基于ARM的远程家庭监护智能终端系统的研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着生活水平的不断提高,人们对健康保健和常规检查越来越重视。而且社会老龄化的不断加剧,老年人健康问题也成了深受社会关注的问题。但是在现在的医疗体制下,医院主要针对疾病治疗无法满足社会的需要。而且很多疾病发生前并无明显症状,而是在家中突然发生,因无法得到医生的及时诊治而使病情恶化甚至导致死亡。因此,发展一种新的医疗模式势在必行。以社区医疗为基础,发展以家庭为核心的远程家庭监护系统,使病人在家中就可享受到医院专业的监护,成为解决上述问题的有效途径。
     本文研制了一种基于社区和家庭,以家庭为核心的“家庭——社区医院——中心医院”的三层体系结构的远程家庭监护系统。该系统主要包括家庭端的远程家庭监护智能终端和远端的医院监护中心两部分,其中,家庭端的远程家庭监护智能终端的软硬件实现是本文的重点和关键。
     论文给出了远程家庭监护智能终端的硬件结构和软件体系的总体设计方案。远程家庭监护的硬件平台,以Philips的ARM内核的32位嵌入式微处理器LPC2214为控制核心,外围扩展蓝牙模块、ISP1160 USB主机模块、10M以太网通信模块、CF卡存储模块和液晶显示模块等模块实现。文中对各硬件模块的设计实现做了详尽的论述。在硬件平台的基础上,移植嵌入式操作系统μC/OS-Ⅱ,按照操作系统、中间件程序和应用程序的分层软件体系结构,设计实现了远程家庭监护智能终端的软件,使得软件更易维护和升级。
     论文对家庭监护终端的软件实现进行了详细的论述。设计实现了各硬件模块的驱动程序、通信协议和应用程序。整个应用程序按功能划分为9个任务,由操作系统内核进行调度,提高了系统的可靠性和实时性。应用程序实现了友好的人机界面和生理信号的自动分析功能。重点研究了ECG信号自动分析诊断算法,应用自适应模板法,实现了疾病自动分析诊断功能,能够实现10种常见心律异常的自动分析诊断。
     远程家庭监护智能终端系统可实现对病人心电、血压、血糖、体温、呼吸率和血氧饱和度等参数的实时远程监护,可根据病人的情况定制要监护的参数,具有良好的可扩展性和灵活性。远程家庭监护终端,通过蓝牙模块以无线方式采集病人的心电和体温参数,通过USB主机下行口连接其他生理参数模块采集血压等参数。所采集的参数经终端分析处理后,可在液晶上显示生理参数值及结果,并可通过局域网传送到监护中心服务器,供社区医院监护医生分析诊断。在病人出现生理异常时,家庭监护智能终端能够给出初步诊断结果并发出报警。监护服务器收到报警后提醒监护医生给出诊断结果,并将诊断结果反馈到家庭监护终端显示,使病人能够得到及时救治。
     本课题所研制的远程家庭监护终端系统,具有操作简单,界面友好,可扩展性和灵活性高等特点,能够实现低成本实时远程家庭监护。另外,系统采用嵌入式系统设计,具有较高的可靠性和实时性。经测试,远程家庭监护终端系统达到预期设计要求,有较高的实用价值。
With the continuous improvement of living standards, there is a growing emphasis on people's health care and wellness checks. Whilst with the increasingly aging of the population, health of the elderly has become the subject of the social concerns. But in the current medical system, most hospitals can't meet the needs of the community because they are interested in the treatment of the diseases. Also some diseases have no obvious symptoms, but suddenly are taken bad at home. Due to lack of timely medical treatment, people's illnesses became worse or even die. So development of a new medical model is absolutely necessary. A new home health telemonitoring system based on community is the right way to solve these problems. In the system, the family is the core and patients at home can enjoy the professional care like in hospital.
    This paper developed a new home health telemonitoring system based on community and family. The structure of the system is "Home — Community Hospital -- Main hospital". The system includes an intelligent terminal at home-side and a viewer system for the therapist at community hospital. In this paper, the design of the home-side intelligent terminal system's hardware and software is the key.
    This paper presents the scheme of the intelligent terminal hardware and software system in the new home health telemonitoring. The Philips LPC2214 is the core of the intelligent terminal's hardware platform, which is 32-bit ARM kernel embedded microprocessor, Periphery expands Bluetooth module, ISP1160 USB Host Module, 10M Ethernet communication module, CF card memory module and LCD modules. This paper minutely depicts the design of the hardware module. Based on the hardware platform, we transplant the embedded operating system μC/OS- II. According to software architecture, which has operating system, Middleware and application procedures three layers, we design and implement the home-side intelligent terminal's software. So that the software of the intelligent terminal easier to maintain and upgrade.
    In this paper we state the realization of the intelligent terminal software in detail. We design the driver of the hardware modules, communication protocols and applications. The entire application process is divided into nine functional tasks scheduling by the operating system kernel. So the reliability and real-time of the system has improved. A user-friendly interface and automatic physiological signal analysis program are important parts of the application programs. The automatic analysis and diagnostic of ECG signals are studied. Applying the adaptive template automatic diagnostic algorithm, the home-side intelligent terminal is able to automatically analyze and diagnose 10 kinds of common abnormal rhythm.
    The intelligent terminal system can timely collect and transmit multiply physiological parameters, such as ECG, NIBP, blood glucose, body temperature, respiratory rate and oxygen saturation. And monitoring parameters can be customized according to the patient's condition, which make the home health telemonitoring system to be good scalability and flexibility. The intelligent terminal system can collect ECG and the body temperature through Bluetooth wireless module and acquire other physiological parameters such as blood pressure parameters using the other modules, which connect to USB Host down-link. The acquisition parameters are analyzed by the terminal. Then the physiological parameters and results can display on the LCD (liquid crystal display), and also be sent to telemonitoring center's server through LAN. In the community hospitals the therapist could use the physiological parameters to analyze and diagnose. When physiological abnormalities emerge, the intelligent terminal can give a preliminary diagnosis and alarm to patient and therapist. Seeing the alert, the therapist should give a diagnostic results based on the patient's physiological parameters immediately. The diagnostic results will be transmitted back to the home-side intelligent terminal and be displayed on LCD. So patients can receive timely treatment.
    The subject has developed an intelligent terminal home health telemonitoring system, which has a simple and friendly interface, high scalability and flexibility, can achieve low-cost and real-time telemonitoring. In addition, using embedded system design, the system has high real-time and reliability. Through testing, the intelligent terminal system achieves the desired design requirements of the home telehealth and has high practical value.
引文
[1] 邹焱飚,谢存禧.基于家庭的远程健康监护系统进展[J].计算机工程与应用,2005,30(10):20~34.
    [2] 吴宝明,朱凌云.远程心电监护系统及动态心电信号自动分析的研究进展[J].中国医疗器械杂志,2006,30(5):352~358.
    [3] 吴效明,吴凯等.多参数心脏功能远程监测系统的研制[J].医疗卫生装备,2004,02:17~21
    [4] Young Moon Chae, Joo Heon Lee, Seung Hee Ho, Hee Ja Kim, Ki Hong Jun, Jong Uk Won. Patient satisfaction with telemedicine in home health services for the elderly[J]. International Journal of Medical Informatics 61, 2001, 167-173.
    [5] J. Michael Fitzmaurice. Telehealth Research and Evaluation: Implications for Decision Makers[J]. Pacific Medical Technology Symposium, 1998. Proceedings. Pacific 17-20 Aug. 1998, 344-352.
    [6] 白净.智能化社区医疗系统工程[J].中国医疗器械信息,2000,6(2):14~16.
    [7] 彭承琳,侯文生,杨东.发展中的远程家庭监护系统[J].世界医疗器械,1999,03.
    [8] Philips. http://www.medical.philips.com/main/products/telemonitoring/. 2007-03.
    [9] Home Telehealth Limited. http://www.hometelehealthltd.co.uk/. 2006-10-2007-03.
    [10] American TeleCare. http://www.americantelecare.com/. 2006-05-2007-03.
    [11] 张大龙.多参数远程医疗网的架设[D].西安:西安交通大学,2003.
    [12] J. Bai, Y. Zhang, D. Shen, L. Wen, C. Ding, Z. Cui, F. Tian, B. Yu, B. Dai and J. Zhang. A portable ECG and blood pressure telemonitoring system[J]. IEEE Engineering in Medicine and Biology I8(4) (1999), 63-70.
    [13] G. Edward Barnes, Steve Warren. A wearable bluetooth-enabled system for home health care[A]. Proceedings of the Second Joint EMBS/BMES Conference Houston[C], TX, USA, October, 2002 23~26.
    [14] U. Edstrom, J. Skonevik, T. Backlund, J. S. Karlsson. A flexible measurement system for physiological signals in mobile health care[A]. Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference[C], Shanghai, China, September 1-4, 2005, 2161~2162.
    [15] Mohd Fadlee A. Rasid and Bryan Woodward. Bluetooth telemedicine processor for multichannel biomedical signal transmission via mobile cellular networks[J]. IEEE Transactions on Information Technology in Biomedicine, VOL. 9, NO. 1, March 2005, 35~43.
    [16] Jack M. Winters, Yu Wang, Jill M. Winters. Wearable sensors and telerehabilitation[J]. IEEE Engineering in Medicine and Biology Magazine, May/June 2003, 56~65.
    [17] 周立功等.ARM嵌入式系统基础教程[M].北京:北京航空航天大学出版社,2005.5,322~414,415~432.
    [18] 周立功等.ARM嵌入式系统实验教程[M].北京:北京航天航空大学出版社,2004.11.
    [19] 王田苗.嵌入式系统设计与实例开发[M].北京:清华大学出版社,2002.9.
    [20] 吴明晖.基于ARM的嵌入式系统开发与应用[M].北京:人民邮电出版社,2005.2.
    [21] 周立功等.ARM嵌入式系统软件开发实例(一)[M].北京:北京航天航空大学出版社,2004.11,242~318,504~521.
    [22] 加拿大威蓝通信公司.SBT-800-BBM使用说明.2006.
    [23] 周立功等.ARM嵌入式系统软件开发实例(二)[M].北京:北京航空航天大学,2006.6,1~273.
    [24] 陈启美,丁传锁.计算机USB接口技术[M].南京:南京大学出版社,2003.01,321~326.
    [25] 马伟.计算机USB系统原理及其主/从机设计[M].北京:北京航空航天大学出版社,2004.03.254~286.
    [26] REALTEK公司. RTLS019AS datasheets, http://www.realtek.com.tw/.2007.
    [27] CATALYST Corpration. CAT24WCxx Data Sheet. 2000.
    [28] 王保华.生物医学测量与仪器[M].上海:复旦大学出版社,2003:216~239.
    [29] TOSHIBA. T6963C User Manual. 2000.
    [30] JEAN J.LABROSSE.μC/OS-Ⅱ源码公开的实时嵌入式操作系统[M].北京:中国电力出版社,2004.3,64~143.
    [31] 朱华军.μC/OS-Ⅱ操作系统在ARM处理器上的移植[J].计算机工程,2004,12:22~24.
    [32] 任哲.嵌入式实时操作系统μC/OS-Ⅱ原理及应用[M].北京:北京航空航天大学 出版社,2005.
    [33] 周立功单片机发展公司.ARM7TDMI-S(Rev 4)技术参考手册.2004.
    [34] 林锐.高质量C++/C编程指南[M].网络电子版,2001.07.
    [35] 谭浩强.C程序设计(第二版)[M].北京:清华大学出版社,2002.
    [36] 彭翔宇,胡豪等.嵌入式系统中USB主机控制器的实现[J].计算机应用,2003,10(23):129~130.
    [37] 张玘,金光虎,冯旭哲.基于ISP1161的USB HOST技术应用[J].单片机与嵌入式系统应用,2004,12:58~60.
    [38] Philips公司 ISP1160 Embedded Universal Serial Bus 1.1 Host Controller datashee. 2003.
    [39] 广州周立功单片机发展有限公司.ZLG/IP嵌入式TCP协议栈使用手册.2004.11.
    [40] Jeremy Bentham. TCP/IP Lean Web Servers for Embedded Systems[M].北京:机械工业出版社,2003.5,312~386.
    [41] 深圳市彩晶科技有限公司.CM2401 28使用说明.2006.
    [42] 张承瑞,王金川,王恒.CF卡与单片机的接口设计及编程[J].山东大学学报(工学版),2004,3 4(6):13~15.
    [43] 海深.嵌入式系统的存储卡接口技术研究[D].合肥:合肥工业大学,2006.
    [44] Andren N.Sloss,Dominic Symes等.ARM嵌入式系统开发—软件设计与优化[M].北京:北京航空航天大学出版社,2005.2,193~230.
    [45] 胡广书.数字信号处理——理论、算法与实现[M].北京:清华大学出版社,2003.
    [46] 冯海新,吕聪敏,张丽华.临床心电学及图谱详解[M].北京:人民军医出版社,2004,4~10.
    [47] Gritzali F, Frangakis G, Papakons tantinou G. Detection of the P and T waves in an ECG. Computers and Biomedical Research [J],1989,22(1): 88~90.
    [48] Friesen GM, Jannett TC, Jadallah MA. A comparison of the noise sensitivity of nine QRS detection algorithms [J]. IEEE TRANS on BBE,1990, 37(1): 85-87.
    [49] Jiapupan, Tomspkins WJ. A real-time QRS detection algorithm [J]. IEEE TRANS on BME,1992, 39(4): 317-319.
    [50] 魏继航.同步十二导ECG波形边缘自动检测算法[J].承德医学院学报,1998,15(4):315-316.
    [51] 费保蔚,庄天戈,程敬之等.一种心电图QRS波检测方法[J].北京生物医学工程,1997,16(1):11~17.
    [52] 朱凌云,吴宝明等.移动心电监护系统QRS波的实时检测算法研究[J].仪器仪表学报,2005,06:603~607.
    [53] 朱新建,吴宝明等.移动远程心电监护实时监测算法及其单片机实现[J].北京生物医学工程,2006,25(2):156~159.
    [54] 王平,汪金刚等.基于远程多参数的嵌入式监护系统研究[J].计算机仿真,2006,23(7):223~227.
    [55] 熊伟,谢存喜.多生理参数远程监护网络系统的研制[J].机电工程技术,2006,35(3):32~34.
    [56] 吴宝明,朱刚等.移动远程监护系统监护中心的设计[J].北京生物医学工程,2005,24(6):421~424.
    [57] 张石,王军辉等.远程心电监护系统中监护中心软件的实现[J].中国医疗器械杂志,2006,30(6):20~22.
    [58] 吴逸贤,吴目诚.精彩C++Builder 6程序设计[M].北京:科学出版社,2003.
    [59] 刘光.C++Builder数据库系统设计与开发[M].北京:清华大学出版社,2003.
    [60] 清汉计算机工作室.C++Builder网络开发实例[M].北京:机械工业出版社,2000.01.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700