复杂流动下泥沙起动机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
泥沙起动是泥沙运动理论中最基本的问题之一,也是研究泥沙输运及局部冲刷时必需解决的问题。长期以来,人们在泥沙起动方面做了大量研究,但这些工作主要是针对槽道流动进行的。本文以后台阶下游床面泥沙起动问题为对象,研究了复杂流动下泥沙的起动机理。
     进行了低湍流水洞物理模型试验,研究了三种不同工况下的瞬态流场结构。根据PIV的测量结果给出了后台阶下游流场演化过程,通过对试验数据的统计平均分析,得到了再附点的位置、平均速度场及均方根速度场。
     采用大涡模拟数值方法对后台阶流的瞬时流场进行数值模拟研究。数值模拟和实验结果符合较好。实验和计算结果表明,在再附点附近平均流速虽然很低,但是脉动速度比较大。在回流区,随着距台阶距离的增大,压强梯度将增大。再附点处压强梯度达到最大值,然后迅速减小,在再附点下游变化不大。
     为定量研究泥沙起动问题,本文提出一种泥沙起动概率的图像测量方法,分别测量槽道流动和后台阶流动下泥沙的起动概率。由槽道流动的测量结果可知摩阻流速越大,泥沙起动概率越大,摩阻流速的大小是诱发泥沙起动的最主要的因素。而在后台阶流动中,泥沙起动概率最大的位置在平均摩阻流速为0的再附点处,这是由于再附区复杂的流动所引起,为了证实这一点,本文观测记录了不同工况条件下后台阶下游泥沙床面冲刷演化过程,得到冲刷最厉害的位置和泥沙起动概率最大的位置是一致的,都处于再附点附近。
     研究了复杂流动下,渗流对泥沙起动的影响。发现有渗流作用比无渗流条件下的泥沙起动概率要高出50%。
As one of the most basic problems in the sediment transport theory, the mechanism of the sediment incipience is also needed to be understood for the study of local scouring process.Critical incipient conditions for sediment motion have been studied extensively in the past years.While those works are mainly focused on the channel flows. The sediment incipience downstream of the backward-facing step flow is chosen to study the sediment incipient mechanism under complex flow in this paper. A series of experiments were conducted in the low-turbulence tunnel and the flow structures under three different conditions were studied. The evolution of the flow field downstream of the backward-facing step is obtained by the PIV measurement. The location of reattachment point, mean velocity profile and the root-mean-square fluctuant velocity were presented by the statistical analysis of the experimental data.
     The instantaneous flow fields downstream the backward-facing step were studied numerically by the large-eddy simulation method. The simulated results agree well with the experiment, which shows the lower mean velocity and the higher root-mean-square fluctuant velocity near the reattachment point. In the recirculation zone, with increasing distance from the step, the pressure gradient increases. The maximum value of the pressure gradient occurs at the reattachment point. The pressure gradient downstream of reattachment point almost becomes a constant, which is much lower than that at the reattachment point.
     An image process method was presented to measure the probability of sediment incipience quantitatively. The sediment incipient probability under the channel flows and the backward-facing step flows are measured. The measurement of sediment incipience under the channel flow shows that friction velocity is the most important mechanism contributed to the sediment incipience and the probability of sediment incipience increases with increasing friction velocity. For the backward-facing step flows, the largest sediment incipient probability occurs at the reattachment point, where the mean friction velocity is zero. In this paper, a series of experiment about the evolution of sediment bed in the backward-facing step flows were conducted in order to confirm the effects of complex flows on sediment incipience. Both the most serious erosion and the largest probability of sediment incipience occur at the location near the reattachment point.
     The effects of the seepage on the sediment incipience under complex flows are also studied. It is found that the probability of the sediment incipience with considering the seepage is 50% higher than that without considering the seepage.
引文
[1] Murillo J A. The scourge of sour [J], Civ Engrg ,1987 July:64-69
    [2] Chang H H. Fluvial processes in river engineering[J], John Wiley and Sons,New York, 1988:1443-1456
    [3] Morris J L,Pagan-Ortiz J E. Bridge scour evaluation program in the United Sta- tes[C].Proceedings of the 27th IAHR Congress,SanFrancisco,ThemeA: 110- 115
    [4] Ballio F etal.Vulnerabilit idraulica di ponti fluviali.Atti del[C]. XXVI Convegno Nazionale di Idraulicae Costruzioni I Idrauliche,1998,Catani 9-12 Settembre
    [5] Yeo W K. Field investigation of bridge scours in Korea[C],3rd International Conference on Hydroscience and Engineering ICHE’98, 1998,Cottbus 31 Agosto Settembre
    [6]詹磊,董耀华,惠晓晓.桥墩局部冲刷研究综述[J],水利电力科技.2007, 33(3):1-13
    [7] Richardson E V.Bridge scour evaluation in the United States[C]. Scour of found- ations, Proc Inter Symposium by proc Society of Soil Mechanics and Geotechni- cal Eng, Technical committee TC-33 on Scour of foundations, Australia,2000: 230- 264
    [8] Kuehn D M. Some effects of adverse pressure gradient on the incompressible reattaching flow over a rearward-facing step[J], AIAAJ, 1980,18:343-344
    [9] Durst F, Tropea C. Turbulent backward-facing step flows in two-dimentsional ducts and channels[C], In Proc 3rd Intl Symp on Turbulent Shear Flows. University of California, Davis,1981:18.1-18.5
    [10] Ra S H, Chang P K. Effects of pressure gradient on reattaching flow downstream of a rearward-facing step[J], Aircraft, 1990,27:93-95
    [11] Chen Y T, Nie J H, Armaly B F, Hsieh H T. Turbulent separated convection flow adjacent to backward-facing step——effects of step height[J]. International Journal of Heat and Mass Transfer. 2006,49: 3670-3680
    [12] Armaly B F etal. Experimental and theoretical investigation of backward-facing step[J], Fluid Mech, 1983,127:473-496
    [13] Isomoto K, Honami S. The effect of inlet turbulence intensity on the reattachme- nt process over a backward-facing step[J], Fluids Engrg, ASME, 1989, 111:87-92
    [14] Eaton J K, Johnston J P. Turbulent flow Reattachment: An experiment study of the flow and structure behind a backward facing step[R], Standford Univ. Rept.,1980 ,MD-39
    [15] Makoto OKI, Toshifumi IWASAWA. Numerical Simulation without turbulence model for backward-facing step flow[J], JSME international Journal Series B, 1993, 36:577-583
    [16] Jovic S, Driver D M. Backward-facing step measurement at low Reynolds number,Reh=5000[R], NASA Tech Mem,1994:108807
    [17] Jovic S, Driver D M. Reynolds number effects on the skin friction in separated flows behind a backward facing step[J], Exp in Fluids, 1995,18:464-467
    [18] Friedrich R, Arnal M. Analysing turbulent backward-facing step flow with the lowpass-filtered Navier-Stokes equations[J], Wind Engrg Indust Aerodyn, 1990,35:101-128
    [19] Le H, Moin P and Kim J. Direct numerical simulation of turbulent flow over a backward-facing step[J], Fluid Mech, 1997, 330:349-374
    [20]钱宁,万兆惠.泥沙运动力学[M],科学出版社, 2003
    [21]王协康,敖汝庄,方铎.泥沙起动条件及机理的非线性研究[J].长江科学院院报.1999,16(4):39-45
    [22] Shields A. Anwendung der Aechlichkeitsmechanik undder Turbulenz for schung auf die Geschiebewegung [J] ,Mitt. Preussische Versuchsanstalt fur Wasserbau- und Schiffbau, Berlin, 1936
    [23] Kramer H. Sand mixtures and movement in fluvial models[J]. Trans Amer Soc Civil Engrs.1935,100:798-838.
    [24]胡春宏.关于泥沙运动基本概率的研究[J],水科学进展.1998,9(1):15-21.
    [25] Yalin M S. Mechanics of Sediment Transport[M], 2nd Edition.Pergamon Press, 1972
    [26] Rijn L C V. Sediment Transport, Part III: Bed forms and alluvial roughness[J]. Hydr Engrg , ASCE, 1984, 110(12): 1733-1754
    [27] Taylor B D. Temperature Effects in Alluvial Streams[R], Repprt KH-R-2T. W M Keck Lat of Hyd and Water Resources, Calif Inst Tech, 1971
    [28] Einstein H A. The bed-load function for sediment transportation in open channel flow[R]. US Dept Agric Tech Bulletin No 1026,1950
    [29]窦国仁.泥沙运动理论[M],南京水利科学研究所,1963
    [30] Gessler J. Critical shear stress for sediment mixtures[C]. Proc 14th Cong Int Assoc Hyd Res, 1971,3:1-8
    [31] Paintal A S. A Stochastic Model of Bed Load Transport [J]. Hyd Res. 1971, 9(4):527-554
    [32]韩其为,何明民.泥沙运动统计理论[M],科学出版社, 1984
    [33] Yalin M S, E Karahan. Inception of Sediment Transport[R], J.Hyd. Div., Proc., Amer. Soc. Civil Engrs. 1979,105(11):1433-1443
    [34] Chepil W S, N P Woodruff. The Physics of Wind Erosion and Its Control[J], Advances in Agro., 1963,15:422-428
    [35] Schoklitsch R A. Der Geschiebetrieb unddie Geschie befracht[J],Wasserkraft und Wasserwirtschaft.1934, 29(4):37-43
    [36] Dou X B,Jones J S,Young G K,Stein S M. Using a 3-D model to predict local scour caused by turbulent flows[J]. Computational physics, 1996,125:71-82
    [37] Cheng N S,Chiew Y M. Incipient sediment motion with upward seepage[J]. Jou- rnal of Hydraulic Research, 1999,37(5): 665-681
    [38] Yen C L,Lai J S,Chang W Y. Modeling of 3D flow and scouring around circular piers[J]. Pro Natl Sci Counc ROC,2001,25(1):17-26
    [39] Jia Y F, Kitamura T, Wang S S Y. Simulation of scour process in plunging pool of loose bed-material. Hydr Engrg[J], ASCE, 2001,127(3):219-229
    [40]刘春嵘.复杂流动下底床局部冲刷实验和数值模拟研究[D].中国科学院研究生院博士学位论文,2003
    [41]赵威.圆柱绕流局部冲刷及其机理实验与大涡模拟研究[D].中国科学院研究生院博士学位论文,2006.
    [42]康琦,申功炘.全场测速技术进展[J],力学进展,1997,27(1):106-117
    [43]盛森芝,徐月亭,袁辉靖.近十年来流动测量技术的新发展[J],力学与实践.2002,24(5):1-13
    [44] Halliwell N A, Pickering C J D. Speckle photography in fluid flows:Signal recovery with two-step processing[J].Appl Opt,1984,23:1129
    [45] Adrican R J. Scattering particle characteristics and their effect on pulsed laser measurements of fluid flow:speckle velocimetry vs.particle image velocimetry [J].Appl Opt, 1984,23:1690-1691
    [46] Brand A J.Auto-correlation measurements in three-dimensional fluid flow datasets [J].Exp in fluids,1990,10:55-59
    [47] Willert C E,Gharib M. Digital particle image velocimetry[J].Exp in fluids,1991, 10:181-193
    [48] Yamamoto F, Wada A, Iguchi M, Ishikawa M. Discussion of the cross-correlation methods for PIV[J].Flow Visualization Image Procceing,1996:65-78
    [49] Shen G X.Some recent advancement on PIV in BUAA[C].The 6th Asian symposium on visualization,Pusan, 2001:417-422
    [50] Cowen E A,Monismith S G. Digital Particle Tracking velocimetry[C],Environm -ental and coastal Hydraulics-27th cogress of international Association for Hydraulic Research, 1997,1:119-124
    [51]郝鹏飞,韩标等.基于PIV的PTV诊断方法[C],第四届全国流动显示学术会议论文集,桂林,1999:153-159
    [52] Ishikawa M, Murai Y, Wada A, Lguchi M, Okamoto K, Yamamoto F. A novel algo- rithm for particle tracking velocimetry using the velocity gradient tensor[J], Exp in Fluids, 2000, 29:519-531
    [53]刘春嵘,呼和敖德,唐驰.PIV技术在大型物模实验流场测速中的应用[C].第四届全国流动显示学术会议论文集.桂林,1999
    [54] Huhe A D, Liu C R. Application of PTV and grey-scale technique to a study on sediment incipience in homogenous turbulence[C].The 6th Asian symposiumon visualization,2001,417-422
    [55]魏润杰等.粒子图像分析系统MicroVec使用手册[P],北京立方天地科技发展有限责任公司.2007
    [56]禹明忠,王兴奎,庞东明,王殿常.PIV流场测量中图像变形的修正[J],泥沙研究.2001,10(5):58-66
    [57]窦国仁.再论泥沙起动流速[J].泥沙研究, 1999, (6):1-9
    [58] Landau L D, Lifshitz E M. Fluid Mechanics[M], Pergamon press.1987.
    [59] Shah D A., Antonia R A.Scaling of the bursting period in turbulent boundary layer and duct flows[J], Phys. Fluids A,1989, 1(2):318-325
    [60]王煦法,庄镇泉,王东生.C语言图像处理程序设计[M].中国科学技术大学出版社, 1994: 98-103
    [61]苑莲菊,李振栓,武胜忠,杨展,赵志怀.工程渗流力学及应用[M].中国建材工业出版社,2001:1-22

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700