差分式电流控制电流传输器设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要研究了差分式电流控制电流传输器的原理及设计方法。首先介绍了电流模式电路的发展现状及其特点,并与传统电压模式电路做了简单的比较;然后介绍了电流模式电路的基本模块-电流传输器的发展历程、原理及性能。在阅读了大量电流模式电路及电流传输器文献的基础上,结合国家自然科学基金项目(新型差分式电流传输器及其构成的电流模式连续时间滤波器NO.60676021),首次提出了全差分式电流控制电流传输器(FDCCCII)和全平衡差分式电流控制电流传输器(CFBCCII)两种新型电路;然后分别以提出的FDCCCII和CFBCCII电路为基本单元,设计了两种新型滤波器;最后对提出的CFBCCII电路和由其构成的滤波器利用Cadence进行了版图设计,采用Hspice进行了前仿真、后仿真,并参加了上海集成电路设计中心(ICC)的多项目晶圆计划(MPW)采用Chartered 0.35μm工艺去新加坡进行了流片实验。本文的主要创新工作如下:
     (1)提出了一种新型全差分式电流控制电流传输器(FDCCCII)。提出的电路采用差分式输入、输出电路结构,具有较强的共模信号和偶次谐波抑制能力;引入了双极性BJT跨导线性环,因而该电路端口电阻具有可控性;提出的电路既具有BJT速度快的特点又具备了CMOS功耗低的优势,可用BiCMOS工艺实现;最后利用Pspice采用0.5μm工艺进行了仿真,验证了提出的电路的可靠性。
     (2)提出了一种新型全平衡差分式电流控制电流传输器(CFBCCII)。提出的电路采用全平衡差分式输入输出,电路结构严格对称,同时引入了共模反馈电路,因此,具有极强的共模信号和偶次谐波抑制能力;该电路采用并行MOS跨导结构电压传送电路,从而具有端口可控性,并且消除了传统CCCII电路中MOS管尺寸严格匹配而工艺上难实现的缺陷;提出的电路全部由MOS管构成,电路功耗很低,可用CMOS工艺轻松实现集成,最后利用Hspice采用Chartered 0.35μm工艺完成了仿真,并参加ICC的MPW计划进行了流片实验。
     (3)分别基于提出的电路提出了两种新型有源滤波器。基于FDCCCII电路设计了一个差分式滤波器,其Q、?均可独立可调,并利用Pspice采用0.5μm工艺进行了仿真验证;基于CFBCCII电路提出了一个仅有一个CFBCCII模块及两个接地电容构成的滤波器,?独立可调,结构简单,易于集成,利用Hspice进行了仿真验证,最后采用Chartered 0.35μm工艺成功地进行了流片实验。
The thesis mainly studies the principle, design and methods of differential current controlled current conveyors. Firstly, it introduces the development and character of the current-mode circuit, and compares current-mode circuit with voltage-mode circuit simply. Afterwards, the development and character of the basic models of current mode circuits-current conveyors are introduced. Then, a new fully differential current controlled current conveyor(FDCCCII) and a new current controlled fully balanced current conveyor(CFBCCII) are firstly proposed after reading a lot of papers about current conveyors and combining with the project supported by National Natural Science Foundation of China (No. 60676021). Then, two new current mode active filters are brought forward on the base of the proposed circuit models. At last, the CFBCCII and the relative filter circuits are simulated by Hspice in order to verify the reliability, then the layouts of all the circuits are designed with Cadence. At last, the chips are taped out successfully in Singapore with the plan of MPW offered by ICC. The main contents are as follows:
     (1) A new fully differential current controlled current conveyor is presented in this paper. The proposed circuit is well capable of eliminating the common mode (CM) signals because of the differential input and output configurations, and the port parasitic resistor is controllable with using the bipolar junction transistor (BJT) translinear loop configuration. The proposed circuit owns the advantages of high speed and low power energy because of the characters of the BJT and MOS devices, which is able to be realized by BiCMOS technology. At last, the circuit is simulated by Pspice with 0.5μm technology in order to verify the reliability.
     (2) A new current controlled fully balanced current conveyor is presented in this paper. The proposed circuit can eliminate the common mode (CM) signals very strongly with the differential input, strictly symmetrical and CMFB circuit configurations. The port resistor is controllable because of the using of the parallel MOS transistor configuration.Moreover,the circuit eliminates the rigor MOS size condition of traditional CCCII circuit, therefore it is easy to be realized .Othermore, it’s also easy to be integrated for that there are only MOS devices in this circuit. At last, the circuit is simulated by Hspice in order to verify the reliability of the circuit, and the chip is taped out successfully with the Chartered 0.35μm technology with the plan of MPW offered by ICC.
     (3) Two new active filters are presented on the base of the above proposed circuits. A new differential active filter with the controllable Q and ? is presented based on the FDCCCII circuit,and the filter circuit is simulated by Pspice in order to verify the reliability of the circuit; Another new active filter composed of only one CFBCCII and two grounded capacitors with the controllable ? is also presented based on the CFBCCII circuit, which is easy to integrate because of the simple circuit configuration, and the circuit is simulated by Hspice in order to verify the reliability of the circuit.At last, the circuit is taped out successfully with Chartered 0.35μm technology.
引文
[1]赵玉山,周跃平,王萍.电流模式电路.天津:天津大学出版社, 2001, 1-86
    [2] K.C.Smith, A.Sedra. The current conveyor: a new circuit building block. IEEE Proceedings,1968, 56(8): 1368-1369
    [3] Senani, R. Floating immitance realisation: nullor approach. Electronics Letters, 1988, 24(7): 403-405
    [4] A.S. Sedra, G.W.Roberts, F.Gohn. The current conveyor: history, progress and new results. IEE Proceedings on Circuits, Devices and Systems, 1990, 137(2): 78-87
    [5] B.Wilson. Recent developments in current conveyors and current-mode circuits. IEE Proceedings on Circuits, Devices and Systems, 1990, 137(2): 63-77
    [6] A.S.Sedra, K.C.Smith. A second generation current conveyor and its applications. IEEE Transactions on Circuit Theory, 1970,17(1): 132-134
    [7]王萍,赵玉山. CCII01型电流传输器.电子技术应用, 1996, 4(2):43-44
    [8] W.Surakampontorn, V.Riewruja, K.Kumwachara, et al. Accurate CMOS-based current conveyors. IEEE Transactions on Instrumentation and Measurement, 1991,40(4): 699-702
    [9]王春华,沈光地. MOCCII的电路实现.电子测量与仪器学报, 2003, 17(3): 22-26
    [10]王春华,沈光地.跨导线性MOCCII电路实现.电路与系统学报, 2003, 8(6): 87-90
    [11] H.O.Elwan, A.M.Solimn. Novel CMOS differential voltage current conveyor and its applications. IEE Proceeding on Circuits, Devices and Systems, 1997, 144(3): 195-200
    [12] Jianping Hu, Tiefeng Xu, Weiqiang Zhang, et al. A CMOS rail-rail differential voltage current conveyor and its application. In: IEEE International Conference on Commnications, Circuits and Systems, Hongkong,2005, 1079-1083
    [13] Hussain A. Alzaher, Hssan Elwan, Mohammed Ismail. A CMOS fully balanced second-generation current conveyor. IEEE Transaction on Circuits and Systems II, 2003, 50(6): 278-287
    [14] H.A. Alzaher, H.O.Elwan, M.Ismail. CMOS fully differential second generation current conveyor. Electronics Letters, 2000, 36(13): 1095-1096
    [15] A.Fabre. Third-generation current conveyor: a new helpful active element.Electronics Letters, 1995, 31(5): 338-339
    [16] L.Lattenberg, K.Vrba, T.Dostal. Bipolar CCIII+ and CCIII-conveyors and their current mode-filter application. In: Fourth IEEE International Caracas Conference on Devices, Circuits and Systems, Aruba, 2002,C036/1- C036/4
    [17] A.Piovaccari. CMOS integrated third-generation current conveyor. Electronics Letters, 1995, 31(15): 1228-1229
    [18] Minaei S, Cicekoglu O, Kuntman H, et al. High output impedance current-mode lowpass, bandpass and highpass filters using current controlled conveyors. International Journal of Electronics, 2001, 88(8): 915-922
    [19] A.Fabre, O.Saaid, F.Wiest, et al. High frequency applications based on a new current controlled conveyor. IEEE Transaction on Circuits and Systems-I: Fundamental Theory and applications, 1996, 43(2): 82-91
    [20] B. Gilbert. Translinear circuits: A proposed classification. Electronics Letters, 1975, 11(1): 14-16
    [21] Rafael Vargas-Bernl, Arturo Sarmiento-Reyes, Wouter A.Serdijn. Identifying translinear loops in the circuit topology.In: IEEE international Symposium on Circuits and Systems, Geneva, Switzerland, 2000,II/585-II/587
    [22] Evert Seevinck, Eric A.Vittoz, Wikus Beetge, et al. CMOS translinear circuits for minimum supply voltage. IEEE Transaction on Circuits and Systems-II: Analog and Digital Signal Processing, 2000, 47(12): 1560-1564
    [23] Alain Fabre, Omar Saaid, Francis Wiest, et al. High-frequency high-Q BiCMOS current-mode band filter and mobile communication application. IEEE Journal of Solid-State Circuits, 1998, 33(4): 614-625
    [24]凌燮亭,秦巍,胡波. CMOS电流控制电流转换器及其应用.电子学报,1999, 27(8): 34-37
    [25]焦李成.电流模式模拟信号处理的进展展望.电子学报, 1992, 20(7): 87-92
    [26]何怡刚,江金光,吴杰等.通用有源电流模式滤波器.电子学报, 1999, 27(11): 21-23
    [27]王春华,闫健卓,沈光地.基于MOCCII的多环反馈电流模式滤波器的系统设计.通信学报, 2002, 23(4): 11-16
    [28]刘崇新. MOSFET-C滤波电路TT平衡结构的CCII±实现及仿真.通信学报, 1994, 15(6): 113-117
    [29] Khan A, Bimal S, Dey K. Novel RC sinusoidal oscillator using second generation current conveyor. IEEE Transactions on Instrumentation and Measurement, 2005, 54(6): 2402-2406
    [30] Chiu W,Liu S I, Tsao H W,et al. CMOS differential difference current conveyors and their applications. IEE Proceedings on Circuits, Devices and Systems, 1996, 43(2): 91-96
    [31]石文孝,韩庆全.基于多输出端差动差分电流传送器调耦结构滤波器.通信学报, 2000, 21(12): 30-35
    [32] Elwan H O, Soliman A M. Novel CMOS differential voltage current conveyor and its applications. IEE Proceedings on Circuits, Devices and Systems, 1997, 144(3): 195-200
    [33] Ei-Adawy A A, Soliman A M, Elwan H O. A novel fully differential current conveyor and applications for analog VLSI. IEEE Transaction on circuits and systems-II: Analog and digital signal processing, 2000, 47(4): 306-313
    [34] Allzaher H A,Elwan H O,Ismail M. CMOS fully differential second-generation current conveyor. Electronics Letters, 2000, 36(13): 1095-1096
    [35] Alzaher H A. CMOS highly linear fully differential current conveyor. Electronics Letters, 2004, 40(4): 214-216
    [36] Alzaher H A, Elwan H O,Ismail M. A CMOS fully balanced second-generation current conveyor. IEEE Transaction on circuits and systems-II: Analog and digital signal processing,2003,50(6): 278-287
    [37] Wang Chunhua,Li Jin. A CMOS differential current-controlled second generation current conveyor. In: 2005 6th International Conference on ASIC Proceedings, Shanghai, 2005, 447-450
    [38] Wang Chunhua,Li Jin,Zhang Qiujing, et al. A new differential current-controlled current conveyor and its differential ladder current-controlled current-mode filter. In: Proceeding of 2007 International Workshop on Electro Devices and Semiconductor Technology,Beijing, 2007, 198-201
    [39] Andrea De Marcellis, Giuseppe Ferri, Nicola Carlo Guerrini,et al. A novel low- voltage low-power fully differential voltage and current gained CCII for floating impedance simulations.Int.J.Electron.Commun.(AEU),2009,40(1): 20-25
    [40] Wang Chunhua, She Zhixing, Liu Haiguang. New CMOS current-controlled second generation current conveyors. In: IEEE 2008 International Conference on Circuits and Systems for Communications, Shanghai,2008, 333-337
    [41]王春华,王仕果,许海霞等.基于MOCCCII电流模式二阶滤波器的结构化设计.云南大学学报(自然科学版),2005,27(4): 294-299
    [42] Barthelemy H, Fabre A. A second generation current-controlled conveyor with negative intrinsic resistance. IEEE Trans CAS,2002,49(1): 63-65
    [43]方维.基于CCCII的电流模式多功能双二次滤波器.电子与信息学报, 2001, 23(10): 98-101
    [44]李志军,王春华,王仕果等.基于MOCCCII-C的双二阶电流模式滤波器.电路与系统学报, 2006, 11(2): 107-109
    [45]刘海文,李征帆.基于MOCCII多功能滤波器的设计.电路与系统学报,2002,7(4): 22-25
    [46] Gunes E O, Toker A, Ozoguz S. Insentive current-mode universal filter with minimum components using dual-output current conveyors. Electronics Letters, 1999, 35(7): 524-525
    [47] Minaei S, Türk?z S. New current-mode current-controlled universal filter with single input and three outputs. International Journal of Electronics, 2001, 88(3): 333-337
    [48]郭静波,王赞基,戴逸松等.基于MCCII的差分式电流模式连续时间滤波器.通信学报, 1997, 18(6): 59-63
    [49]王春华,曹捷,李仁发.基于MOCCII差分式二阶电流模式滤波器.电路与系统学报, 2005,10(6): 143-146
    [50] H.EI Ghitani. A 2.2-V BiCMOS controlled current conveyor and high- Q current-mode band-bass filter application. In: Seventeenth National Radio Science Conference, Egypt, 2000,C15/1-C15/7
    [51] Hung-Yu Wang, Ching-Ting Lee. Versatile insensitive current-mode universal biquad implementation using current conveyors. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 2001,48(4): 409-413
    [52] C.M. Chang, B.M. Al-Hashimi, C.L. Wang, et al. Single fully differential current conveyor biquad filters. IEE Proceedings on Circuits, Devices and Systems, 2003, 150(5): 394-398
    [53] Behzad Razavi.模拟CMOS集成电路设计.陈贵灿,程军,张瑞智译.西安:西安交通大学出版社,2002,517-552
    [54] Christopher Saint,Judy Saint.集成电路掩模设计-基础版图技术.周润德译.北京:清华大学出版社,2006,48-180
    [55] Lee Eng Han, Valerio B. Perez, Mark Lambert Cayanes,et al. CMOS Transistor Layout KungFu. http://www.eda-utilities.com/, 2006-2-14
    [56] Alan Hastings.模拟电路版图艺术.王志功,沈永朝译.北京:清华大学出版社,2007,1-505
    [57] F.Seguim, A.Fabre. 2GHz controlled current conveyor in standard 0.8μm BiCMOS technology. Electronics Letters, 2001, 37(6): 329-330
    [58] H.Barthelemy, A.Faber. A second generation current-controlled conveyor with negative intrinsic resistance. IEEE transactions on Circuits and Systems-I: Foundational Theory and Applications, 2002, 49(1): 63-65
    [59] S.Minaei, D.Kaymak, M.Ibrahim, et al. New CMOS configuration for current controlled conveyor (CCCIIs). In: 1st IEEE International Conference Circuits and Systems for Communications, St.Petersburg, 2002,62-65
    [60] Seyed Jvad Azhari, Hossien Fazllipoor.A Novel Current Mode Instrumentation Amplifier(CMIA)Topology. IEEE Transactions on Instrumentation and Measurement,2000, 49(6): 1272-1277
    [61] El Feki, Nadhmia Bouaziz, Masmoudi, et al.High performance dual-output second and third generation current conveyors and current-mode multifunction filter application, In: 6th International Multi-Conference on Systems,Signals and Devices, Tunisia,2009,1-6
    [62] S.M.Al-Shahrani, M.A.Al-Absi. New realization of CMOS current controlled conveyors with variable current and negative input resistance. In: Proceedings of the 46th IEEE International Midwest Symposium on Circuits and Systems, Cairo,2003, 43-46
    [63] F.Seguin, B.Godara, F.Alicalapa, et al. 2.2 GHz all-n-p-n second-generation controlled conveyor in pseudo-class AB using 0.8-μm BiCMOS technology. IEEE Transactions on Circuits and Systems-II: Express Briefs, 2004, 51(7): 369-373
    [64] Wang Chunhua, Zhang Qiujing, Yang Wei. A second current controlled current conveyor realization using Wilson current mirrors. International Journal of Electronics, 2007, 94(7): 699-706
    [65] Evert Seevinck, Roelof F.Wassanaar. A versatile CMOS linear transductor square-law function circuit. IEEE Journal of Solid-State Circuits, 1987, SC-22(3): 366-367
    [66] Sinem ?tayfun, Sel?kK?l?n?. A new electronically tunable phase shifter employing current-controlled current conveyors.Int.J.Electron.Commun.(AEU), 2008, 62(3): 228-231
    [67]石文孝,王树勋,韩庆全.高输出阻抗多功能电流模式双二阶滤波器.通信学报,2004,25(6): 95-101
    [68]王春华,沈光地,徐晨等.用CCII回转器实现梯形结构电流模式滤波器.电子与信息学报, 2001, 23(5): 516-520
    [69] HuaPin Chen,SungShiou Shen, Jenn-Pyng Wang. Electronically tunable versatileversatile voltage-mode universal filter. Int .J. Electron.Commun.(AEU),2008,62 (4): 316-319
    [70] Shaharm Minaei, Oguzhan,Sait turkoz. High output impedance current mode low-pass, band-pass, and high-pass filters using current controlled conveyors. International Journal of Electronics,2001, 88(8): 915-922
    [71] Hua-Pin Chen. Versatile universal voltage-mode filter employing DDCCs. Int. J Electron .Commun .(AEU), 2009, 63(1): 78-82
    [72] Christian Falconi,Giuseppe Ferri,Vincenzo Stornelli.Current-mode high accuracy high precision CMOS amplifiers.IEEE Transactions on Circuits and systems, 2008,55(5): 394-398
    [73] Shahram M, Sait T. New current-mode current-controlled universal filter with single input and three outputs. International Journal of Electronics, 2001, 88(3): 333-337
    [74] Mustafa Altun, Hakan Kuntman. Design of a fully differential current mode operational amplifier with improved input–output impedances and its filter applications. Int. J. Electron .Commun. (AEU),2008,62(3): 239-244
    [75] Montree Siripruchyanun,Winai Jaikla. CMOS current-controlled current differencing transconductance amplifier and applications to analog signal processing. Int .J. Electron .Commun .(AEU),2008,62(4): 277-287
    [76] Niwat Jangsamsi, Tattaya Pukklanun, Worapong Tangsrirat. CCCII-based high- output impedance current-mode universal filter employing only grounded capacitors. In:SICE-ICASE International Joint Conference, Korea, 2006, 5695-5698

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700