太阳帆航天器姿态控制与轨迹优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着航天领域日新月异的发展,人类的足迹也从地球家园迈向了茫茫太空。太阳帆技术作为一类新颖的航天技术,为人类深入探索太阳系以至实现星际航行提供了有利的技术支撑。太阳帆是一种利用太阳光压产生持续推力的推进器,可以给航天器提供连续小推力,且自身无需携带大量燃料,适合于运行在一些非传统任务轨道上,可用于极地高纬度地区的成像和实时通讯、类地行星的探测、采样返回等科学任务。因此在深空探测和星际航行等航天领域具有广阔的应用前景,近年来得到了国际航天界广泛关注。
     太阳帆航天器的显著特点是其大尺度薄膜帆面、支撑杆等柔性结构与姿态动力学之间强耦合、非线性的关系,即姿态调整会诱发柔性结构振动,影响航天器的推力大小和方向,进而对姿态调整造成扰动。此外,相对于传统航天器,太阳帆航天器转移至目标轨道的周期相对较长,需要根据任务优化太阳帆航天器在初始轨道和目标轨道之间的转移轨迹。因此,开展太阳帆航天器的动力学建模与姿态控制研究,以及太阳帆航天器转移轨迹的优化研究具有重要的现实意义和理论价值。
     本文主要研究了太阳帆航天器的姿态动力学建模与控制,及其轨道转移的优化问题。基于目前典型的太阳帆构型及其刚体动力学模型,结合刚柔耦合动力学的研究进展,分别研究了太阳帆航天器线性姿态动力学模型和非线性姿态动力学模型,以及相应的姿态控制方法。针对太阳帆航天器轨迹优化问题的特点,结合进化算法和多目标方法最新的研究成果,对太阳帆航天器实现不同任务的最优转移轨迹问题进行了研究。
     现有文献研究表明,太阳帆航天器俯仰轴刚体动力学模型无法准确反映其柔性结构特征。本文第2章在分析了分别采用万向节控制和反作用喷气推力器控制的太阳帆航天器刚体动力学响应的基础上,结合混合坐标法的思想,建立了具有刚柔耦合特征的太阳帆航天器姿态动力学模型。为了抑制太阳帆航天器在姿态调整过程中诱发的柔性结构振动,保证其姿态调整的精确性和稳定性,针对建立的太阳帆航天器刚柔耦合动力学模型,设计了H∞控制器,实现了太阳帆航天器渐近跟踪目标姿态角,同时能够抑制柔性结构的诱发振动。
     完全小角度近似无法准确描述太阳帆航天器的动力学特性。本文第3章首先建立了采用万向节力矩控制和反作用推力控制同时作用的太阳帆航天器俯仰轴非线性刚体动力学模型,并通过混合坐标法,推导得到太阳帆航天器刚柔耦合非线性姿态动力学模型。在此基础上,对姿态角变化率、万向节角度及其变化率采用局部小角度近似,并通过将该模型转化为相应形式的矩阵二阶系统,进而通过满足一系列假设条件,将太阳帆航天器刚柔耦合非线性姿态动力学模型转化为一类Polytopic LPV系统。然后针对该系统设计线性状态反馈控制律,并把该控制律参数的求解转化为LMI约束下的凸优化问题。最后由太阳帆航天器跟踪目标姿态角的仿真算例验证了该方法的有效性。
     太阳帆航天器自身携带的能量有限,其姿态调整过程具有周期长,幅度小的特点。针对该特点,本文第4章基于直接打靶法,采用分段线性插值方法逼近连续时间的姿态角变化,进而结合太阳帆运动学的特点,将太阳帆轨道转移的最优控制问题转化为参数优化问题。然后分别采用差分进化算法和改进的帝国竞争算法对太阳帆航天器完成多种任务的转移轨迹进行优化,并比较分析了优化结果。
     太阳帆航天器轨迹优化的特点是目标与约束之间具有制约关系,采用多目标.优化的相关理论可以处理此类问题。本文第5章提出了一种基于非支配分类的宇宙扩缩(Nondominated Sorting Big Bang-Big Crunch, NSBBBC)方法,通过采用阈值比较选择策略和精英保持策略以及一种无惩罚参数的约束处理方法,对太阳帆航天器的轨迹优化问题分类进行研究,并通过数值算例验证了所提出的方法的可行性。
With the rapid progress in the aerospace field, the human have left their footprints in a vast space from their homes on the earth. As a class of novel space technology, solar sail offers a broad prospect for human to achieve in-depth exploration of the solar system and even interplanetary flight. Solar sail is a thruster propelled by means of a continuous sunlight pressure, which can provide a continuous low-thrust for the spacecraft. It does not need to carry large amounts of fuel, and can be used to fight on the orbit of some non-traditional tasks, such as imaging and real-time communication of high-latitude regions of the earth, detection of terrestrial planets, sample return mission and so on. Therefore, solar sail technology has broad application prospects for deep space exploration and interplanetary flight, and has been concerned widely by the international aerospace community in recent years.
     The features of solar sail spacecraft include the intense coupling and nonlinear relationship between the attitude dynamics and its flexible structure such as the large-scale film sail and booms. Namely attitude adjustment will induce flexible structural vibration, thereby affect the spacecraft's thrust magnitude and direction. Furthermore, compared with conventional spacecraft, solar sail spacecraft needs a relatively long period for transferring to the target orbit, thus it is necessary to optimize the transfer trajectory of solar sail spacecraft between the initial orbit and the target orbit. Consequently, researches on attitude dynamics modeling and control of solar sail spacecraft, and its transfer trajectory optimization have important practical significance and an extremely high theoretical value.
     This paper is mainly focused on attitude dynamics modeling and control of solar sail spacecraft, and its orbit transfer optimization problem. Based on the current typical configuration of solar sail and its rigid dynamics model, combined with the relevant research of rigid-flexible coupling dynamics, the linear and nonlinear attitude dynamics model of solar sail spacecraft and the corresponding attitude control method were studied respectively. For solar sail spacecraft trajectory optimization problems, in the light of the latest researches on he evolutionary algorithm and the multi-objective methods, the optimal transfer trajectory of the solar sail spacecraft for different tasks are studied.
     Existing literature shows that the pitch-axis rigid body dynamic model of solar sail spacecraft can not accurately describe the characteristics of its flexible structures. In Chapter Two, dynamic responses of solar sail spacecraft rigid body model controlled by the gimbal system and reaction jet were analyzed respectively. Based on the rigid body dynamics, combined with the idea of the hybrid coordinate method, solar sail spacecraft attitude dynamics model with the rigid-flexible coupling characteristics was established. In order to suppress the vibration of flexible structures induced by the attitude adjustment process of solar sail spacecraft, and ensure its accuracy and stability of the attitude adjustment, the Hoo controller was designed for the rigid-flexible coupling dynamics model of solar sail spacecraft. The goal of control is to achieve the asymptotic tracking of the target attitude angle, and robust vibration suppression of flexible structures.
     Small angle approximation of solar sail spacecraft dynamics model can not accurately describe its dynamics. In Chapter Three, the pitch-axis nonlinear rigid body dynamics model controlled by the gimbal torque and reaction jet force was established firstly. Then through the hybrid coordinate method, solar sail spacecraft nonlinear rigid-flexible coupling attitude dynamics model was derived. Based on the model, a local small-angle approximation was performed on the attitude angular change rate, gimbal angel and its change rate, and the model was transformed into the form of matrix second-order system. And under some assumptions, solar sail spacecraft rigid-flexible coupling nonlinear attitude dynamics model was translated into a class of polytopic linear parameter varying (LPV) system. And then the linear state feedback control law was designed for the system, and the solution of the control law parameters was obtained by solving the convex optimization problem with linear matrix inequality (LMI) constraints. Finally the simulation example of solar sail spacecraft attitude angle tracking demonstrates the effectiveness of the method.
     The fuel carried by the solar sail spacecraft is limited, and its attitude adjustment has the characteristics of a long period and small magnitudes. Considering those features, based on idea of the direct shooting method, the piecewise linear interpolation method was used in Chapter Four for approximation of continuous-time changes of attitude angle. And then combined with the mechanical model and the features of solar sail trajectory optimization, solar sail orbit transfer optimal control problem was turned into parameter optimization problem. Then differential evolution algorithm and the improved imperialist competitive algorithm were used respectively to achieve the transfer trajectory optimization of solar sail spacecraft for a variety of tasks, and the optimization results are comparative analyzed.
     The solar sail spacecraft trajectory optimization was characterized by the inherent constraints on the parameters to be optimised, and the multi-objective optimization theory can be used to deal with such problems. In Chapter Five, a Nondominated Sorting Big Bang-Big Crunch (NSBBBC) method was proposed, through the proposed threshold selection strategy and elitists'preservation scheme, as well as a constraint handling approach without penalty parameters, the solar sail spacecraft trajectory optimization problems were classified and studied. Finally, the feasibility of the approach was verified by numerical examples.
引文
[Alfano,1994] S. Alfano, J. D. Thorne. Circle-to-Circle Constant-Thrust Orbit Raising [J]. Journal of the Astronautical Sciences,1994,42 (1):35-45.
    [Andrieu,2000] C. Andrieu, A. Doucet. Simulated Annealing for Maximum A Posteriori Parameter Estimation of Hidden Markov Models [J]. IEEE Transactions on Information Theory,46(3), MAY,2000.
    [Apkarian,1995] P. Apkarian, P. Gahinet, G. Becher. Self-scheduled H∞ control of linear parameter-varying systems:A design example [J]. Automatica,1995,31(9):1251-1261.
    [Arora,1989] J.S. Arora. Introduction to Optimum Design [M]. McGraw-Hill, New York,1989.
    [Baoyin,2005] H. Baoyin, C.R. McInnes. Solar sail orbits at artificial Sun-Earth Lagrange points [J]. Journal of Guidance, Control and Dynamics,28(6):1328-1331,2005.
    [Baoyin,2006a] H. Baoyin, C.R. McInnes. Solar sail halo orbits at the Sun-Earth artificial L1 point [J]. Celestial Mechanics and Dynamical Astronomy,94(2):155-171,2006.
    [Baoyin,2006b] H. Baoyin, C.R. McInnes. Solar sail equilibria in the elliptical restricted three-body problem [J]. Journal of Guidance, Control and Dynamics,29(3):538-543,2006.
    [Baoyin,2006c] H. Baoyin, C.R. McInnes.Trajectories to and from the Lagrange points and the primary body surfaces [J]. AIAA Journal of Guidance, Control, and Dynamics,2006,29(4): 998-1003.
    [Back,1996] T. Back. Evolutionary Algorithms in Theory and Practice [M], Oxford University Press, New York,1996.
    [Basso,2004] M. Basso, M. Rotunno. Robust Attitude Orbit Control for Large Flimsy Appendages [C]. Proceedings of the 43rd IEEE Conference on Decision and Control, Bahamas,2004, pp. 278-283.
    [Belegundu,1982] A.D. Belegundu. A Study of Mathematical Programming Methods for Structural Optimization [M]. Dept. of Civil and Environmental Engineering, University of Iowa, Iowa, IA,1982.
    [Biggs,2008a] J.D. Biggs, C.R. McInnes, T. Waters, Thomas. New periodic orbits in the solar sail restricted three body problem [C].2nd Conference on Nonlinear Science and Complexity, 28-31 July 2008, Porto, Portugal.
    [Biggs,2008b] J.D. Biggs, C.R. McInnes, T. Waters. Stabilizing periodic orbits above the elliptic
    plane in the solar sail 3-body problem [C].59th International Astronautical Congress,29 Sep-03 Oct 2008, Glasgow, Scotland.
    [Bock,1984] H.G. Bock, K.J. Plitt. A multiple shooting algorithm for direct solution of optimal control problems [C]. IFAC 9th World Congress, Budapest, Hungary,1984.
    [Bookless,2008] J. Bookless, C.R. McInnes. Control of Lagrange point orbits using solar sail propulsion [J]. Acta Astronautica 62 (2008) 159-176.
    [Breakwell,1979] J.V. Breakwell, J.V. Brown. The'Halo'Family of 3-Dimensional Periodic Orbits in the Earth-Moon Restricted 3-Body Problem [J]. Celestial Mechanics, Vol.20, Nov. 1979, pp.389-404.
    [Chuang,2008] L.Y. Chuang, C.S. Yang, J.C. Li, C.H. Yang. Combat GA-based gene selection for classification of microarray data, Biomedical Engineering [J]. Applications, Basis and Communications,20(6),345-352,2008.
    [Coello,2000] C.A.C. Coello. Use of a self-adaptive penalty approach for engineering optimization problems [J]. Computers in Industry Vol.41,2000, pp.113-127.
    [Coello,2002] C.A.C. Coello. Theoretical and numerical constraint-handling techniques used with evolutionary algorithms:a survey of the state of the art [J]. Computer Methods in Applied Mechanics and Engineering Volume 191, Issues 11-12,4 January 2002, pp.1245-1287.
    [Dachwald,2005a] B. Dachwald, V. Baturkin, V.L. Coverstone, B. Diedrich, G Garbe, M. Gorlich, M. Leipold, F. Lura, M. Macdonald, C.R. McInnes, G. Mengali, A.A. Quarta, L. Rios-Reyes, D.J. Scheeres, W. Sebolt, B. Wie. Potential effects of optical solar sail degradation on trajectory design [C]. Proceedings of the AAS/AIAA Astrodynamics Specialist Conference. American Institute of Aeronautics and Astronautics,2005, pp.2569-2592.
    [Dachwald,2005b] B. Dachwald, B. Wie. Solar Sail Trajectory Optimization for Intercepting [J]. Impacting, and Deflecting Near-Earth Asteroids, AIAA 2005-6176.
    [Deb,1989]K. Deb, D.E. Goldberg. An investigation of niche and species formation in genetic function optimization [C]. Proceedings of the Third International Conference on Genetic Algorithms, J. D. Schaffer, Ed. San Mateo, CA:Morgan Kauffman,1989, pp.42-50.
    [Deb,2001]K. Deb, Multiobjective Optimization Using Evolutionary Algorithms [M]. Chichester, U.K.:Wiley,2001.
    [Deb,2002]K. Deb, A. Pratap, S. Agarwal, T. Meyarivan. A fast and elitist multiobjective genetic algorithm:NSGA-II [J]. IEEE transactions on evolutionary computation, Vol.6, no.2, pp. 182-197,2002.
    [Derbes,2004] B. Derbes, D. L. Lichodziejewski, G. Veal. A "Yank and Yaw" Control System for Solar sails [J]. American Astronomical Society, AAS04-284:2004.
    [Dogan,2007] M. Dogan, Y. Istefanopulos. Optimal nonlinear controller design for flexible robot manipulators with adaptive internal model [J]. IET Control Theory and Applications,1 (3), 770-778,2007.
    [Dorigo,2005] M. Dorigo, C. Blum. Ant colony optimization theory:A survey [J]. Theoretical Computer Science,344 (2005) 243-278.
    [Ellis,2004] J. Ellis, M. Lisano, P. Wolff, J. Evans, J. Bladt, D. Scheeres, L. Rios-Reyes, D. Lawrence. A Solar Sail Integrated Simulation Toolkit [C]. The 14th AAS/AIAA Space Flight Mechanics Meeting, Maui, Hawaii,2004. AAS paper 04-283.
    [Erol,2006] O. K. Erol, I. Eksin. A new optimization method:Big Bang-Big Crunch [J]. Advances in Engineering Software,37,106-111,2006.
    [Farquhar,1970a] R. Farquhar. Limit cycle analysis of a controlled libration-point satellite [J]. The Journal of the Astronautical Sciences XVII (5) (1970) 267-291.
    [Farquhar,1970b] R.W. Farquhar. The Control and Use of Libration-Point Satellite [R]. NASA TR R-346, Sept.1970.
    [Farquhar,1970c] R.W. Farquhar, D.P. Muhonen, C.R. Newman, H.S. Heuberber. Trajectories and Orbital Maneuvers for the First Libration-Point Satellite [J]. Journal of Guidance and Control, Vol.3, No.6,1980, pp.549-554.
    [Fieseler,1998] P.D. Fieseler. Method for Solar Sailing in a Low Earth Orbit [J]. Acta Astronautica. Vol.43.No.9-10.1998. pp.531-541.
    [Fonseca,1993] C.M. Fonseca, P.J. Fleming. Genetic algorithms for multiobjective optimization: Formulation, discussion and generalization [C]. Proceedings of the Fifth International Conference on Genetic Algorithms, S. Forrest, Ed. San Mateo, CA:Morgan Kauffman,1993, pp.416-423.
    [Fonseca,1998] C.M. Fonseca, P.J. Fleming. Multiobjective optimization and multiple constraint handling with evolutionary algorithms-Part Ⅱ:Application example [J]. IEEE Trans. Syst., Man, Cybern. A, vol.28, pp.38-47, Jan.1998.
    [Forward,1991] R.L. Forward. Statite:a spacecraft that does not orbit [J]. Journal of Spacecraft 28 (5)(1991) 606-611.
    [Gargari,2007] E.A. Gargari, C. Lucas. Imperialist Competitive Algorithm:An Algorithm for
    Optimization Inspired by Imperialistic Competition [C]. IEEE Congress on Evolutionary Computation, Singapore,2007, pp.4661-4667.
    [Gargari,2008] E.A. Gargari, F. Hashemzadeh, R. Rajabioun, C. Lucas. Colonial competitive algorithm:A novel approach for PID controller design in MIMO distillation column process [J]. International Journal of Intelligent Computing and Cybernetics (IJICC), Vol.1 No.3, 2008, pp.337-355.
    [Garner,1999] C. Garner, B. Diedrich, M. Leipold. A Summary of Solar Sail Technology Developments and Proposed Demonstration Missions [C]. IAA/ASME/SAE/ASEE,35th Joint Propulsion Conference and Exhibit, Los Angeles, California, USA, Jun 21,1999.
    [Geem,2001] Z.W. Geem, J.H. Kim. G.V. Loganathan, A new heuristic optimization algorithm: harmony search, Simulation,76 (2) (2001) 60-68.
    [Goldberg,1987] D.E. Goldberg, J.J. Richardson. Genetic Algorithms with sharing for multimodal function optimization [C]. Genetic Algorithms and Their Applications:Proceedings of the Second ICGA, Lawrence Erlbaum Associates, Hillsdale, NJ, (1987) 41-49.
    [Gong SP,2007a] S. Gong, H. Baoyin, J. Li. Solar sail formation flying around displaced solar orbits [J]. AIAA Journal of Guidance, Control, and Dynamics,2007,30(4):1148-1152.
    [Gong SP,2007b]龚胜平,李俊峰,宝音贺西,高云峰,太阳帆悬浮轨道附近的编队[J].工程力学,2007,24(6):165-168.
    [Haupt,2004] R. L. Haupt, S. E. Haupt. Practical Genetic Algorithms [M], Second Edition, New Jersey:John Wiley & Sons,2004.
    [Himmelblau,1972] D.M. Himmelblau. Applied Nonlinear Programming [M]. McGraw-Hill, New York,1972.
    [Horn,1994] J. Horn, N. Nafploitis, D.E. Goldberg. A niched Pareto genetic algorithm for multiobjective optimization [C]. Proceedings of the First IEEE Conference on Evolutionary Computation, Z. Michalewicz, Ed. Piscataway, NJ:IEEE Press,1994, pp.82-87.
    [Howell,1984] K.C. Howell. Three-Dimensional, Periodic,'Halo' Orbit [J]. Celestial Mechanics, Vol.32, April 1984, pp.53-71.
    [Hughes,2002] GW. Hughes, C.R. Mclnnes. Solar sail hybrid trajectory optimization for non-Keplerian orbit transfers [J]. Journal of Guidance, Control and Dynamics,25(3), pp. 602-604.2002.
    [Hughes,2004] GW. Hughes, C.R. McInnes. Small-Body Encounters Using Solar Sail Propulsion [J]. Journal of Spacecraft and Rockets,2004,41(1):140-150.
    [Hughes,2006] G.W. Hughes, M. MacDonald, C.R. McInnes. Terrestrial planet sample return using solar sail propulsion [J]. Acta Astronautica,2006,59(8-11):797-806.
    [Hull,1997] D.G. Hull. Conversion of optimal control problems into parameter optimization problems [J]. Journal of Guidance, Control, and Dynamics,1997,20(1):57-60.
    [Jalali,1994] M.A. Jalali, S.H. Pounakdoust. Optimal Three-Dimensional Spacecraft Trajectories Using Direct Optimization Methods [D], M.Sc. thesis. Sharif University of Technology. Iran, Sep.1994.
    [Jasour,2008] A.M. Jasour, E.A. Gargari, C. Lucas. Vehicle Fuzzy Controller Design Using Imperialist Competitive Algorithm [C]. Second First Iranian Joint Congress on Fuzzy and Intelligent Systems, Tehran, Iran,2008.
    [Jayaraman,1980] T.S. Jayaraman. Time-Optimal Orbit Transfer Trajectory for Solar Sail Spacecraft [J]. Jounal of Guidance, Control, and Dynamics, Vol.3. No.6.1980. pp.536-542.
    [Johnson,2007] L. Johnson, E.E. Montgomery, R. Young. NASA Solar Sail Propulsion Technology Development [C].1st International Symposium on Solar Sailing (ISSS 2007) (http://www.isss.spacesailing.net), Munich, June 27-29,2007.
    [Joines,1994] J. Joines, C. Houck. On the use of non-stationary penalty functions to solve nonlinear constrained optimization problems with GAS [C]. Proceedings of the First IEEE Conference on Evolutionary Computation,1994,579-584.
    [Kaveh,2009] A. Kaveh, S. Talatahari. Size optimization of space trusses using Big Bang-Big Crunch algorithm [J]. Computers and Structures,87 (17-18),1129-1140,2009.
    [Kawaguchi,2007] J. Kawaguchi. A Solar Power Hybrid Sailor for A Jovian Orbiter and Trojan Asteroid Flybys [C] 1st International Symposium on Solar Sailing (ISSS 2007) (http://www.isss.spacesailing.net). Munich, June 27-29,2007.
    [Kennedy,1995] J. Kennedy, R. Eberhart. Particle Swarm Optimization [C]. IEEE International Conference on Neural Networks (Perth, Australia), IEEE Service Center, Piscataway, NJ, IV: 1942-1948,1995.
    [Kislov,2004] N. Kislov. Variable Reflectance/Transmittance Coatings for Solar Sail Attitude Control and Three Axis Stabilization [C]. Space Technology and Applications Infernational Forum,2004:103-111.
    [Knowles,1999] J. Knowles, D. Come. The Pareto archived evolution strategy:A new baseline algorithm for multiobjective optimization [C]. Proceedings of the 1999 Congress on Evolutionary Computation. Piscataway, NJ:IEEE Press,1999, pp.98-105.
    [Lawden,1963] D. F. Lawden. Optimal Trajectories for Space Navigation [M]. Butterworths, London,1963, pp.54-68.
    [Leipold,1998] M. Leipold, C.E. Garner, R. Freeland, A. Herrmann, G.N.M. Pagal. ODISSEE-a Proposal for Demonstration of a Solar Sail in Earth Orbit [J]. Acta Astronautica, Vol.45. No.4,1998, pp.557-566.
    [Leipold,2007] M. Leipold. Solar Sail In-Orbit Deployment Demonstration Mission Concepts [C]. 1st International Symposium on Solar Sailing (ISSS 2007) (http://www.isss.spacesailing.net), Munich, June 27-29,2007.
    [Li JF,2007]李俊峰,宝音贺西,深空探测中的动力学与控制[J].力学与实践,2007,29(4):1-8.
    [Lisano,2005a] M. Lisano, D. Lawrence, S. Piggot. Solar Sail Transfer Trajectory Design and Stationkeeping Control for Missions to the Sub-L1 Equilibrium Region [C].15th AAS/AIAA Space Flight Mechanics Meeting, Copper Mountain, Colorado, January 23-27,2005.
    [Lisano,2005b] M. Lisano, D. Lawrence, S. Piggott. Solar Sail Transfer Trajectory Design and Stationkeeping Control for Missions to the Sub-L1 Equilibrium Region [J]. Astronautical Sciences. Vol.120, no. II, pp.1837-1854.2005.
    [Liu B,2007]刘波,王凌,金以慧,差分进化算法研究进展[J],控制与决策,2007,22(7):721-729.
    [Macdonald,2002] M. Macdonald, C.R. McInnes. Solar Sail Capture Trajectories at Mercury [C]. AIAA/AAS Astrodynamics Specialist Conference and Exhibit, Monterey, California, Aug. 5-8,2002.
    [Macdonald,2005a] M. Macdonald, C.R. McInnes. Realistic Earth Escape Strategies for Solar Sailing [J]. JOURNAL OF GUIDANCE, CONTROL, AND DYNAMICS,28(2), March-April 2005.
    [Macdonald,2005b] M. Macdonald, C.R. McInnes. Analytical Control Laws for Planet-Centered Solar Sailing [J]. JOURNAL OF GUIDANCE, CONTROL, AND DYNAMICS,28(5), September-October 2005.
    [McInnes,1991] C.R. McInnes. Solar Sail Trajectories at the Lunar 1 Lagrange Point [J]. J. of Spacecraft Vol.30, No.6, Engineering Notes 1991, pp.782-784.
    [McInnes,1993] C.R. McInnes. Solar sail trajectories at the lunar L2 lagrange point [J]. J. of Spacecraft and Rocket,30(6):782-784,1993.
    [McInnes,1994] C.R. McInnes. A.J.C. McDonald, J.F.L. Simmons, E.W. MacDonald, Solar sail parking in restricted three body systems [J]. Journal of Guidance, Control and Dynamics 17 (2)(1994) 399-406.
    [McInnes,1998] C.R. McInnes. Passive control of displaced solar sail orbits [J]. Journal of Guidance, Control and Dynamics 21 (6) (1998) 975-982.
    [McInnes,1999a] C.R. McInnes. Artificial lagrange points for a nonperfect solar sail [J]. Journal of Guidance, Control and Dynamics,22(1):185-187,1999.
    [McInnes,1999b] C.R. McInnes. Artificial lagrange points for a partially reflecting flat solar sail [J]. Journal of guidance, control, and dynamics,1999,22(1), pp.185-187.
    [McInnes,1999c] C.R. McInnes. Solar Sailing:Technology, Dynamics, and Mission Applications [M]. Springer-Verlag, London,1999.
    [McInnes,1999d] C.R. McInnes. Solar Sail Mission Application for Non-Keplerian Orbits [J]. Acta Astronautica,1999,45(4-9):576-575.
    [McInnes,2003] C.R. McInnes. G Hughes, Low cost Mercury orbiter and sample return missions using solar sail propulsion [J]. Aeronautical Journal,2003,107(1074):469-478.
    [McInnes,2007] C.R. McInnes. Near Term Mission Applications for Solar Sails [C].1st International Symposium on Solar Sailing (ISSS 2007) (http://www.isss.spacesailing.net), Munich, June 27-29,2007.
    [Melanie,1999] M. Melanie. An Introduction to Genetic Algorithms [M]. Massachusetts:MIT Press,1999.
    [Mengali,2005] G Mengali, A.A. Quarta. Near-Optimal Solar-Sail Orbit-Raising from Low Earth Orbit [J]. JOURNAL OF SPACECRAFT AND ROCKETS Vol.42, No.5, September-October 2005.
    [Morrow,2001] E. Morrow, D.J. Scheeres, D. Lubin. Solar sail orbit operations at asteroids [J]. Journal of Spacecraft and Rockets 38 (2) (2001) 279-286.
    [Nassiri,2005] N.Nassiri, N.Seraj Mehdizadeh, M.A.Jalali. Interplanetary Flight Using Solar Sails, [J].0-7803-8977-8/05/2005 IEEE.
    [Osyczka,1985] A. Osyczka. Multicriteria optimization for engineering design [M]. In J. S. Gero, editor, Design Optimization, pages 193-227. Academic Press,1985.
    [Otten,2001] M. Otten, C.R. McInnes. Near Minimum-Time Trajectories for Solar Sails [J], Journal of Guidance, Control, and Dynamics,2001,24(3):632-634.
    [Porto,1998] V.W. Porto, N. Saravanan, D. Waagen, A.E. Eiben (Eds.). Evolutionary Programming Ⅶ:Proceedings of the Seventh Annual Conference on Evolutionary Programming [J], Lecture Notes in Computer Science, vol.1447, Springer, San Diego, CA, March 1998.
    [Potter,1996] S.D. Potter, GL. Matloff. Light Sail Propulsion Using Thin-Film Photovoltaic Technology [J]. Journal of the British Interplanetary Society, Vol.49,1996:345-350.
    [Powell,1993] D. Powell, M.M. Skolnick. Using Genetic Algorithms in Engineering Design Optimization with Nonlinear Constraints [C]. Proceedings of the Fifth ICGA, Morgan Kaufmann,1993, pp.424-430.
    [Powers,2001] R. B. Powers, V. L. Coverstone. Optimal solar sail orbit transfers to synchronous orbits [J]. Journal of Astronautical Sciences. Vol.49, no.2, pp.269-281. Apr.-June 2001.
    [Price,1996] K.V. Price. Differential evolution:a fast and simple numerical optimizer [C]. Fuzzy Information Processing Society, NAFIPS. Biennial Conference of the North American,19-22 Jun 1996,524-527.
    [Qin JF,2007]秦建飞,宝音贺西,李俊峰,飞向Halo轨道的太阳帆航天器轨迹优化设计[J].清华大学学报(自然科学版),2007,47(6):1361-1365.
    [Rao,1996]S.S. Rao. Engineering Optimization [M].3rd edn., Wiley,1996.
    [Rios-Reyes,2004a] L. Rios-Reyes, D.J. Scheeres. Generalized Models for Solar Sails [J]. American Astronomical Society, AAS04-286:2004.
    [Rios-Reyes,2004b] L. Rios-Reyes, D.J. Scheeres. Applications of the Generalized Models for Solar Sails [J]. AIAA2004-5434:2004.
    [Rios-Reyes,2005] L. Rios-Reyes, D.J. Scheeres. Robust Solar Sail Trajectory Control for Large Pre-Launch Modeling Errors [J]. AIAA 2005-6173.
    [Roshanaei,2008] M. Roshanaei, E. Atashpaz-Gargari, C. Lucas. Adaptive Beamforming Using Colonial Competitive Algorithm [C].2nd International Joint Conference on Computational Engineering, Vancouver, Canada,2008.
    [Rudolph,1999] G. Rudolph. Evolutionary search under partially ordered sets [R]. Dept. Comput. Sci./LS11, Univ. Dortmund, Dortmund, Germany, Tech. Rep. CI-67/99,1999.
    [Sands,1961] N. Sands. Escape From Planetary Gravitational Fields by Use of Solar Sails [J]. ARS Journal, April,1961, pp.527-531.
    [Sant,2007] T.V. Sant. ST9:A Mission Concept For Flight Validating Solar Sail Technology in Earth Orbit [C].1st International Symposium on Solar Sailing (ISSS 2007) (http://www.isss.spaccsailing.net), Munich, June 27-29,2007.
    [Sauer,1976] C.G Sauer. Optimum Solar-Sail Interplanetary trajectories [J]. AIAA. pp.786-792. Aug.1976.
    [Schaffer,1987] J.D. Schaffer. Multiple objective optimization with vector evaluated genetic algorithms [C]. Proceedings of the First International Conference on Genetic Algorithms, J. J. Grefensttete, Ed. Hillsdale, NJ:Lawrence Erlbaum,1987, pp.93-100.
    [Sharma,2004] D.N. Sharma, D.J. Scheeres. Solar-system escape trajectories using solar sails [J]. Journal of spacecraft and rockets,2004,41(4):684-687.
    [Simon,1996] K. Simon, Y. Zakharov. Optimization of Interplanetary Trajectories with Solar Sail [J]. Space Technology, Vol.16, No.5-6,1996, pp.381-385.
    [Simo.2008a] J. Simo. C.R. McInncs. Solar sail orbits at the Earth-Moon libration points [C].2nd Conference on Nonlinear Science and Complexity (NSC08),28-31 July 2008, Porto, Portugal.
    [Simo,2008b] J. Simo, C.R. McInnes. Solar sail trajectories at the Earth-Moon Lagrange points [C].59th International Astronautical Congress (IAC'08),29 Sep-03 Oct 2008, Glasgow, Scotland.
    [Sleight,2005a] D. Sleight, Y. Michii, D. Lichodziejewski, B. Derbes, T. Mann, K. Slade, J. Wang. Finite Element Analysis and Test Correlation of a 10-Meter Inflation-Deployed Solar Sail [C]. 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Austin, Texas, Apr.18-21,2005.
    [Sleight,2005b] D.W. Sleight, Y. Michii, D. Lichodziejewski, B. Derbes, T.O. Mann. Structural Analysis of an Inflation-Deployed Solar Sail with Experimental Validation [C].41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit,10-13 July 2005, Tucson, Arizona.
    [Sleight,2004] D. Sleight, D. Muheim. Parametric Studies of Square Solar Sails Using Finite Element Analysis [C].45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Palm Springs, California, Apr.19-22,2004.
    [Srinivas,1995] N. Srinivas, K. Deb. Multiobjective function optimization using nondominated sorting genetic algorithms [J]. Evol. Comput., vol.2, no.3, pp.221-248, Fall 1995.
    [Stevens,2005] R. Stevens, I.M. Ross. Preliminary design of earth-mars cyclers using solar sails [J]. Journal of Spacecraft and Rockets,2005,42(1):132-137.
    [Taleghani,2003] B. K. Taleghani, D.W. Sleight, D.M. Muheim, K.Belvin, J.T. Wang. ASSESSMENT OF ANALYSIS APPROACHES FOR SOLAR SAIL STRUCTURAL RESPONSE [C].39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit
    20-23 July 2003, Huntsville, Alabama.
    [Tanaka,1995] M. Tanaka. GA-based decision support system for multicriteria optimization [C]. Proc. IEEE Int. Conf. Systems, Man and Cybernetics-2,1995, pp.1556-1561.
    [Tessler,2003] A. Tessler, D.W. Sleight, J.T. Wang. Nonlinear shell modeling of thin membranes with emphasis on structural wrinkling [C].44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference,7-10 April 2003, Norfolk, Virginia.
    [Vanderha,1979] J.C. Vanderha, V.J. Modi. Long-Term Evaluation of Three-Dimensional Heliocentric Solar Sail Trajectories with Arbitrary Fixed Sail Sailing [J]. Celestial Mechanical. Vol.19.1979. pp 113-138.
    [Varol,2004] H.A. Varol, Z. Bingul. A New PID Tuning Technique Using Ant Algorithm [C]. Proceeding of the 2004 American Control Conference, Boston, Massachusetts, June 30-July 2.2004.
    [Vulpetti,2007] G. Vulpetti, S. Santoli, G Mocci. Preliminary Investigation On Carbon Nanotube Membranes For Photon Solar Sails [C]. Fifth IAA Symposium On Realistic Near-Term Advanced Scientific Space Missions, Aosta, Italy, July2-4,2007.
    [Wang Y,2008]王永,张洋,张国庆,一类非线性矩阵二阶系统的反馈LPV化控制[J].中国科学技术大学学报,2008,38(7),P815-820。
    [Waters,2007] TJ. Waters, C.R. McInnes. Periodic orbits above the ecliptic in the solar-sail restricted three-body problem [J]. Journal of Guidance, Control and Dynamics,30(3), May-June 2007.
    [Waters,2008a] T.J. Waters, C.R. McInnes. Solar sail dynamics in the three-body problem: Homoclinic paths of points and orbits [J]. International Journal of Non-Linear Mechanics'43 (2008), pp.490-496.
    [Waters,2008b] T.J. Waters, C.R. McInnes. Invariant manifolds and orbit control in the'solar sail 3-body problem [J]. Journal of Guidance, Control and Dynamics,2008,31 (3). pp.554-562.
    [West,2000] J. West, B. Derbes. Solar sail vehicle system design for the geostorm warning mission [J]. AIAA-2000-5326,2000.
    [Wie,2002]B. Wie. Dynamic Modeling and Attitude Control of Solar Sail Spacecraft [R]. NASA Solar Sail Technology Working Group (SSTWG) Final Report,2002.
    [Wie,2004a] B.Wie. Solar Sail Attitude Control and Dynamics, Part I [J]. Journal of Guidance, Control and Dynamics.2004, (27):4,526-535.
    [Wie,2004b] B. Wie. Solar Sail Attitude Control and Dynamics, Part Ⅱ [J]. Journal of Guidance, Control and Dynamics.2004, (27):4,536-544.
    [Wie,2004c] B. Wie, D. Murphy. Robust Attitude Control Systems Design for Solar Sail, Part 1: Propellantless Primary ACS [C]. AIAA Guidance, Navigation, and Control Conference and Exhibit, Providence, Rhode Island,2004,1-28.
    [Wie,2004d] B. Wie, D. Murphy. Robust Attitude Control Systems Design for Solar Sail, Part 2: MicroPPT-based Secondary ACS [C]. AIAA Guidance, Navigation, and Control Conference and Exhibit, Providence, Rhode Island,2004,1-16.
    [Wie,2005]B. Wie. Thrust Vector Control of Solar Sail Spacecraft [C]. AIAA Guidance, Navigation, and Control Conference and Exhibit, San Francisco, California,2005,1-25.
    [Wright,1976] J. Wright, J. Warmke. Solar Sail Mission Applications [C]. AIAA/AAS Astrodynamics Conference, San Diego, USA, August 18-20,1976, AIAA-76-808.
    [Zhang RW,1998]章仁为,卫星轨道姿态动力学与控制[M].北京航空航天大学出版社,1998。
    [Zhang Y,2007] Y. Zhang, Y. Wang, G. Zhang, Q. Liang. Attitude Control of Solar Sail Spacecraft Based on Rigid Structure Coupled with Flexible Modes [C].1st International Symposium on Solar Sailing (ISSS 2007) (http://www.isss.spacesailing.net), Munich, June 27-29,2007.
    [Zitzler,1998] E. Zitzler, L. Thiele. Multiobjective optimization using evolutionary algorithms-A comparative case study [M]. in Parallel Problem Solving From Nature, V, A. E. Eiben, T. Back, M. Schoenauer, and H.-P. Schwefel, Eds. Berlin, Germany:Springer-Verlag,1998, pp. 292-301.
    [Zitzler,2000] E. Zitzler, K. Deb, L. Thiele. Comparison of multiobjective evolutionary algorithms:Empirical results [J]. Evol. Comput., vol.8, no.2, pp.173-195, Summer 2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700