纳米碳纤维/蜂窝状堇青石催化剂载体的制备及结构控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蜂窝状堇青石作为催化剂载体,既具有高机械强度、低的热膨胀系数、低气压压降,又有很多优良的物理化学性能。纳米碳纤维作为催化剂或催化剂载体具有结构单一,表面纯净,耐酸耐碱,以及石墨层与表面负载金属之间的相互作用等优良的物理化学特性。然而,蜂窝状堇青石比表面积较低,不利于担载催化剂;纳米碳纤维粉体结构作为催化剂载体应用于气相反应器时,会带来流体阻力大、易堵塞反应器等问题。
     本论文针对蜂窝状堇青石和纳米碳纤维作为催化剂载体存在的不足,展开了纳米碳纤维/蜂窝状堇青石复合载体的制备及结构控制研究。首先采用溶胶-凝胶法制备涂覆在蜂窝状堇青石表面上的氧化铝涂层;然后采用化学气相沉积方法,在氧化铝涂层上生长纳米碳纤维。
     研究结果表明:1)氧化铝溶胶中拟薄水铝石固含量为15%,浓硝酸为22.5%,制得适宜涂覆在蜂窝状堇青石上的氧化铝溶胶;2)采用分步干燥法,制备出均匀、完整和结合强度高的氧化铝涂层;3)通过优化CNF生长条件,制备的纳米碳纤维直径均一,分布均匀,复合材料机械强度高,结合牢固;4)通过向Ni基催化剂中加Cu,来解决Ni催化剂失活的问题;5)螺旋状纳米碳纤维是Ni-Cu催化剂在载体表面扩散或者聚合形成一定直径的大颗粒催化剂,生长出直径100nm左右的螺旋状纳米碳纤维;6)纳米碳纤维/蜂窝状堇青石为催化剂载体,V205为催化剂,用于烟气脱硝,280℃,空速为6000h-1,转化率达到60%。
Honeycomb monolith exhibits a lot of advantages, such as high mechanical resistance, good refractory properties, high thermal shock resistance and good compatibility with the catalyst washcoat. In addition, the straight parallel channels provide very low pressure drop provide low pressure drop.Carbon nanofiber(CNF) is a promising candidate as for catalyst support. The main advantages of CNF are the high purity preventing poisoning and side reactions, the chemical stability in acidic and basic media and specific metal-support interactions, which offers the possibility to modify the catalyst performance with respect to other supports. However, CNF in powder form has some drawbacks, such as high pressure drop for gas phase operation.
     In this account, CNF/honeycomb monolith composite with high specific surface area and low pressure drop was prepared for catalyst support of selective catalytic reduction (SCR) of NO in low temperature. The alumina washcoat was deposited on honeycomb monolith via sol-gel method. And CNF was gown on the alumina washcoat layer by chemical vapor deposition (CVD). In addition, the performance of CNF/honeycomb monolith supporting V2O5 for SCR of NO was investigated.
     The main results are given as follows.1) The optimized alumina sol for washcoat was synthesized with 15wt% seudoboehmite and 22.5% nitric acid.2) The smooth and uniform of washcoat with high mechanical strength was prepared by step drying method.3) CNF with uniform diameter was homogeneously gown on the washcoat by CVD, and the complete adhesion of the CNF layer and higher mechanical strength than the original honeycomb monolith was obtained.4) Ni-based catalyst with high stability and resisting carbon deposition for the CNF growth was developed by adding Cu to the active component of the catalyst.5) The appearance of helical CNF was attributed to a coarsening of the small catalyst particles, which occured either through surface diffusion or particle coalescence to grow to a certain size to initiate the growth of helical CNF with a diameter of 100nm.6) V2O5 catalyst supported on CNF/honeycomb monolith was prepared for SCR of NO. Its best NO conversion reached 60% at 280℃and 6000 h-1.
引文
[1]Hughes V, Chambers CR. Manufacture of Carbon Filaments. Patent. (1889):405-408.
    [2]De Jong KP, Geus JW. Carbon nanofibers:catalytic synthesis and applications [J]. Catal. Rev Science Engineering.2000,42(5):481-510.
    [3]Nielsen JR, Trimm DL. Mechanisms of carbon formation on nickel containing catalysts [J]. Catal.1977,48(2):155-167.
    [4]Lathouder KM, Lozano-Castello D, Linares-Solano A, et al. Carbon-ceramic composites for enzyme immobilization[J]. Microporous and mesoporous materials.2007,99(10): 216-223.
    [5]Jinwen Chen, Hong Yang, Neil Wang, et al. Mathematical modeling of monolith catalysts and reactors for gas phase reactions [J]. Applied Catalysis A:General.2008,345(1): 1-11.
    [6]Jimmie L, Williams. Monolith structures, materials, properties and uses[J]. Catalysis Today.2001,69(3):3-9.
    [7]Michiel T, Kreutzer, Freek Kapteijn, et al. Multiphase monolith reactors:Chemical reaction engineering of segmented flowin micro channels[J]. Chemical Engineering Science.2005,60(6):5895-5916.
    [8]Boger T, Heibel AK, Sorensen CM. Monolithic catalysts for the chemical industry [J]. Industrial and engineering chemistry research.2004,43(16):4602-4611.
    [9]Tischer S, Deutschmann O. Recent advances in numerical modeling of catalytic monolith reactors [J]. Catalysis Today.2005,105(15):407-413.
    [10]Pablo Mann, Miguel AG Hevia, Salvador Ordonez, et al. Combustion of methane lean mixtures in reverse flow reactors:Comparison between packed and structured catalyst beds[J]. Catalysis Today.2005,105(11):701-708.
    [11]Veser G, Frauhammer J. Modelling steady state and ignition during catalytic methane oxidation in a monolith reactor[J]. Chemical engineering science.2000,55(12): 2271-2286.
    [12]Boger T, Menegola M. Monolithic catalysts with high thermal conductivity for improved operation and economics in the production of phthalic anhydride[J]. Industrial & Engineering chemistry research.2005,44(1):30-40.
    [13]Krishna R, Urseanu MI, Baten JM. Rise velocity of a swarm of large gas bubbles in liquids[J]. Chemical engineering science.1999,54(2):171-183.
    [14]Pedro Avila, Mario Montes, Eduardo E Miro. Monolithic reactors for environmental applications:A review on preparation technologies[J]. Chemical Engineering Journal. 2005,109(17):11-36.
    [15]John W Geus, Joep C van Giezen. Monoliths in catalytic oxidation[J]. Catalysis Today. 1999,47(9):169-180.
    [16]Alexander T, Beers, Annemarie EW, et al. Preparation of monolithic catalysts[J]. Catalysis Reviews.2001,43(4):345-380.
    [17]Pingping Jiang, Guanzhong Lu, Yun Guo, et al. Preparation and properties of a γ-Al2O3 washcoat deposited on a ceramic honeycomb[J]. Surface & Coatings Technology.2005, 190(3):314-320.
    [18]朱洪法.催化剂载体制备及应用技术[M].北京:石油工业出版社.2002,344.
    [19]付会娟,金月昶,康久常.蜂窝陶瓷载体上氧化铝涂层的制备[J].当代化工.2006,35(5):289-296.
    [20]Alexander Nijhuis T, Annemarie EW Beers, Theo Vergunst, Ingrid Hoek, Freek Kapteijn, Jacob A Moulijn. Preparation of monolithic catalysts[J]. Catalysis Reviews.2001,43(4): 345-380.
    [21]李群.纳米材料的制备与应用技术[M].北京:化学工业出版社.2008,188.
    [22]Brtnker CJ, Scherer GW. Sol-Gel Science:The Physics and Chemistry of Sol-Gel Processing[M]. Academic Press.1990,2.
    [23]侯万国,孙德军,张春光.应用胶体化学[M].北京:科学出版社第一版.1998,124-125.
    [24]Prabhakaran K, Ananthakumar S, Pavithran C. Gel casting of alumina using boehmite as a binder[J]. Journal of the European Ceramic Society.1999,19:2875-2881.
    [25]潘成强,钱君律,伍艳辉.温度对硝酸法制备拟薄水铝石影响的研究[J].精细石油化工进展.2003,4(10):40-41,44.
    [26]田久英,卢菊生,吴宏.堇青石蜂窝陶瓷载体涂层的制备研究.徐州师范大学学报(自然科学版)[J].2008,26(4):68-71.
    [27]Christos Agrafiotis, Athena Tsetsekou. Deposition of meso-porous γ-Al2O3 coatings on ceramic honeycombs by sol-gel methods[J]. Journal of the European Ceramic Society. 2002,22(5):423-434.
    [28]De Jong KP, Geus JW. Carbon nanofibers:catalytic synthesis and applications [J]. Catalyst. Rev-Science Engineer.2000,42(8):481-510.
    [29]赵铁均.纳米碳纤维的微观结构调控及相关催化性能研究[D].上海:华东理工大学,2004.
    [30]McCaldin S, Bououdina M, Grant DM, Walker GS. The effect of processing conditions on carbon nanostructures formed on an iron-based catalyst [J]. Carbon.2006,44(22): 2273-2280.
    [31]Rodriguez NM, chambers A, Baker RTK. Catalytic Engineering of carbon nanostructures [J]. Langmuir.1995,11(3):3862.
    [32]Na-oki Higashi, Hiro-aki Ichi-oka, Takanori Miyake, et al. Growth mechanisms of carbon nanofilaments on Ni-loaded diamond catalyst[J]. Diamond & Related Materials. 2008,17(17):283-293.
    [33]Pinilla JL, Suelves I, Lazaro MJ, et al. Influence of nickel crystal domain size on the behaviour of Ni and Ni-Cu catalysts for the methane decomposition reaction[J]. Applied Catalysis A:General.2009,363(2):199-207.
    [34]Nakano H, Nakamura J. Carbide-induced reconstuction initiated at steep edges on Ni(111) [J]. Surface Science.2001,32(6):341-345.
    [35]Rodriguez NM. A review of catalytically grown carbon nanofibers[J]. Carbon.1994, 32(4):581-588.
    [36]Tibbetts GG, Bernardo CA, Gorkiewicz DW. Rote of sulfur in the production of carbon fibers in the vapor phase [J]. Carbon.1994,32(4):569-576.
    [37]范月英,成会明,苏革.气相生长纳米碳纤维的研究进展[J].新型碳材料.1999,14(2):14-20.
    [38]Lee Cheoljin, Lee Taejae, Park Jeunghee. Carbon nanofibers grown on sodalim grown on sodalime glass at 500 using thermal vapor deposition[J]. Chem.Phys.Lett.2001, 340(5-6):413.
    [39]Vander W. Flame synthesis of Fe catalyzed single-walled carbon nanotubes and Ni catalyzed nanofibers:growth mechanisms and consequences[J]. Chem.Phys.Lett.2001, 349(3-4):178.
    [40]Kato T, Kusakabe K, Moroka S. Process of formation of vapor-grown carbon fibers by gas-phase reaction using ultrafine iron catalyst particles[J]. J.Mater.Sci.Lett.1992,11(1): 674.
    [41]Vander Wal RL, Curtic VE, Curtic VE. Substratesupported interactions in metal-catalyzed carbon nanofiber growth [J]. Carbon.1991,39(15):2277-2289.
    [42]Jinghong Zhou, Zhijun Sui, Ping Li, et al. Structural characterization of carbon nanofibers formed from different carbon-containing gases [J]. Carbon.2006,44(15): 3255-3262.
    [43]Gao R, Tan CD, Baker RTK. Ethylene hydroformylation on graphite nanofiber supported rhodium catalysts[J]. Catalysis Today.2001,65(14):19-29.
    [44]Douxing Li, Jiuling Chen, Yongdan Li. Evidence of composition deviation of metal particles of a Ni-Cu/Al2O3 catalyst during methane decomposition to COx-free hydrogen[J]. International journal of hydrogen energy.2009,34(13):299-307.
    [45]Li YD, Chen JL, Ma YM, et al. Formation of bamboo-like nanocarbon and evidence for the quasiliquid state of nanosized metal particles at moderate temperatures[J]. Chemistry Communication.1999,32(6):1141-1142.
    [46]Helveg S, Lopez-Cartes C, Sehested J, et al. Atomic-scale imaging of carbon nanofiber growth[J]. Nature.2004,427(6973):426-429.
    [47]Chen JL, Li YD, Li ZQ, Zhang XX. Production of COx-free hydrogen and nanocarbon by direct decomposition of undiluted methane on Ni-Cu-alumina catalysts[J]. Applied Catalysis A:General.2004,269(1-2):179-186.
    [48]Monthioux M, Noe L, Dussault L, et al. Texturising and structurising mechanisms of carbon nanofilaments during growth[J]. Mater Chemistry.2007,17(18):4611-4618.
    [49]Viilegas L, Masset F, Guilhaume N. Wet impregnation of alumina-washcoated monoliths: Effect of the drying procedure on Ni distribution and on autothermal reforming activity[J]. Applied Catalysis A:General.2007,320(12):43-55.
    [50]Brinker CJ, Scherer GW. Sol-gel science:the physics and chemistry of sol-gel processing. Boston:Academic Press,1990.
    [51]Knijff LM. The application of active components into catalyst support bodies[D]. Utrecht, The Netherlands:Utrecht University,1993.
    [52]Theo Vergunst1, Freek Kapteijn, Jacob A Moulijn. Monolithic catalysts-non-uniform active phase distribution by impregnation [J]. Applied Catalysis A:General.2001, 213(16):179-187.
    [53]Amaya Romero, Agustm Garrido, Antonio Nieto-Marquez, et al. The influence of operating conditions on the growth of carbon nanofibers on carbon nanofiber-supported nickel catalysts[J]. Applied Catalysis A:General.2007,319(5):246-258.
    [54]Ali Rinaldi, Norly Abdullah, Muataz Ali, et al. Controlling the yield and structure of carbon nanofibers grown on a nickel/activated carbon catalyst[J]. Carbon.2009,56(8): 1006-1016.
    [55]McCaldin S, Bououdina M, Grant DM, Walker GS. The effect of processing conditions on carbon nanostructures formed on an iron-based catalyst[J]. Carbon.2006,44(9): 2273-2280.
    [56]Jarrah N, JG van Ommen, L Lefferts. Development of monolith with a carbon-nanofiber-washcoat as a structured catalyst support in liquid phase[J]. Catalysis Today.2003, (79-80):29-33.
    [57]Marjolein L Toebes, Johannes H Bitter, A Jos van Dillen, et al. Impact of the structure and reactivity of nickel particles on the catalytic growth of carbon nanofibers [J]. Catalysis Today.2002,76(5):33-42.
    [58]Pelech I, Narkiewicz U. Studies of hydrogen interaction with carbon deposit containing carbon nanotubes[J]. Journal of Non-Crystalline Solids.2009,355(13):1370-1375.
    [59]De Jong KP, Geus JW. Carbon nanofibers:catalytic synthesis and applications [J]. Catal. Rev-Science Engineer.2000,42(12):481-510.
    [60]Chambers A, Nemes T, Rodriguez MN, et al. Catalytic behaviour of graphite nanofiber supported nickel particles:1. Comparason with other support media[J]. Phys. Chem B. 1998,102(10):2251-2258.
    [61]Park C, Baker RTK. Catalytic behaviour of graphite nanofiber supported nickel particles: 2. The influence of the nanofiber structure[J]. Phys. Chem B.1998,102(9):5168-5177.
    [62]Chambers A, Baker RTK. Catalytic behaviour of graphite nanofiber supported nickel particles:3. The Effect of chemical blocking on the performance of the system [J].Phys. Chem B.1999,103(13):2454-2459.
    [63]Morales-Torres S, AF Perez-Cadenas, Kapteijn F, et al. Palladium and platinum catalysts supported on carbon nanofiber coated monoliths for low-temperature combustion of BTX[J]. Applied Catalysis B:Environmental.2009,10(9):570-578.
    [64]Zhou Jinghong, Sui Zhijun, Zhou Xinggui, Yuan Weikang. Palladium catalysts supported on fishbone carbon nanofibers from different carbon sources[J]. Chinese Journal of catalysis.2008,29(11):1107-1112.
    [65]Bosch H, Jansscn F. Catalytic reduction of nitrogen oxide-A view on the fundamentals and technology[J]. Catalysis Today.1988,2(4):369-531.
    [66]Hayhurst AN, Mclean HAG. Mechanism for production NO from nitrogen in flames[J]. Nature.1974,251(21),303.
    [67]朱珍平.活性焦担载金属氧化物催化剂上NO低温还原[D].太原:中国科学院山西煤炭化学研究所,2000.
    [68]钟秦.燃煤烟气脱硫脱硝技术及工程实例[M].北京:化学工业出版社第一版.2002,284.
    [69]高彦杰.低温选择性催化还原脱硝催化剂的制备及性能研究[M].南京:南京理工大学,2009.
    [70]Nojiri N, Sakai Y, Watanabe Y. Two catalytic technologies of much influence on progress in chemical process development in Japan[J]. Catal rev-science Engineer.1994, 36(7):146-179.
    [71]Bosch H, JJG Janssen E, Vanden GM Kerkhof, Oldenziel J, et al. The activity of supported vanadium oxide catalysts for the selective reduction of NO with ammonia[J]. Applied Catalysis.1986,25(16):239-248.
    [72]Nam I. Stoichiometry for NO reduction by NH3. Journal of catalysis.1989,119(4):269.
    [73]翟赞.氨法选择性催化还原(SCR)脱硝催化剂研究[M].北京:北京工业大学,2008.
    [74]唐晓龙.低温选择性催化还原NOx技术及反应机理[M].北京:冶金工业出版社第一版.2007,23.
    [75]宋淑美,王睿.具有低温活性的高效脱硝催化体系研究进展[J].现代化工.2007, 27(3):108-112.
    [76]Kijlstra WS. Deactivation by SO2 of MOx/Al2O3 catalysts used for the selective catalytic reduction of NO with NH3 at low temperatures[J]. Applied Catalysis B.1998,16(4): 327-337.
    [77]施斌,唐朝生,王宝军,姜洪涛.粘性土在不同温度下龟裂的发展及其机理讨论[J].高校地质学报.2009,15(2):192-198.
    [78]Theo Vergunst, Marco JG, Linders, et al. Carbon-based monolithic structures[J]. Catalysis reviews.2001,43(3):291-314.
    [79]唐路林,邓钢,李乃宁.酚醛树脂基炭化功能性材料[J].热固性树脂.2008,23(4):40-45.
    [80]Zhixin Yu, De Chen, Bard T(?)tdal, et al. Parametric study of carbon nanofiber growth by catalytic ethylene decomposition on hydrotalcite derived catalysts[J]. Materials chemistry and physics.2005,33(92):71-81.
    [81]张淮.纳米碳管与纳米碳纤维的制备及表征[M].杭州:浙江大学,2006.
    [82]Fabien Habimana, Xiujin Li, Shengfu Ji, et al. Effect of Cu promoter on Ni-based SBA-15 catalysts for partial oxidation of methane to syngas[J]. Journal of Natural Gas Chemistry.2009,81(18):392-398.
    [83]Hyun-Seung Jung, Seung Yong Lee, Jae-Pyoung Ahn, et al. Growth of helical carbon nanofibers in the presence of Ni-Cu catalysts[J]. Metals and materials international.2006, 12 (5):417-423.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700