中国兰花挥发及特征花香成分研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究围绕中国兰花挥发性物质中主要及特征花香成分确定,以中国兰花蕙兰、建兰、寒兰和春兰等,以及热带兰之蝴蝶兰、长萼兰等为研究对象,应用气相色谱-质谱联用(GC/MS)的方法对兰花花香挥发性成分进行了定性和相对定量分析。筛选建立了适合兰花香气成分分析的采样收集方法;通过分析比较国兰代表种之间,以及与几种热带兰的挥发性成分差异,初步确定了国兰的特征香气成分;同时,分析和比较了萃取时间、萃取温度,以及不同花期、花色对兰花挥发性成分测定的影响和组成的差异。研究主要内容和获得结果如下:
     1、针对兰花花香强度和挥发特点,通过试验比较了顶空固相微萃取(SPME)、动态顶空密闭循环式吸附(TCT)以及吹扫捕集(P&T)三种收集方法,确定了以顶空固相微萃取法(SPME)为主,动态顶空密闭循环式吸附法(TCT)法为辅的有效的兰花挥发性成分收集方法。比较分析了不同萃取头,不同萃取时间对兰花香气成分分析的影响。确定了100μmPDMS萃取头、萃取60min是最佳分析条件。
     2、分析比较国兰之间以及国兰与热带兰挥发性成分的区别。经多种材料的固相微萃取分析测定,常温下,国兰种类中共检测到99种挥发性成分,其中酯类物质相对百分含量较高;热带兰共检测到113种挥发性成分,其中萜烯类物质种类丰富,含量较高。重要的是,国兰挥发性成分中茉莉酸甲酯、3-氧代-2-(2-戊炔基)-环戊基乙酸甲酯、酯类物质C普遍存在且含量较高,但在热带兰中未检测到同类物质。上述酯类物质在国兰的普遍存在以及与热带兰的显著差异提示我们,酯类物质是决定国兰与热带兰香气差异的主要或重要因素,可能是中国兰花的特征香气成分。
     3、野生种群中蕙兰、寒兰花色上存在明显差别。蕙兰有绿蕙兰、黄紫蕙兰、黄绿蕙兰、紫蕙兰等;寒兰有绿寒兰、紫寒兰等。本研究初步分析比较了同种不同花色中国兰花的挥发性成分。
     1)SPME-GC/MS分析常温下开放的黄紫蕙兰、绿蕙兰挥发性成分组成。黄紫蕙兰检测到25种化合物,绿蕙兰检测到23种化合物。其中共有组分17种,黄紫蕙兰特有组分8种,绿蕙兰特有组分6种。两种蕙兰主要挥发性成分差异不大,但黄紫蕙兰增加了罗勒烯与香叶基丙酮,绿蕙兰中增加了Z,Z,Z-1,4,6,9-十九碳四烯和2,5-十八碳二炔酸甲酯。
     2)TCT- GC/MS分析四种不同花色蕙兰挥发性成分的组成。黄紫蕙兰共检测到内三环[5,2,1,0(2,6)]癸烷、茉莉酸甲酯A、茉莉酸甲酯B、金合欢醇、2-丙基戊醇等48种化合物。绿蕙兰共检测到金合欢醇、茉莉酸甲酯B、内三环[5,2,1,0(2,6)]癸烷、罗勒烯、异佛尔酮、2-丙基戊醇等40种化合物;黄绿蕙兰检测到异佛尔酮、3-氧代-2-(2-戊炔基)-环戊基乙酸甲酯、金合欢醇、茉莉酸甲酯B等31种化合物;紫蕙兰共检测到金合欢醇、2-丙基戊醇、内三环[5,2,1,0(2,6)]癸烷、茉莉酸甲酯B、罗勒烯、芳樟醇等24种化合物;柠檬烯、长叶烯、金合欢烯等化合物在四种蕙兰中的相对含量差别较小,异佛尔酮、金合欢醇、芳樟醇、罗勒烯、茉莉酸甲酯等差别较大。
     3)SPME-GC/MS分析常温下不同花色寒兰的挥发性成分变化。绿寒兰共分离得到酯类物质C、茉莉酸甲酯B、2,5-十八碳二炔酸甲酯、乙酸金合欢酯等22种挥发性成分。紫寒兰中共分离得到酯类物质C、3-氧代-2-(2-戊炔基)-环戊基乙酸甲酯、乙酸金合欢酯、茉莉酸甲酯B等18种挥发性成分。绿寒兰中酯类物质种类较多,紫寒兰中酯类物质较少,挥发性组分总数也不高。绿寒兰中的2,5-十八碳二炔酸甲酯和Z,Z,Z-1,4,6,9-十九碳四烯与紫寒兰中的4,7-二甲基-4-辛醇和香叶基丙酮含量变化最大,是不同花色寒兰香气差异的主要原因。
     4、针对花期等因素对兰花香气释放的影响,本研究将蕙兰花期分为五个时期。利用SPME-GC/MS方法分别分析了黄紫蕙兰、绿蕙兰、建兰不同花期的挥发性成分变化;同时利用TCT-GC/MS方法分析了黄紫蕙兰挥发性成分的日变化。
     1)黄紫蕙兰花期结果分析显示:花蕾期主要香气成分为罗勒烯和α-金合欢烯;半开期(E、E)-金合欢醇、茉莉酸甲酯、酯类物质C为主要香气成分;盛开期(E、E)-金合欢醇的相对含量>茉莉酸甲酯>罗勒烯。盛开末期(E、E)-金合欢醇的相对含量>酯类物质C>香叶基丙酮>罗勒烯。衰败期共检出化合物10种,其中烷烃含量较大,种类最多,不存在酯类物质。罗勒烯在半开期合成释放增多;香叶基丙酮在盛开期以后合成释放增加;(E、E)-金合欢醇一直作为含量最高的成分存在香气较淡的花蕾期和盛开末期之外的其它时期,对黄紫蕙兰香气贡献较大。
     2)分析绿蕙兰花期结果显示:花蕾期主要香气成分反式-罗勒烯和芳樟醇;绿蕙兰半开期酯类物质C和茉莉酸甲酯的相对百分含量达70%;盛开期罗勒烯和酯类物质C的相对百分含量达60%;盛开末期金合欢醇和酯类物质C的相对百分含量达50%;衰败期共检出化合物8种,主要有壬醛、癸醛等,对花香贡献不大。试验表明罗勒烯的相对百分含量随花期变化较大,说明罗勒烯的合成、释放与花期直接相关;酯类物质C在半开、盛开、盛开末期中一直作为主要物质存在,受花期影响较少,是绿蕙兰香气的主要贡献成分。
     3)分析建兰花期结果显示:建兰挥发性成分总量的变化趋势为:从花蕾期开始,挥发性成分总量随时间增长而增大,第2天、第4天总量变化不大,达到最高峰,之后,挥发性成分总量开始下降。在整个花期过程中,正十五烷与桉树脑的含量几乎没有变化,表明正十五烷与桉树脑对建兰花香没有直接影响。茉莉酸甲酯B、3-氧代-2-(2-戊炔基)-环戊基乙酸甲酯等五种酯类物质从半开期出现后到开花第四天基本上呈递增趋势,之后开始下降;12-[4.4.3.0(1,6)]氧杂三环十三烷-3,11-二酮、Z,Z,Z-1,4,6,9-十九碳四烯也是建兰主要挥发性物质,这三种物质在开花第二天达到含量最高峰,之后呈递减趋势。
     4)分析蕙兰挥发性日变化得出:醇类物质在下午3时的挥发量较高;酯类物质在上午11时左右的挥发量较高。茉莉酸甲酯的两种同分异构体A、B,茉莉酸甲酯A上午的挥发量要高于下午,茉莉酸甲酯B则相反,但是,两种物质在全天的挥发量均较高;长叶烯的挥发性日变化不是很明显,罗勒烯的挥发量在上午约是下午的4-5倍;醛类、酮类及其它物质,在蕙兰的挥发性成分中含量相对要少,变化不显著。
The main and characteristic fragrance components that defined Chinese cymbidium, C. faberi, C. ensifolium, C. Kanran, C. goeringii and tropical orchids, Phalaenopsis , Brassia and more, were studied using gas chormatography/mass spectrometry (GC/MS) method, by the qualitative and quantitative analysis.
     In this study, sampling methods which were suitable for analysis the fragrance components in cymbidium was screened and established. Through analysis and comparison the differences of volatile components among Chinese cymbidium representatives, and the differences between Chinese cymbidium and tropical orchid, characteristic fragrance components in Chinese cymbidium were definited preliminary. Moreover, the affects of extraction time, extraction temperature, different florescence and flower color in determining the cymbidium volatile components and the differences of components were analyzed and compared.
     The following conclusions were made from the above studies.
     1. According to the characteristics of fragrance intensity and volatility in cymbidium, three collecting methods, Solid Phase Microextraction (SPME), Thermal Desorption Cold Trap injector (TCT) and Purge and Trap(P&T), were compared by experiments, with determination of SPME being given priority to TCT as effective method collecting for volatile components of cymbidium. In this study, the affects of fibers, extraction time on analysis fragrance components of cymbidium were analyzed and compared. The optimum extraction condition was: extracting 60min by 100μmPDMS fiber.
     2. The differences of volatile components, among Chinese cymbidium and between Chinese cymbidium and tropical orchid, were analyzed. Through collecting, detecting diverse samples, the results showed that 99 kinds of volatile components were present in Chinese cymbidium, in which ester compounds were with high relative content. As well as 113 kinds of volatile components were detected in tropical orchid, terpenoid compounds with rich species and high relative content.
     It is important that methyl jasmonate, cyclopentaneacetic acid, 3-oxo-2-(2-pentynyl)-, methyl ester and compound C were widespread with high relative content in Chinese cymbidium, but they were not detected in tropical orchid. This phenomenon pointed out that ester compounds were the main or important factors which created the fragrance discrepancy between Chinese cymbidium and tropical orchid, and they may be the characteristic fragrance components.
     3. There are obvious difference in the flower color of populations of wild C. faberi and C. Kanran in nature. The wild C. faberi has colors in green, yellow-purple, yellow-green, purple and others. The C. Kanran has colors in green, purple and others.. In this study, the preliminary analysis and comparison were made on the volatile components of same species Chinese cymbidium with different color.
     1) The volatile components in yellow-purple and green flower C. faberi were analyzed by using SPME-GC/MS at normal temperature. The results showed that there were 25 components in yellow-purple C. faberi and 23 components in green C. faberi, as well as 17 components in both color flower C. faberi, 8 kinds of special components in yellow-purple C. faberi, and 6 kinds of special components in green C. faberi. There were no significant differences in the main volatile components between the two species of C. faberi., However,ocimene and geranylacetone were found more in yellow-purple C. faberi, Z,Z,Z-1,4,6,9-nonadecatetraene and methyl-2,5-octadecadiynoate were found more in green C. faberi.
     2) The volatile components in four different color flower C. faberi were analyzed by using TCT-GC/MS. Endo tricyclo[5,2,1,0(2,6)] decane, methyl jasmonate A, methyl jasmonate B, farnesol, 2-propyl-1-pentanol and etc, a total of 48 components were detected in yellow-purple C. faberi. Farnesol, methyl jasmonate B, endo tricyclo[5,2,1,0(2,6)] decane, ocimene, isophorone, 2-propyl-1-pentanol and etc, a total of 40 components were detected in green C. faberi. Isophorone, cyclopentaneacetic acid, 3-oxo-2-(2-pentynyl)-, methyl ester, farnesol, methyl jasmonate B and etc, a total of 31 components were detected in yellow-green C. faberi. Farnesol, 2-propyl-1-pentanol, endo tricyclo[5,2,1,0(2,6)] decane, methyl jasmonateB, ocimene, linalool and etc, a total of 24 components were detected in purple C. faberi. The differences of the relative contents of limonene, longifolene, farnesene, and others, were not obvious. On the contrary, there were obvious differences in relative contents in isophorone, farnesol, linalool, and ocimene.
     3) The volatile components in different color flower C. Kanran were analyzed by using SPME-GC/MS at normal temperature. There were 22 volatile components detected in green flower C. Kanran and 18 volatile components in purple flower C. Kanran. The species of ester components in green flower C. Kanran were more than purple flower C. Kanran. The changes of the contents of 2,5-octadecadiynoic acid, methyl ester , Z,Z,Z-1,4,6,9-no- adecatetraene in green flower C. Kanran and 4,7-dimethyl-4-octanol, geranyl acetone in purple flower C. Kanran were maximal, it may be the main reason for the fragrance differences between different color C. Kanran.
     4. According to the affects of florescence, cymbidium fragrance releasing and other factors, C. faberi florescence were divided into five stages. SPME-GC/MS method was used to analyze the changes of volatile components at different blooming stages of yellow-purple C. faberi, green C. faberi and C. ensifolium. Moreover, the daily changes of volatile components in yellow-purple C. faberi were analyzed by using TCT-GC/MS method.
     1) The analysis results of yellow-purple C. faberi florescence indicated that: Ocimene andα-farnesene were the main fragrance components at bud stage. (E、E)-Farnesol, methyl jasmonate and compound C were the main fragrance components at half opening stage. At full opening stage, the relative content of(E、E)-farnesol> methyl jasmonate>ocimene were high. At the end of full opening stage, the relative content of(E、E)-farnesol>compound C>ocimene were high. There were 10 components detected in the at the decay stage, they were high in alkanes relative content and had variety of species, ester compounds were not detected. The synthesis and release of ocimene increased at half opening stage, that of geranylacetone increased after half opening stage. (E、E)-Farnesol had the highest content in the half opening stage, full opening stage and decay stage, it was an important componentin yellow-purple C. faberi fragrance was more.
     2) The analysis results of green C. faberi florescence indicated that: Trans-ocimene and linalool were the main fragrance components at bud stage. The relative content of compound C and methyl jasmonate was up to 70% at half opening stage. The relative content of ocimene and compound C reached to 60% at full opening stage. At the end of full opening stage, the relative content of farnesol and compound C reached to 50%.There were 8 compounds detected at the decay stage, which had little affects to the fragrance. The relative content of ocimene changed obviously with the florescence, it indicated that the synthesis and release of ocimene is highly correlated. Compound C, was existed in half opening stage, full opening stage, end of full opening stage as main component, and less affected by florescence, which was the main component in green C. faberi fragrance.
     3) The volatile components of C. ensifolium during different florescence: The variation of the total content of volatile compounds of C. ensifolium was as follow. Since bud stage, the total content of volatile compounds increased with time. The total content of volatile compounds became to descend after reaching the peak. However, the variation of the total content was not obvious at the 2nd and the 4th day. In the all blooming period, the contents of pentadecane and cineole almostly didn’t change. It indicated that pentadecane and cineole didn’t directly affect the fragrance of the flower of C. ensifolium. There were 5 kinds of esters,such as methyl jasmonate B、cyclopentaneacetic acid, 3-oxo-2-(2-pentynyl)-, methyl ester detected at half opening stage. The content of them had been asceding until the 4th day of florescence then started descending. 12-Oxatricyclo[4.4.3.0(1,6)]tridecane-3, 11-dione, Z,Z,Z -1,4,6,9-nonadec- atetraene were also the main volatile components. The content of the 3 volatiles reached to the peak at the 2nd day of blooming then started descending.
     4) The daily changes of the volatile components of C. faberi: At 15:00, the content of alcohols was higher than other times, while there was a higher content of volatility in esters at about 11:00. Two kinds of methyl jasmonate were detected, which were called methyl jasmonate A and B. They both had high content of volatility in the day. The content of volatility of methyl jasmonate A was higher in the morning than in the afternoon, while methyl jasmonate B was reverse to jasmonate A. There was no an obvious changes in the content of volatile of longifolene. The content of volatile of ocimene was 4-5 times in the morning than in the afternoon. The contents of aldehydes、ketones and other components were low in all of the volatile components of C. faberi, and the variations were not obvious.
引文
曹慧,李祖光,杨美丹等.香水百合头香成分的定量结构-色谱保留关系研究分析测试学报,2008,127 (111):1198-1202
    陈华君,洪蓉,金幼菊等.近自然状态下活体植株挥发物的采集和热脱附-GC-MS分析分析测试学报,2003,22(增刊):226- 228
    陈青,姚蓉君,张前军.固相微萃取气质联用分析野茉莉花的香气成分精细化工,2007,24(2):159-161
    陈计峦梨香气成分分析、变化及理化特征指标的研究,中国农业大学博士学位论文,2005
    陈培榕,邓勃现代仪器分析实验与技术北京:清华大学出版社,1999
    陈心启,吉占和中国兰花全书北京:中国林业出版社,1998
    戴亮,杨兰苹,郭友嘉等.漳州水仙花精油的化学成分研究色谱,1990,8(6):377-380
    邓华,朱彭龄固相微萃取及其与某些分析技术联用分析化学,2001,29(5):601-605
    冯建跃,侯镜德一种新颖的色谱采样器-吸附丝的研究浙江大学学报(自然科学版),1992,26(1):76-79
    冯建跃,赵菁,黄巧巧等.吸附丝色谱/质谱法用于桂花香气研究浙江大学学报(理学版),2001,28(6):673-677
    高健钴-60Gamma射线辐照中国水仙的诱变效应和机理研究,中国林业科学研究院博士学位论文,2000
    郭友嘉,戴亮,任清等.用吸附-热脱捕集进样法研究茉莉花香释放过程中化学成分色谱,1994,12(2):110-113
    冯立国,生利霞,赵兰勇等.玫瑰花发育过程中芳香成分及含量的变化中国农业科学,2008,41(12):4341-4351
    侯镜德,朱金炎,冯建跃等.珍媚茶香气组分与质量的数理关系色谱,1991,9(4):232-235
    黄巧巧,冯建跃.水仙花开放期间香气组分变化的研究分析测试学报,2004,23 (5):110-113
    黄巧巧,蒋可志,冯建跃,陈关喜气相色谱/质谱法研究栀子花头香成分云南植物研究,2004,26 (4):471-474
    江桂斌环境样品前处理技术北京:化学工业出版社2004,105-122
    金荷仙,陈俊愉,金幼菊南京不同类型梅花品种香气成分的比较研究园艺学报,2005,32(6):1139
    金惠娟,殷宁,彭黎旭等.海南红厚壳花香气成分采集和TCT-GC-MS分析中国野生植物资源,2007,26(1):39-41
    李海东,高岩,金幼菊珍珠梅花挥发性物质日动态变化的研究内蒙古农业大学学报,2004,25(2):55-60
    李丽华,郑玲,刘晓松固相微萃取气质联用分析茉莉花的香气成分化学分析计量,2006,15(2):37-40
    李瑞红,范燕萍白姜花不同开花时期的香味组分及其变化植物生理学通讯,2007,43 (1):176-180
    李祖光,李新华,高建荣等.白丁香鲜花在不同开花期的香气化学成分研究林产化学与工业,2005,25(4):63-66
    李祖光,曹慧,朱国华等.三种桂花在不同开花期头香成分的研究林产化学与工业,2008,28(3):76-80
    李祖光,李新华,刘文涵,高云芳.结香鲜花香气化学成分的研究林产化学与工业,2004,24(1):83-87
    李祖光,卫雅芳,芮昶等.紫藤鲜花香气化学成分的研究香料香精化妆品,2005,2:1-3
    刘百战,高芸固相微萃取-气相色谱/质谱分析栀子花的头香成分色谱,2000,18(5):452-455
    刘鸿雁,齐刚吹扫捕集-GC/MS测定葡萄酒中微量成分酿酒科技,2005,130(4):85-86
    刘倩,周靖,谢曼丹榴莲中香气成分分析分析测试学报,1999,18(2):58-60
    刘扬岷,王利平,袁身淑等.固相微萃取气质联用分析白兰花的香气成分无锡轻工大学学报,2001,20(4):427-430
    陆晓华化学计量学武汉:华中理工大学出版社,1997
    纳智圆瓣姜花根茎挥发油的化学成分热带亚热带植物学报,2006,l4(5):417-420
    潘丹,翟明普,郭素娟核桃植株挥发性气体化学成分分析山东农业大学学报(自然科学版),2007,38 (2):234 -238
    戚军超,周海梅.固相微萃取-气质联用技术在天然产物挥发性成分分析中的应用信阳师范学院学报(自然科学版),2005,18(4):471-474
    乔宇柑橘汁香气活性化合物的鉴定及其在加工和储藏中的变化,华中农业大学博士学位论文,2008
    孙明,刘华,张启翔等. 3个地被菊品种香气成分的分析沈阳农业大学学报,2008,39(1):92- 95
    孙毓庆,王延琮现代色谱法及其在药物分析中的应用北京:科学出版社,2005:71,96,145-154,481-493,535-564
    陶永胜,李华,王华不同产区赤霞珠干红葡萄酒香气成分数据的可视化分析分析化学,2008,36(5):653-657
    汪正范色谱定性与定量北京:化学工业出版社,2000
    王道杰,刘博,陈开勋等超临界CO2萃取迷迭香油工艺及其GC-MS分析研究香料香精化妆品,2001,4:1-3
    王利平,刘扬岷,袁身淑.梅花香气成分初探园艺学报,2003,30(1):42
    王炎,赵敏.固相微萃取气-质联用分析黑龙江百里香的挥发性成分分析化学,2004,32(2):272
    吴应祥中国兰花北京:中国林业出版社,1991,
    许国旺,杨军代谢组学及其研究进展色谱,2003,21 (4):316-320
    许志刚,胡玉玲,罗学军.固相微萃取涂层制备方法研究进展分析测试学报,2009,28(2):250-256
    许禄化学计量学方法北京:科学出版社,1995
    杨淑珍,范燕萍蝴蝶兰2个品种挥发性成分差异性分析华南农业大学学报,2008,29(1):114-117
    杨雪云,赵博光,刘秀华等金桂银桂鲜花挥发性成分的顶空固相微萃取GC-MS分析南京林业大学学报(自然科学版),2008,32(4):86-90
    叶灵军,张立,张启翔现代月季品种主要香气成分的分析北方园艺,2008,9:93-95
    余珍,易元芬,吴玉等.几种玫瑰油的化学成分及香气比较云南植物研究,1994,16(1):75-80
    苑金鹏,李圣波,王岱杰等.吹扫捕集-GC-MS法测定木瓜金宝萝青101中的香气成分光谱实验室,2008,25(6):1257-1260
    张风娟,武晓颖,王骏等.复叶槭挥发物的超临界CO2萃取及其TCT/GC-MS分析分析测试学报,2005,24:578-581
    张弘,郑华,冯颖等.金枕榴莲果实挥发性成分的热脱附-气相色谱/质谱分析食品科学,2008,29(10):517-520
    张丽华,杨生婷,徐怀德等.枇杷花香气成分固相微萃取GC-MS分析研究食品科技,2008,3:108-110
    张建华,,陶绍木,段作营等.高温流化米中挥发性香味物质收集方法初探酿酒, 2005,32(4):33-35
    张文成,潘见,胡学桥超临界柚子鲜花芳香性成分的研究中国野生植物资源,2004,23(4):43-45
    郑华,张弘,张汝国等.云南特产“小三年”芒果不同成熟期香气成分的差异食品科学,2008,29 (10):487-490
    钟海雁,黄永辉,龙奇志等. SPME萃取头对茶油挥发物萃取效果的影响中国粮油学报,2008,23(7):143-148
    A. Mena Granero, F. J. Egea Gonzalez, J. M. Guerra Sanz et al. Analysis of biogenic volatile organic compounds in zucchini flowers: identification of scent sources Journal of Chemical Ecology, 2005, 31(10): 2309-2313
    Abalos M, Bayona J, Application of GC coupled to chemical ionisation MS following headspace SPME for the determination of free volatile fatty acids in aqueous samples Journal of Chromatography A, 2000,891:387-294
    Agelopoulos N G, Pickett J A, Headspace analysis in chemical analysis in chemical ecology: Effects of different sampling methods on ratios of volatile compounds present in headspace samples Journal of Chemical Ecology, 1998, 24 (7): 1161-1172
    Alain Muselli1, Marta Pau, Jean-Marie Desjobert1 et al., Volatile Constituents of Achillea ligustica All by HS-SPME/GC/GC-MS. Comparison with Essential Oils Obtained by Hydrodistillation from Corsica and Sardinia Chromatographia, 2009, 69:575-585
    Amr E. Edris1, Remigus Chizzola, Chlodwig Franz, Isolation and characterization of the volatile aroma compounds from the concrete headspace and the absolute of Jasminum sambac (L.) Ait. (Oleaceae) flowers grown in Egypt European Food Research and Technology, 2008, 226(3): 621-626
    Anna-Karin, Borg-Karlson, Inga Groth et al., Form-specific fragrances from Ophrys insectifera If. (Orchidaceae) attract species of different pollinator genera. Evidence of sympatric speciation Chemoecology, 1993, 4: 3945
    Anne A. Damon, Antonio Santiesteban Hernandez, Julio C. Rojas, Analysis of the fragrance produced by the epiphytic orchid Anathallis (Pleurothallis) racemiflora (Orchidaceae) in the Soconusco region, Chiapas, Mexico Lindleyana, 2002, 17(2): 93-97
    Anne C. Gaskett, Elena Conti, Florian P. Schiestl. Floral odor variation in two heterostylous species of Primula Journal of Chemical Ecology, 2005, 31(5): 1223-1226
    Anne ORAV, Tiiu KAILAS, Kaire IVASK, Volatile constituents of Matricaria recutita L. from Estonia Proceedings of the Estonian Academy of Sciences. Chemistry, 2001, 50(1)39–45
    Anon. IFF, Announces new method for living flower analysis Spray Technology & Marketing, 1996, 6(10): 26-30
    Arthur C L, Pawliszyn J, Solid phase-with thermal desorption using fused silicaoptical fibers Analytical Chemistry, 1990, 62: 2145-2148
    Augusto Fabio, Leite e Lopes Alexandre, Zini Claudia Alcaraz, Sampling and sample preparation for analysis of aromas and fragrances Trends in Analytical Chemistry, 2003, 22 (3): 160-169
    Azodanlou R, Darbellay C, Luisier J L et al., A new concept for the measurement of total volatile compounds of food Z-Lebensm-Unters-Forsch-A, 1999, 208(4): 254-258
    Bartak Petr, Bednar Petr, Cap Lubomir et al., SPME - A valuable tool for investigation of flower scent Journal of Separation Science, 2003, 26 (8): 715-721
    Bergstrom G, Birgersson G, Groth I et al., Floral fragrance disparity between three taxa of lady's slipper Cypripedium calceolus L. (Orchidaceae) Phytochemistry, 1992, 31: 2315-2319
    Berna A Z, Lammertyn J, Saevels S et al., Electronic nose systems to study shelf life and cultivar effect on tomato aroma profile Sensors & Actuators.B: Chemical, 2004, 97: 324-333
    Bertoli Alessandra, Mazzetti Michele, Menichini Francesco et al., Volatile constituents of the leaves and flowers of Hypericum triquetrifolium Turrat Flavour and Fragrance Journal, 2003, 18 (2): 91-94
    Bockreis A, Jager J. Environ. Odour monitoring by the combination of sensors and neural networks Modelling and Software, 1999, 14: 421-426.
    Bicchi C, Drigo S, Rubiolo P, Influence of fiber coating in headspace SPME-GC analysis of aromatic and medicinal plants Journal of Chromatography A, 2000, 892: 469-485
    Braja D. Mookherjee, Robert W Trenkle, Richard A, Wilson. The chemistry of flowers, fruits and spices: live vs. dead a new dimension in fragrance research Pure and Applied Chemistry, 1990, 62(7): 1357-1364
    Campo E, Ferreira V, Escudero A et al., Quantitative gas chromatography olfactometry and chemical quantitative study of the aroma of four Madeira wines Analytica Chimica Acta, 2006, 563: 180-187
    Cioni Pier Luigi, Flamini Guido, Morelli Ivano, Use of solid-phase micro-extraction as a sampling technique in the determination of volatiles emitted by flowers, isolated flower parts and pollen Journal of Chromatography A, 2003, 1000 (1-2): 229-233
    Ciosek P, Brzózka Z, Wróblewski W et al., Direct and two-stage data analysis procedures based on PCA, PLS-DA and ANN for ISE-based electronic tongue–effect of supervised feature extraction Talanta, 2005, 67: 590-596
    Coleman W, Perfetti T, Lawrence B, Automatic Injection SPME-Chiral-GC-MSD Analysis of Essential Oils Journal of Chromatographic Science, 1998, 36:575-578
    Costa Freitas A M, Parreira C, Vilas-Boas L, Comparison of two SPME fibres for differentiation of coffee by analysis of volatile compounds Chromatographia, 2001, 54(9-10): 647-652
    Custodio L, Nogueira J M F, Romano A, Sex and developmental stage of carob flowers affects composition of volatiles The Journal of Horticultural Science & Biotechnology, 79(5), 689-692
    Deng C H, Zhang X M, Zhu W M et al., GC-MS with SPME method for determination of methyl salicylate and other volatile compounds in leaves of Lycopersicon esculentum Analytical and Bioanalytical Chemistry, 2004, 378: 518-522
    Deng Chunhui, Song Guoxin, Hu Yaoming, Application of HS-SPME and GC-MS to characterization ofvolatile compounds emitted from osmanthus flowers Annali di Chimica, 94(12):921-927
    Deng Chunhui, Song Guoxin, Hu Yaoming, Rapid determination of volatile compounds emitted from Chimonanthus praecox flowers by headspace SPME-GC-MS Zeitschrift fuer Naturforschung, 59, 9-10, 636-640
    Dittmann B, Zimmermann B, Engelen C et al., Use of the MS-sensor to discriminate between different dosages of garlic flavoring in tomato sauce Journal of Agricultural and Food Chemistry, 2000, 48: 2887-2892
    D?tterl S, Jürgens A, Spatial fragrance patterns in flowers of Silene latifolia: Lilac compounds as olfactory nectar guides? Plant Systematics and Evolution, 2005, 255(1-2): 99-109
    D?tterl Stefan, Irmgard Sch?ffler, Flower Scent of Floral Oil-Producing Lysimachia punctata as Attractant for the Oil-Bee Macropis fulvipes. Journal of Chemical Ecology, 2007, 33(2): 441-445
    Egea Gonzalez F, Garrido Frenich A, Guerra Sanz J et al., Single step determination of fragrances in Cucurbita flowers by coupling headspace SPME low-pressure GC-tandem mass spectrometry Journal of Chromatography A, 1045(12), 173-179
    Emerson Ricardo Pansarin, Maria do Carmo, Estanislau do Amaral, Reproductive biology and pollination of southeastern Brazilian Stanhopea Frost ex Hook. (Orchidaceae) Flora - Morphology, Distribution, Functional Ecology of Plants, 2009, 204(3): 238-249
    Fallik E, Alkali-Tuvia S, Horev B et al., Charaterization of“Galia”melon aroma by GC and mass spectrometric sensor measurement after prolonged storage Postharvest Biology and Technology, 2001, 22: 85-91
    Falqui-Cao C, Wang Z, Urruty L et al., Focused microwave assistance for extracting some pesticide residues from strawberries into water before their determination by SPME/HPLC/DAD Journal of Agricultural and Food Chemistry, 2001, 49(11):
    Fang Y, Qian M L, Aroma compounds in Oregon Pinot Noir wine determined by aroma extract dilution analysis (AEDA) Flavour Fragr J, 2005, 20: 22-29
    Fernando L N, Grun I U, Headspace-spme analysis of volatiles of the ridge gourd (Luffa acutangula) and bitter gourd (Momordica charantia) flowers Flavour and fragrance journal, 2001, 16(4): 289-293
    Field J, Nickerson G, James D, Heider C, Determination of Essential Oils in Hops by Headspace SPME Journal of Agricultural and Food Chemistry, 1996, 44: 1768-1772
    Flamini Guido, Cioni Pier Luigi, Morelli Ivano, Differences in the fragrances of pollen and different floralparts of male and female flowers of Laurus nobilis Journal of Agricultural and Food Chemistry, 2002, 50(16): 4647-4652
    Franz K. Huber, Roman Kaiser, Willi Sauter et al., Floral scent emission and pollinator attraction in two species of Gymnadenia (Orchidaceae) Oecologia, 2005, 142(4): 564-575
    Gerhard Buchbauer, Leopold Jirovetz, Michael, Wasicky et al., Headspace and essential oil analysis of apple flowers Journal of Agricultural and Food Chemistry, 1993, 41 (1): 116–118
    Grosch W, Evaluation of the key odorants of foods by dilution experiments, aroma models and omission Chemical Senses, 2001, 26: 533-545
    Hanny J B, Hogarth J. On the solubility of solids in gases Proceedings of the Royal Society(London), 1879(29): 234-246
    Harold G. Hills, Norris H. Williams Floral fragrances and isolating mechanisms in the genus Catasetum (Orchidaceae) Biotropica, 1972, 4: 61-76
    Hill P, Smith R, Determination of sulfur compounds in beer using headspace SPME and GC analysis with pulsed FPD detector Journal of Chromatography A, 2000, 872(12), 203-213
    Hu Yaoming, Deng Chunhui, Hu Keji et al., Rapid determination of volatile constituents of Michelia alba flowers by gas chromatography-mass spectrometry with solid-phase microextraction Journal of Chromatography A, 2002, 942(12):283-288
    Janusz Pawliszyn, Solid Phase Microextraction: Theory and Practice New York: VCH, 1997
    Jirovetz L, Gonzalez J E, Silvera G et al., Volatile constituents of Peristeria elata (Orchidaceae) Journal of Essential Oil Research, 1992, 4: 435-438
    Johnson S D, Steiner K E, Kaiser R, Deceptive pollination in two subspecies of Disa spathulata (Orchidaceae) differing in morphology and floral fragrance Plant Systematics and Evolution, 2005, 255(1-2): 87-98
    Jonsson P, Gullberg J, Nordstr?m A et al., A strategy for identifying differences in large series of metabolomic sample analyzed by GC/MS Analytical Chemistry, 2004, 76: 1738-1745.
    Katharine B Gregg, Variation in floral fragrances and morphology: incipient speciation in cycnoches? Botanical Gazette, 1983, 144(4): 566-576
    Koprivnjak O, Procida G, Zelinotti T, Changes in the volatile components of virgin olive oil during fruit storage in aqueous media Food Chemistry, 2000, 70: 377-384
    Krumbein A, Peters P, Brückner B, Flavor compounds and a quantitative descriptive analysis of tomatoes(Lycopersicon esculentum Mill.) of different cultivars in short-term storage Postharvest Biology and Technology, 2004, 32: 15~28
    Lars Tollsten, L Gunnar Bergstr?m, Fragrance chemotypes of Platanthera (Orchidaceae)-the result of adaptation to pollinating moths? Nordic Journal of Botany, 2008, 13(6): 607-613
    Lee S J, Noble A C, Characterization of odor-active compounds in Californian chardonnay wines using GC-olfactometry and GC–mass spectrometry Journal of Agricultural and Food Chemistry, 2003, 51: 8036-8044
    Lopez R, Ezpeleta E, Sanchez I, et al., Analysis of the aroma intensities of volatile compounds released from mild acid hydrolysates of odourless precursors extracted from Tempranillo and Grenache grapes using gas hromatography-olfactometry Food Chemistry, 2004, 88: 95-103
    Lord H, Pawliszyn J. Evolution of solid-phase micro extraction technology Journal of Chromatography A, 2000, 885: 153 - 193
    Lozano J, Santos J P, Horrillo M C, Classification of white wine aromas with an electronic nose Talanta, 2005, 67: 610-616
    Luisa Custodio1, Hugo Serra, Jose Manuel F Nogueira et al., Analysis of the Volatiles Emitted by Whole Flowers and Isolated Flower Organs of the Carob Tree Using HS-SPME-GC/MS Journal of Chemical Ecology, 2006, 32(5): 929-942
    Luyt. R, S.D. Johnson. Hawkmoth pollination of the African epiphytic orchid Mystacidium venosum, with special reference to flower and pollen longevity Plant Systematics and Evolution, 2001,228: 49-62
    Mariza G R, Aparecida D de Faria, Volker B et al., The Chemistry of Flower Rewards Oncidium (Orchidaceae) Journal of the Brazilian Chemical Society, 2000, 11(6): 600-608
    Mariza G R, Emerson R P, Ubiratan F. da Silva1 et al., Estanislau do Amaral, Anita J. Marsaioli1. Pollinator attraction devices (floral fragrances) of some Brazilian orchids Archive for Organic Chemistry, 2004 (6): 103-111
    Marti M P, Busto O, Guasch J. Application of a headspace mass spectrometry system to the differentiation and classification of wines according to their origin, variety and ageing Journal of Chromatography A, 2004, 1057: 211-217
    Mielle P, Marquis F. An alternative way to improve the sensitivity of electronic olfactometers Sensors & Actuators.B: Chemical, 1999, 58: 526-535
    Miller M, Stuart J, Comparison of Gas-Sampled and SPME-Sampled Static Headspace for the Determinationof Volatile Flavor Compounds Anal. Chem., 1999, 71(1): 23-27
    Nippon, Shokuhin K, Flavors of Heliotrope Flowers, Analyzed by SPME Method Gakkaishi, 1995, 2:6
    Norris H Williams, W. Mrak Whiiten. Orchid floral fragrances and male euglossine bees: methods and advances in the last sesquidecade The Biological Bulletin, 1983, 164: 355-395
    Okoh O O, Sadimenko A P, Asekun O T et al., The effects of drying on the chemical components of essential oils of Calendula officinalis L. African Journal of Biotechnology, 2008, 7 (10): 1500-1502
    Omata , A., Nakamura S. Nakamura, Yomogida K. Yomogida. Volatile components of TO-YO-RAN flowers (Cymbidium faberi and Cymbidium virescens). Agric. Biol. Chem.1990, 54: 1029-1033
    Otterbach A, Wenclawiak B W, Ultrasonic/Soxhlet/supercritical fluid extraction kinetics of pyrethrins from flowers and allethrin from paper strips Fresenius' Journal of Analytical Chemistry, 1999, 365: 472-474
    Page B, Lacroix G, Analysis of volatile contaminants in vegetable oils by headspace SPME with Carboxen-based fibers Journal of Chromatography A,2000, 873: 79-94
    Peppard T, Yang X, Solid Phase Microextraction for Flavor Analysis Journal of Agricultural and Food Chemistry, 1994, 42: 1925-1930
    Plutowska B, Wardencki W, Aromagrams-Aromatic profiles in the appreciation of food quality Food Chemistry, 2007, 101: 845-872
    Prathaungsri Sinchaisri, Thawatchai Sasiphalin, Chukiat Dhephasarn et al., Natural fragrance from wild orchid flower Dendrobium scabrilingue Ldt, Plant physiology and biochemistry, 1995, 13(2) : 136-141
    Raguso Robert A, Why are some floral nectars scented? Ecology (Washington D C), 85(6):1486-1494
    Ritsuo Nishida, Osamu Iwahashi, Keng Hong Tan, Accumulation of Dendrobium superbum (Orchidaceae) fragrance in the rectal glands by males of the melon fly, Dacus cucurbitae Journal of Chemical Ecology, 1993,19(4): 713-722
    Rizzolo A, Visai C, Vanoli M, Changes in some odour-active compounds in paclobutrazol-treated 'Starkspur Golden' apples at harvest and after cold storage Postharvest Biol. Technol., 1997, 11: 39-46
    Robert A, Flath, Kiichi O, Volatile components of the orchid Dendrobium superbum Rchb. F Journal of Agricultural and Food Chemistry, 1982, 30: 841-842
    Ruth S M, Methods for gas chromatography-olfactometry: A review Biomolecular Engineering, 2001, 17: 121-128
    Sala C, Mestres M, Marit M. et al., Headspace SPME method for determining 3-akyl-2 methoxy- pyrazine inmusts by PDMS fibers Journal of Chromatography Science, 2000, 880(1+2): 93-99
    Schiestl F P, Marion-Poll F, Detection of physiologically active flower volatiles using gas chromatography coupled with electroantennography Molecular Methods of Plant Analysis, 2002, 21:173-198
    Servili M., Selvaggini R., Taticchi A et al. Relationships between the volatile compounds evaluated by SPME and the thermal treatment of tomato juice: optimization of the blanching parameters Food Chemistry, 2000, 71(3):407-415
    Shin Ichi Morinaga, Yuko Kumano, Ayako Ota. Day–night fluctuations in floral scent and their effects on reproductive success in Lilium auratum Popul Ecol, 2009, 51:187–195
    Sides S., Robards K., Helliwell S. Developments in extraction techniques and their application to analysis of volatiles in foods Trends in Analytical Chemistry, 2000, 19(5): 322-329
    Song G. , Xiao J., Deng C et al. Use of solid-phase microextraction as a sampling technique for the characterization of volatile compounds emitted from Chinese daffodil flowers Journal of Analytical Chemistry, 2007, 62(7): 674-679
    Sostaric T., Boyce M. C., Spickett E. E. Analysis of the volatile components in vanilla extracts and flavourings by SPME and gas chromatography Journal of Agricultural and Food Chemistry, 2000, 48(12):5802-5807
    St?kl J., Paulus H., Dafni A. et al. Pollinator attracting odour signals in sexually deceptive orchids of the Ophrys fusca group Plant Systematics and Evolution, 2005,54: 105-120
    Susanna Roeder, Anna Maria Hartmann, Uta Effmert et al. Regulation of simultaneous synthesis of floral scent terpenoids by the 1,8-cineole synthase of Nicotiana suaveolens Plant Mol Biol, 2007, 65: 107–124
    Tatsuka K., M. Kohama, S. Suekane. Floral fragrance of Zygopetalum mackayi (Orchidaceae) Agricultural Biology and Chemistry, 1988, 52: 1599-1600
    Todd J. Barkman, J. H. Beaman, Douglas A Gage. Floral fragrance variation in Cypripedium: Implications for evolutionary and ecological studies Phytochemistry, 1997, 44(5): 875-882Whitten W.M, N. H.
    Williams. Floral fragrances of Stanhopea (Orchidaceae) Lindleyana , 1992, 7:130-153
    Tomaino R., Parker J., Larick D. Analysis of free fatty acids in whey products by SPME J. Agric Food Chem, 2001, 49, 3993-3998
    Vanoli M, Visai C, Rizzolo A. The Influence of Harvest Date on the Volatile Composition of Starkspur-GoldenApples Postharvest Biol. Technol., 1995, 6: 225-234
    Verstappen F. W. A., Helsper J. P. F. G., Davies J. A.. Analysis of rhythmic emission of volatile compounds of rose flowers Molecular Methods of Plant Analysis, 2002, 21: 199-221
    Wiemer A. P., M. More, S. Benitez-Vieyra1 et al. A simple floral fragrance and unusual osmophore structure in Cyclopogon elatus (Orchidaceae) Plant Biology, 2008, 10: 1-9
    Williams M, Morales M T, Apapicio R et al. Analysis of volatiles from callus cultures of olive Olea europaea Phytochemistry,1998, 7: 1253-1259
    Visai C, Vanoli M. Volatile compound production during growth and riepening of peaches and nectarines Scientia Horticulturae, 1997, 70: 15-24
    Zosel K. Separation with Supercritical Gases: Practical Applications Angewandte Chemie International Edition in English, 1978, 17:702-708

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700