrate Integrated Waveguide[J]," IEEE Transactions on Microwave Theory and Techniques, vol.57, no.8, pp. 1996-2004,2009.
    [18]Zhang-Cheng Hao, Jia-Sheng Hong, "Ultrawideband Filter Technologies[J]," IEEE Microwave Magazine, vol.11, no.4, pp.56-68,2010.
    [19]R. Kshetrimayum, "An introduction to UWB communication systems[J]," IEEE Potentials, vol.28, no.2, pp.9-13,2009.
    [20]Chia-Chin Chong, F. Watanabe, H. Inamura, "Potential of UWB Technology for the Next Generation Wireless Communications[C]," IEEE ninth International Symposium on Spread Spectrum Techniques and Applications, Manaus, Brazil,2006, pp.422-429.
    [21]G. V. Trentini, "Partially reflecting sheet arrays[J]," IRE Transactions on Antennas and Propagation, vol.4, no.4, pp.666-671,1956.
    [22]D. Deslandes, K. Wu, "Single-substrate integration technique of planar circuits and waveguide filters[J]," IEEE Transactions on Microwave Theory and Techniques, vol.51, no.2, pp.593-596,2003.
    [23]S. T. Choi, K. S. Yang, K. Tokuda, et al., "A V-band planar narrow bandpass filter using a new type integrated waveguide transition[J]," IEEE Microwave and Wireless Components Letters, vol.14, no.12, pp.545-547,2004.
    [24]Y. D. Dong, Y. Q. Wang, W. Hong, "A novel substrate integrated waveguide equivalent inductive-post filter[J]," International Journal of RF and Microwave Computer-Aided Engineering, vol.18, no.2, pp.141-145,2008.
    [25]C. T. Bui, P. Lorenz, M. Saglam, et al., "Investigation of Symmetry Influence in Substrate Integrated Waveguide (SIW) Band-Pass Filters using Symmetric Inductive Posts[C]," 38th European Microwave Conference, Amsterdam, Netherlands,2008, pp.929-932.
    [26]Z. C. Hao, W. Hong, X. P. Chen, et al., "Multilayered substrate integrated waveguid (MSIW) elliptic filter[J]," IEEE Microwave and Wireless Components Letters, vol.15, no.2, pp.95-97,2005.
    [27]L. S. Wu, X. L. Zhou, W. Y. Yin, "A novel multilayer partial H-plane filter implemented with folded substrate integrated waveguide (FSIW)[J]," IEEE Microwave and Wireless Components Letters, vol.19, no.8, pp.494-496, 2009.
    [28]L. S. Wu, X. L. Zhou, Q. F. Wei, et al., "An extended doublet substrate integrated waveguide (SIW) bandpass filter with a complementary split ring resonator (CSRR)[J]," IEEE Microwave and Wireless Components Letters, vol.19, no.12, pp.777-779,2009.
    [29]X. Chen, W. Hong, T. Cui, et al., "Substrate integrated waveguide (SIW) asymmetric dual-mode filter and diplexer[J]," International Journal of Electronics, vol.92, no.12, pp.743-753,2005.
    [30]W. Shen, X. W. Sun, W. Y. Yin, et al., "A novel single-cavity dual mode substrate integrated waveguide filter with non-resonating node[J]," IEEE Microwave and Wireless Components Letters, vol.19, no.6, pp.368-370, 2009.
    [31]X. P. Chen, K. Wu, "Substrate integrated waveguide cross-coupled filter with negative coupling structure[J]," IEEE Transactions on Microwave Theory and Techniques, vol.56, no.1, pp.142-149,2008.
    [32]B. Potelon, J. F. Favennec, C. Quendo, et al., "Design of a substrate integrated waveguide (SIW) filter using a novel topology of coupling[J]," IEEE Microwave and Wireless Components Letters, vol.18, no.9, pp. 596-598,2008.
    [33]Q. L. Zhang, W. Y. Yin, S. L. He, et al., "Compact substrate integrated waveguide (SIW) bandpass filter with complementary split-ring resonators (CSRRs)[J]," IEEE Microwave and Wireless Components Letters, vol.20, no.8, pp.426-428,2010.
    [34]W. Shen, L. S. Wu, X. W. Sun, et al., "Novel substrate integrated waveguide filters with mixed cross coupling (MCC)[J]," IEEE Microwave and Wireless Components Letters, vol.19, no.11, pp.701-703,2009.
    [35]Zhang-Cheng Hao, Wei Hong, Ji-Xin Chen, et al., "Compact super-wide bandpass substrate integrated waveguide (SIW) filters[J]," IEEE Transactions on Microwave Theory and Techniques, vol.53, no.9, pp. 2968-2977,2005.
    [36]W. Che, C. Li, K. Deng, et al., "A novel bandpass filter based on complementary split rings resonators and substrate integrated waveguide[J]," Microwave and Optical Technology Letters, vol.50, no.3, pp.699-701, 2008.
    [37]L. Geng, W. Q. Che, K. Deng, "Wideband bandpass filter of folded substrate-integrated waveguide integrating with stripline compact resonant cell[J]," Microwave and Optical Technology Letters, vol.50, no.2, pp. 390-393,2008.
    [38]L. Qiang, Y.-J. Zhao, Q. Sun, et al., "A compact UWB bandpass filter based on complementary split-ring resonators[J]," Progress in Electromagnetics Research, vol.11, pp.237-243,2009.
    [39]F. F. He, K. Wu, W. Hong, "A wideband bandpass filter by integrating a section of high pass HMSIW with a microstrip lowpass filter[C]," Global Symposium on Millimeter Waves, Nanjing, China,2008, pp.282-284.
    [40]Q. Y. Song, H. R. Cheng, X. H. Wang, et al., "Novel wideband bandpass Filter integrating HMSIW with DGS[J]," Journal of Electromagnetic Waves and Applications, vol.23, no.14-15, pp.2031-2040,2009.
    [41]Ronan Sauleau, "Fabry-Perot resonators[G]," In Encyclopedia of RF and microwave engineering, Kai Chang, ed., pp.1381-1401, New York, John Wiley & Son,2005.
    [42]J. M. Vaughan, "The Fabry-Perot interferometers, history, theory, practice and applications[M], Bristol, UK, Adam Hilger,1989.
    [43]Z. G. Liu, "Fabry-Perot Resonator Antenna[J]," Journal of Infrared Millimeter and Terahertz Waves, vol.31, no.4, pp.391-403,2010.
    [44]刘震国,葛志晨," Fabry-Perto皆振天线研究综述[J],”现代雷达,vol.31,no.9,pp.70-75,2009.
    [45]N. G. Alexopoulos, P. B. Katehi, D. B. Rutledge, "Substrate Optimization for Integrated Circuit Antennas[J]," IEEE Transactions on Microwave Theory and Techniques, vol.31, no.7, pp.550-557,1983.
    [46]D. Jackson, N. Alexopoulos, "Gain enhancement methods for printed circuit antennas[J]," IEEE Transactions on Antennas and Propagation, vol.33, no.9, pp.976-987,1985.
    [47]C. Cheype, C. Serier, M. Thevenot, et al., "An electromagnetic bandgap resonator antenna[J]," IEEE Transactions on Antennas and Propagation, vol. 50, no.9, pp.1285-1290,2002.
    [48]M. Qiu, S. L. He, "High-directivity patch antenna with both photonic bandgap substrate and photonic bandgap cover[J]," Microwave and Optical Technology Letters, vol.30, no.1, pp.41-44,2001.
    [49]Z. C. Ge, W. X. Zhang, Z. G. Liu, et al., "Broadband and high-gain printed antennas constructed from Fabry-Perot resonator structure using EBG or FSS cover[J]," Microwave and Optical Technology Letters, vol.48, no.7, pp. 1272-1274,2006.
    [50]Z. G. Liu, "Design broadband Fabry-Perot Resonator Antenna using Quasi-Periodic Structure[J]," Proceedings of the 2008 International Workshop on Metamaterials, pp.259-262,2008.
    [51]Z. G. Liu, W. X. Zhang, D. L. Fu, et al., "Broadband Fabry-Perot resonator printed antennas using FSS superstrate with dissimilar size[J]," Microwave and Optical Technology Letters, vol.50, no.6, pp.1623-1627,2008.
    [52]L. Moustafa, B. Jecko, "Broadband high gain compact resonator antennas using combined FSS[C]," IEEE Antennas and Propagation Society International Symposium, San Diego, CA,2008, pp.1301-1304.
    [53]D. Sievenpiper, L. Zhang, R. F. J. Broas, et al., "High-impedance electromagnetic surfaces with a forbidden frequency band[J]," IEEE Transactions on Microwave Theory and Techniques, vol.47, no.11, pp. 2059-2074,1999.
    [54]S. Wang, A. P. Feresidis, G. Goussetis, et al., "Low-profile resonant cavity antenna with artificial magnetic conductor ground plane[J]," Electronics Letters, vol.40, no.7, pp.405-406,2004.
    [55]S. Wang, A. P. Feresidis, G. Goussetis, et al., "Artificial magnetic conductors for low-profile resonant cavity antennas[M],2004.
    [56]A. P. Feresidis, G. Goussetis, S. H. Wang, et al., "Artificial magnetic conductor surfaces and their application to low-profile high-gain planar antennas[J]," IEEE Transactions on Antennas and Propagation, vol.53, no.1, pp.209-215,2005.
    [57]Y. Zhang, J. von Hagen, M. Younis, et al., "Planar artificial magnetic conductors and patch antennas[J]." IEEE Transactions on Antennas and Propagation, vol.51, no.10, pp.2704-2712,2003.
    [58]Z. H. Wu, W. X. Zhang, "Broadband Printed Compound Air-Fed Array Antennas[J]," IEEE Antennas and Wireless Propagation Letters, vol.9, pp. 187-190,2010.
    [59]Abdelwaheb Ourir, Andre de Lustrac, Jean-Michel Lourtioz, "All-metamaterial-based subwavelength cavities (λ/60) for ultrathin directive antennas[J]," Applied Physics Letters, vol.88, no.8, pp. 084103(084101-084103),2006.
    [60]Dan Sievenpiper, "High-impedance electromagnetic surfaces[D]," Ph.D. disertation, Dept Elect Eng, Univ. California at Los Angeles, Los Angeles, CA,1999.
    [61]S. Clavijo, R. E. Diaz, W. E. McKinzie, "Design methodology for Sievenpiper high-impedance surfaces:An artificial magnetic conductor for positive gain electrically small antennas[J]," IEEE Transactions on Antennas and Propagation, vol.51, no.10, pp.2678-2690,2003.
    [62]Thai-Hung Vu, K. Mahdjoubi, A. C. Tarot, et al., "Bandwidth Enlargement of Planar EBG Antennas[C]," Loughborough Antennas and Propagation Conference, Loughborough, UK,2007, pp.125-128.
    [63]A. P. Feresidis, J. C. Vardaxoglou, "A broadband high-gain resonant cavity antenna with single feed[C]," EuCAP 2006, Nice, France,2006, pp.1-5.
    [64]D. Kim, J. Ju, J. Choi, "A Mobile Communication Base Station Antenna using a Genetic Algorithm based Fabry-Perot Resonance Optimization[J]," IEEE Transactions on Antennas and Propagation, vol.60, no.2, pp. 1053-1058,2012.
    [65]Yuehe Ge, Esselle K. P., Bird T. S., "The Use of Simple Thin Partially Reflective Surfaces With Positive Reflection Phase Gradients to Design Wideband, Low-Profile EBG Resonator Antennas[J]," IEEE Transactions on Antennas and Propagation, vol.60, no.2, pp.743-750,2012.
    [66]L. Moustafa, B. Jecko, "EBG Structure With Wide Defect Band for Broadband Cavity Antenna Applications[J]," IEEE Antennas and Wireless Propagation Letters, vol.7, pp.693-696,2008.
    [67]R. Gardelli, M. Albani, F. Capolino, "Array thinning by using antennas in a Fabry-Perot cavity for gain enhancement J]," IEEE Transactions on Antennas and Propagation, vol.54, no.7, pp.1979-1990,2006.
    [68]A. R. Weily, K. P. Esselle, T. S. Bird, et al.. "Dual resonator 1-D EBG antenna with slot array feed for improved radiation bandwidth[J]," IET Microwaves, Antennas & Propagation, vol.1, no.1, pp.198-203,2007.
    [69]Y. Hao, A. H. Alomainy, C. G. Parini, "Antenna-beam shaping from offset defects in UC-EBG cavities[J]," Microwave and Optical Technology Letters, vol.43, no.2, pp.108-112,2004.
    [70]A. Ourir, S. N. Burokur, A. de Lustrac, "Phase-varying metamaterial for compact steerable directive antenna[J]," Electronics Letters, vol.43, no.9, pp.493-494,2007.
    [71]A. Ourir, S. N. Burokur, A. de Lustrac, "Electronically reconfigurable metamaterial for compact directive cavity antennas[J]," Electronics Letters, vol.43, no.13, pp.698-700,2007.
    [72]J.-S. Hong, M. J. Lancaster, "Microstrip filters for RF/microwave applications[M], New York, Wiley,2001.
    [73]G. L. Matthaei, L. Young, E. M. T. Jones, "Microwave filters, impedance matching networks, and coupling structures[M], Dedham, MA, Artech House, 1980.
    [74]Lei Zhu, Sheng Sun, Menzel W., "Ultra-wideband (UWB) bandpass filters using multiple-mode resonator[J]," IEEE Microwave and Wireless Components Letters, vol.15, no.11, pp.796-798,2005.
    [75]Liang Han, Ke Wu, Xiupu Zhang, "Development of Packaged Ultra-Wideband Bandpass Filters[J]," Microwave Theory and Techniques, IEEE Transactions on, vol.58, no.1, pp.220-228,2010.
    [76]Kaijun Song, Yong Fan, "Compact Ultra-Wideband Bandpass Filter Using Dual-Line Coupling Structure[J]," IEEE Microwave and Wireless Components Letters, vol.19, no.1, pp.30-32,2009.
    [77]Tsung-Nan Kuo, Shih-Cheng Lin, Chun Hsiung Chen, "Compact Ultra-Wideband Bandpass Filters Using Composite Microstrip-Coplanar-Waveguide Structure[J]," Microwave Theory and Techniques, IEEE Transactions on, vol.54, no.10, pp.3772-3778,2006.
    [78]Hang Wang, Lei Zhu, Menzel W., "Ultra-wideband bandpass filter with hybrid microstrip/CPW structure[J]," IEEE Microwave and Wireless Components Letters, vol.15, no.12, pp.844-846,2005.
    [79]Tsung-Nan Kuo, Chi-Hsueh Wang, Chun Hsiung Chen, "A Compact Ultra-Wideband Bandpass Filter Based on Split-Mode Resonator[J]," IEEE Microwave and Wireless Components Letters, vol.17, no.12, pp.852-854, 2007.
    [80]J. S. Hong, H. Shaman, "An optimum ultra-wideband microstrip filter[J]," Microwave and Optical Technology Letters, vol.47, no.3, pp.230-233, 2005.
    [81]H. Shaman, J. S. Hong, "A Novel Ultra-Wideband (UWB) Bandpass Filter (BPF) With Pairs of Transmission Zeroes[J]," IEEE Microwave and Wireless Components Letters, vol.17, no.2, pp.121-123,2007.
    [82]J. Garcia-Garcia, J. Bonache, F. Martin, "Application of Electromagnetic Bandgaps to the Design of Ultra-Wide Bandpass Filters With Good Out-of-Band Performance[J]," Microwave Theory and Techniques, IEEE Transactions on, vol.54, no.12, pp.4136-4140,2006.
    [83]Ching-Wen Tang, Ming-Guang Chen, "A Microstrip Ultra-Wideband Bandpass Filter With Cascaded Broadband Bandpass and Bandstop Filters[J]," Microwave Theory and Techniques, IEEE Transactions on, vol. 55, no.11, pp.2412-2418,2007.
    [84]W. Menzel, M. S. Rahman Tito, L. Zhu, "Low-loss ultra-wideband (UWB) filters using suspended stripline[C]," Asia-Pacific Conference Proceedings, APMC 2005, Suzhou, China,2005, pp.2148-2152.
    [85]Zhang-Cheng Hao, Jia-Sheng Hong, "Ultra-Wideband Bandpass Filter Using Multilayer Liquid-Crystal-Polymer Technology[J]," Microwave Theory and Techniques, IEEE Transactions on, vol.56, no.9, pp.2095-2100,2008.
    [86]Zhang-Cheng Hao, Jia-Sheng Hong, "Compact Wide Stopband Ultra Wideband Bandpass Filter Using Multilayer Liquid Crystal Polymer Technology[J]," IEEE Microwave and Wireless Components Letters, vol.19, no.5, pp.290-292,2009.
    [87]Zhang-Cheng Hao, Jia-Sheng Hong, "Compact UWB Filter With Double Notch-Bands Using Multilayer LCP Technology[J]," IEEE Microwave and Wireless Components Letters, vol.19, no.8, pp.500-502,2009.
    [88]S. K. Parui, S. Das, "A New Defected Ground Structure with Elliptical Band-Reject And Band Accept Filtering Characteristics[C]," Asia Pacific Microwave Conference, Bangkok, Thailand,2007, pp.534-537.
    [89]S. K. Parui, S. Das, "A novel asymmetric defected ground structure for implementation of elliptic filters[C]," IEEE MTT-S International Microwave and Optoelectronics Conference, Salvador, Brazil,2007, pp.946-949.
    [90]S. K. Parui, S. Das, "An asymmetric defected ground structure with elliptical response and its application as a lowpass filter[J]," International Journal of Electronics and Communications, vol.63, no.6, pp.483-490,2009.
    [91]C. S. Kim, J. S. Park, D. Ahn, et al., "A novel 1-D periodic defected ground structure for planar circuits[J]," IEEE Microwave and Guided Wave Letters, vol.10, no.4, pp.131-133,2000.
    [92]翁丽鸿,郭玉春,史小卫生,“缺陷地而结构的最新研究进展[J],”微波学报,vol.24 Supplement, pp.226-231,2008.
    [93]D. Ahn, J. S. Park, C. S. Kim, et al., "A design of the low-pass filter using the novel microstrip defected ground structure[J]," IEEE Transactions on Microwave Theory and Techniques, vol.49, no.1, pp.86-93,2001.
    [94]J. S. Lim, C. S. Kim, Y. T. Lee, et al., "Design of lowpass filters using defected ground structure and compensated microstrip line[J]," Electronics Letters, vol.38, no.22, pp.1357-1358,2002.
    [95]Shu-Hong Fu, Chuang-Ming Tong, Kai Shen, "An improved asymmetric defected ground structure cell and its application to lowpass filter[J]," Microwave and Optical Technology Letters, vol.51, no.12, pp.2933-2935, 2009.
    [96]A. P. Feresidis, J. C. Vardaxoglou, "High gain planar antenna using optimised partially reflective surfaces[J]," IEE Proc-Microwaves, Antennas and Propagation, vol.148, no.6, pp.345-350,2001.
    [97]H. Boutayeb, K. Mahdjoubi, A. C. Tarot, et al., "Directivity of an antenna embedded inside a Fabry-Perot cavity:Analysis and design[J]," Microwave and Optical Technology Letters, vol.48, no.1, pp.12-17,2006.
    [98]H. Boutayeb, A. Denidni T., M. Nedil, "Bandwidth widening techniques for directive antennas based on partially reflecting surfaces[J]," Progress in Electromagnetics Research-PIER, vol.74, pp.407-419,2007.
    [99]M. Thevenot, C. Cheype, A. Reineix, et al., "Directive photonic-bandgap antennas[J]," IEEE Transactions on Microwave Theory and Techniques, vol. 47, no.11, pp.2115-2122,1999.
    [100]Young Ju Lee, Junho Yeo, R. Mittra, et al., "Application of electromagnetic bandgap (EBG) superstrates with controllable defects for a class of patch antennas as spatial angular filters[J]," IEEE Transactions on Antennas and Propagation, vol.53, no.1, pp.224-235,2005.
    [101]H. Yang, N. Alexopoulos, "Gain enhancement methods for printed circuit antennas through multiple superstrates[J]," IEEE Transactions on Antennas and Propagation, vol.35, no.7, pp.860-863,1987.
    [102]N. Alexopoulos, D. Jackson, "Fundamental superstrate (cover) effects on printed circuit antennas[J]," IEEE Transactions on Antennas and Propagation, vol.32, no.8, pp.807-816,1984.
    [103]R. Jackson D., A. Oliner A., A. Ip, "Leaky-wave propagation and radiation for a narrow-beam multiple-layer dielectric structure [J]," IEEE Transactions on Antennas and Propagation, vol.41, no.3, pp.344-348,1993.
    [104]R. Jackson D., A. Oliner A., "A leaky-wave analysis of the high-gain printed antenna configuration[J]," IEEE Transactions on Antennas and Propagation, vol.36, no.7, pp.905-910,1988.
    [105]Tianxia Zhao, Jackson D. R., Williams J. T., "2-D periodic leaky-wave Antennas-part II:slot design[J]," IEEE Transactions on Antennas and Propagation, vol.53, no.11, pp.3515-3524,2005.
    [106]Tianxia Zhao, Jackson D. R., Williams J. T., et al., "2-D periodic leaky-wave antennas-part I:metal patch design[J]," IEEE Transactions on Antennas and Propagation, vol.53, no.11, pp.3505-3514,2005.
    [107]S. Ramo, J. Whinnery, T. Van Duzer, "Fields and waves in communication electronics[M]",2nd ed., New York, Wiley,1984.
    [108]R. Collin, "Field theory of guided waves[M]",2nd ed., New York, IEEE Press,1991.
    [109]R. Elliott, "On the theory of corrugated plane surfaces[J]," IRE Transactions on Antennas and Propagation, vol.2, no.2, pp.71-81,1954.
    [110]L. Zhou, H. Q. Li, Y. Q. Qin, et al.. "Directive emissions from subwavelength metamaterial-based cavities[J]," Applied Physics Letters, vol. 86, no.10,2005.
    [111]Bo Zhu, Zhi Ning Chen, Yijun Feng, "Fully substrate-integrated high-gain thin Fabry-Perot cavity antennas[C]," Asia-Pacific Microwave Conference, Melbourne, Australia,2011, pp.602-605.
    [112]Y. Sun, Z. N. Chen, Y. Zhang, et al., "Sub-wavelength Substrate-Integrated Fabry-Perot Cavity Antennas Using Artificial Magnetic Conductor [J]," IEEE Transactions on Antennas and Propagation, vol.60, no.1, pp.30-35,2012.
    [113]Li Yan, Wei Hong, Guang Hua, et al.. "Simulation and experiment on SIW slot array antennas[J]," IEEE Microwave and Wireless Components Letters, vol.14, no.9, pp.446-448,2004.
    [114]J. F. Xu, W. Hong, P. Chen, et al., "Design and implementation of low sidelobe substrate integrated waveguide longitudinal slot array antennas[J],' IET Microwaves Antennas & Propagation, vol.3, no.5, pp.790-797,2009.
    [115]S. Cheng, H. Yousef, H. Kratz, "79 GHz Slot Antennas Based on Substrate Integrated Waveguides (SIW) in a Flexible Printed Circuit Board[J]," IEEE Transactions on Antennas and Propagation, vol.57, no.1, pp.64-71,2009.
    [116]M. Bailey, "Design of dielectric-covered resonant slots in a rectangular waveguide[J]," IEEE Transactions on Antennas and Propagation, vol.15, no. 5, pp.594-598,1967.
    [117]M. Bailey, "The impedance properties of dielectric-covered narrow radiating slots in the broad face of a rectangular waveguide[J]," IEEE Transactions on Antennas and Propagation, vol.18, no.5, pp.596-603,1970.
    [118]P. B. Katehi, "Dielectric-covered waveguide longitudinal slots with finite wall thickness[J]," IEEE Transactions on Antennas and Propagation, vol.38, no.7, pp.1039-1045,1990.
    [119]G. A. Casula, G. Montisci, "Design of Dielectric-Covered Planar Arrays of Longitudinal Slots[J]," IEEE Antennas and Wireless Propagation Letters, vol. 8, pp.752-755,2009.
    [120]Ji-Hwan Hwang, Yisok Oh, "Millimeter-Wave Waveguide Slot-Array Antenna Covered by a Dielectric Slab and Arrayed Patches[J]," IEEE Antennas and Wireless Propagation Letters, vol.8, pp.1050-1053,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700