变形对脊波导传输特性影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自1947年由Cohn引入脊波导后,脊波导引起了人们的重视,对脊波导的研究从未间断。与传统的矩形波导相比,脊波导有以下优点:宽的单模带宽、主模截止波长长,使得脊波导在微波和毫米波工程中得到广泛应用。早期脊波导的研究主要是单脊波导和双脊波导,而近期的研究则主要是更加复杂的脊波导结构,比如梯形脊波导、对趾波导等。在现代微波工程中,为了满足微波传输系统性能的某些需要,需要不断探索和研究具有特殊截面形状的各类新型波导,但在生产实际中,由于生产制造、装配及使用等原因,会造成脊波导的多种变形,分析研究变形对脊波导传输特性的影响,有助于加强实际应用。
     本论文介绍了脊波导的发展以及本课题的实际意义;阐述了波导理论基础、规则脊波导的传输特性;介绍了有限元法原理;应用有限元方法分析了多种脊波导(包括矩形脊波导、梯形脊波导、倒梯形脊波导、三角形脊波导和圆形脊波导)在不同变形下的传输特性及相应的场结构图。根据现有资料,选取脊波导传输特性较优时的几何尺寸,计算结果与已有的国内外权威刊物上发表的数据资料进行对比,数据误差很小,这就证明了所选方法在计算上的有效性和所编程序的精确性。
     本文采用Matlab环境下的有限元PDE工具箱分析了多种脊波导在错位和不同受力变形下的传输特性,求出了归一化截止波长,单模带宽,并绘出了各种变形时的主模场结构图。计算结果表明:脊波导错位变形后,传输特性变化较小;脊波导双边受力变形时,传输特性变化最大,特性变差;脊波导下侧受力变形后,传输特性变好。这些参数为脊波导器件的设计和使用提供了参考。
Since the introduction of the waveguides by Cohn in 1947, they have received considerable attention, and research on them has continued steadily. Compare to the normal rectangular waveguide, ridge waveguide has the character of broader bandwidth, smaller dimension, lower equivalent characteristic impedance, etc. Because of these merits, it is used more and more widely in micro-wave and millimeter-wave devices. In early research of ridge waveguide, they mainly research single-ridge waveguide and double-ridge waveguide, then, the recent research is more complicated structure of ridge waveguide, for example, trapezoidal-ridge waveguide, antipodal-ridge waveguide, etc.. In order to meet some requirements in modern microwave transmit systems, it needs to research some new waveguides with especial sections. Then in production and practice, owing to some reasons, such as production, assembly, use, and so on, which can bring about deformations of ridge waveguide. And it is helpful to reinforce practice use to analyze deformations of ridge waveguide to influence of transmission characteristic.
     There are four chapters in this paper. In first chapter, development of ridge waveguide, and the importance in practice of this paper are introduced; In second chapter, there are waveguide theory, the transmission characteristics of the normal rectangular waveguide; In third chapter, the finite element method employed in this paper is introduced; In fourth chapter, the transmission characteristics of many kinds of ridge waveguide in different deformations is obtained by employing the finite element method. On the basis of existing data, choosing geometry dimension of ridge waveguide in the better transmission characteristics, the calculation results are compared with the data that published on foreign and home authoritative issues, comparison between the literature data and the computed results in this paper can be found that the results in this paper agree well with the literature data, which prove that the method and the program are effective and accurate enough.
     The paper uses the finite element PDE toolbox in the Matlab environment to obtain the transmission characteristics of the waveguide in displacement deformation and different deformation under stress, and works out the normalized cutoff wavelength、single-mode bandwidth and he relevant field pattern. Numerical results indicate that the change of the transmission characteristics of the waveguide in displacement deformation is smaller; the change of the transmission characteristics of the waveguide in deformation under stress in both sides is the most and the transmission characteristics change bad; the transmission characteristics of the waveguide in deformation under stress in underside change well. The ridge waveguide devices can be designed and used based on these parameters.
引文
[1]陈孟尧,许福永,赵克玉.电磁场与微波技术[M].北京:高等教育出版社.1989:269-323.
    [2]S.B.Cohn.Properties of ridged waveguide[J].Proe.IRE,VOL.35,Aug.1947:783-788.
    [3]Saad,A.M.K.;Miller,J.D.;Mitha,A.;Brown,R.:Analysis of Antipodal Ridge Waveguide Structure and Application on Extremely Wide Stopband Lowpass Filter[J].IEEE,Microwave Symposium Digest,MTT-S International[C].Mississauga,Ontario,Canada:MA Electronics Canada,A Division of M/A-COM Inc..1986,86(1):361-363.
    [4]M.Lu and Leonard,P.J.Desigu of trapezoidal-ridge waveguide by finite-element method[J].IEE Microwaves,Antennas and Propagation,Proceedings.2004,151(3):205-211.
    [5]Pyle J R.The Cutoff Wavelength of the TE10 Mode in Ridged Rectangular Waveguide of any Aspect Ratio[J].IEEE Trans.1966,14(4):175-183.
    [6]Hopfer S.The design of ridged waveguides[J].IRE Trans.1955,3:20-29.
    [7]Willian J.Getsinger.Ridge waveguide field description and application to directional couplers[J].IRE Trans Microwave Theory Teeh.1962,10(1):41-50.
    [8]Rong,Y.and Zaki.K.A.:Characteristics of generalized rectangular and Circular Ridge Waveguides[J].IEEE Transactions on Microwave Theory and Techniques.2000,48(2):258-265.
    [9]Y.Konishi and H.Matsumura.Short end effect of ridge guide with planar circuit mounted in waveguide[J].IEEE Trans.Microwave theory teeh..1979,27:168-170.
    [10]D.A.Jarvis and T.C.Rao.Design of double-ridged rectangular waveguide of arbitrary ratio and ridge height[J].IEE Proc-Microw.Antennas Propag..2000,147(1):31-34.
    [11]J.Bomemann and F.Ardnt.Transverse resonance,standing wave,and res-ontor formulations of the ridge waveguide problem and its application to the design of E-plane finned waveguide filters[J].IEEE Trans.Microwave theory tech..1990,38:1104-1113.
    [12]W.Sun and C.A.Balanis.MFIE analysis and design of ridge waveguides[J].IEEE Trans.Microwave theory tech..1993,41:1965-1971.
    [13]Smainamari,J.Bomemann and R.Vahldieck.Application of a coupled-integral-equations technique to ridged waveguides[J],IEEE Trans.Microwave theory tech..1996,44:2256-2263.
    [14]黄彩华.矩形变形脊波导主模截止波长和特性计算[J].雷达与对抗.1997,18(3):16-22.
    [15]鲁加国,樊德森.非对称单脊波导的积分方程法分析[J].微波学报.1998,14(2):108-115.
    [16]韩一平,聂在平.非对称单脊波导的FDTD分析[J].电子学报.1999,27(3):126-128.
    [17]金林.不对称脊波导截止波长的计算[J].现代雷达.2000,22(1):62-66.
    [18]郑勤红,曾华,解福瑶等.脊波导族的多极理论分析[J].微波学报.2001,17(3):24-28.
    [19]任列辉,邢锋,徐诚等.用电磁场算子理论分析脊波导的传输特性[J].电子与信息学报.2004,26(2):326-331.
    [20]杨春艳,姚斌,郑勤红.波导截止特性和衰减常数的有限差分分析[J].云南师范大学学报.2005,25(3):35-40.
    [21]陈小强,李明,逯迈,任恩恩.两种新型双脊波导传输特性的研究[J].西安电子科技大学学报.2007,34(3):495-499.
    [22]马海武,王丽黎,赵仙红.电磁场理论[M].北京:北京邮电大学出版社,2004.
    [23]刘建丽,温杜仲,朱英杰.脊位于窄边的单脊波导本征值的有限差分分析[J].电气传动自动化. 2007.29(1):17-19.
    [24]孙海,王泽文.基于有限元的多脊波导传输特性的数值分析[J].山西大学学报(自然科学版).2008,31(2):177-180.
    [25]贾华,刘甫坤.脊波导特征值的有限元分析[J].微计算机信息.2007,23(3):207-208.
    [26]孙海,王继顺,褚衍东,谢艳云.有限元法的脊位于窄边的脊波导特征值分析[J].现代雷达.2007,29(3):68-70.
    [27]廖承恩.微波技术基础[M].西安:西安电子科技大学出版社,2004.
    [28]孙岐峰,逯迈,陈小强.窄边双脊波导传输特性分析[J].微波学报.2007,23(6):29-31.
    [29]张晓娟,宋文淼.非对称单脊波导的特性计算[J].电波科学学报.2007,22(5):825-828.
    [30]臧冀原.非对称双脊波导传输特性研究[J].兰州交通大学学报(自然科学版).2007,26(3):81-84.
    [31]孙海,褚衍东.不对称脊波导脊位置对主模截止波长的影响[J].舰船电子对抗.2006,9(6):62-66.
    [32]冯慈璋,马西奎.工程电磁场导论[M].2000.
    [33]王典成.电磁场理论与微波技术[M].1986.
    [34]黄志洵.截止波导理论.北京:中国计量出版社[M].1989.
    [35]金建铭.电磁场有限元方法[M].西安电子科技大学出版社,2001.
    [36]张志涌.精通MATLAB 6.5版[M].北京:北京航空航天大学出版社,2003:107-111.
    [37]何红雨.电磁场数值计算法与MATLAB实现[M].武汉:华中科技大学出版社,2004.
    [38]苏金明,阮沈勇.MATLAB 6.1实用指南[M].北京:电子工业出版社,2002.
    [39]陆君安,尚涛,谢进,谷平.偏微分方程的MATLAB解法[M].武汉:武汉大学出版社,2001.
    [40]倪光正,杨仕友,钱秀英等.工程电磁场数值计算[M].机械工业出版社,2004.
    [41]应嘉年,顾茂章,张克潜.微波与光导技术[M].北京:国防工业出版社,1994.
    [42]邓素芬,杨显清,陈友臸.基于有限元法的脊波导特征值分析[J].电子对抗技术.2005,(1):43-46.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700