飞行/推进综合系统集中控制技术及其分离方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
飞行/推进综合控制是未来先进飞机和发动机控制的发展趋势。本文主要开展了飞行/推进综合系统集中控制技术及其分离方法的研究。
     本文首先研究了建立飞机/推进综合系统状态空间模型的拟合法,拟合法所求取的状态空间模型具有很高的精度,为下一步控制系统设计奠定了基础。接着采用ALQR方法设计了基于矢量推力的飞行控制系统,验证了采用矢量推力控制飞机飞行的可行性。然后研究了飞行/推进综合系统集中控制技术,分别采用混合灵敏度H_∞方法和ALQR方法设计了飞行/推进综合系统集中控制器,非线性仿真结果表明均取得了很好的效果。集中控制器的优点是由于考虑了子系统耦合而性能最优,缺点是控制器阶次较高,难以在现有的控制结构上实现,且无法在目前的科研生产管理体制下进行管理。于是本文最后开展了飞行/推进综合系统控制器分离方法的研究,这里“分离”是指,求取几个具有特定交联结构的低阶子控制器来近似原高阶集中控制器,同时保证分离子控制器的闭环性能和集中控制器的闭环性能尽可能一致,这样通过分离,使得集中控制器的闭环性能基本得到保持,而分离子控制器阶次较低也非常便于实现,同时允许独立的子系统控制校验。本文研究了两种控制器分离方法,一种是解析的,另一种是优化的,优化方法以解析的分离子控制器为初始解,求取一组最优的分离子控制器,使其闭环性能更接近于集中控制器的闭环性能。
Integrated Flight/Propulsion Control (IFPC) is the development trend of control system design for advanced aircraft and aero-engine in the future. The centralized control techniques and controller partitioning methods of integrated flight/propulsion system are mainly researched in this paper.
     Firstly, the data fitting method of building state space models for integrated aircraft/propulsion system is discussed. The state space models acquired using data fitting method are with high precision and will be appropriate for the control system design in the next step. Subsequently, a control system based on the vectoring thrust is designed using ALQR method and the feasibility of controlling air-craft by vectoring thrust is verified. Then the centralized techniques are studied and two centralized controllers are designed using mixed sensitivity H∞method and ALQR method, respectively. The non-linear simulation results demonstrate that both of them have good performance. The advantage of centralized controller is that it is with optimal performance by considering the coupling of subsystems, but the disadvantage of centralized controller is that it is difficult to implement it on present control structure because of its high-order and can not be managed under the crrent management system of research and production. So the controller partitioning methods are investigated at last in this paper. The meaning of partitioning is to approximate the high-order centralized controller with several lower order subcontrollers with a specified connecting structure, and the closed-loop performance of the centralized controller should be matched by the partitioned subcontrollers at the same time. Thus the closed-loop performance of the centralized controller is basically preserved by partitioning and the partitioned subcontrollers are easier to implement owing to their lower order and independent subsys-tem control validation is allowed. Two methods of controller partitioning are discussed in this paper. One is analytical method and the other is optimization method. A set of optimal partitioned subcon-trollers is obtained using the optimization method with the analytical partitioned subcontrollers as an initial solution and the closed-loop performance of the optimal partitioned subcontrollers is more close to that of the centralized controller.
引文
[1]郭锁凤,申功璋,吴成富,先进飞行控制系统[M],北京,国防工业出版社,2003.3:97~130
    [2]吴文海,飞行综合控制系统[M],北京,航空工业出版社,2007.5:202~208
    [3]文传源,现代飞行控制[M],北京,北京航空航天大学出版社,2004.12:237~247
    [4]孙健国,V. Vasilyev, B. Hyasov, Advanced Multivariable Control System of Aeroengines(现代航空发动机多变量控制系统)[M],北京,北京航空航天大学出版社,2005
    [5]樊思齐,徐芸华,航空推进系统控制[M],西安,西北工业大学出版社,1995.12:1~15
    [6]吴森堂,费玉华,飞行控制系统[M],北京,北京航空航天大学出版社,2005.9:358~361
    [7]申安玉,申学仁,李云保,自动飞行控制系统[M],北京,国防工业出版社,2003.1:150~161
    [8]王玉新,喷气发动机轴对称推力矢量喷管[M],北京,国防工业出版社,2006.3:1~9
    [9] F.W. Burcham, Jr. and E.A. Haering, Jr, Highly Integrated Digital Engine Control System On An F-15 Airplane[C], AIAA-84-1295
    [10] Yonke, W.A., Terrell, L.A. and Meyer, L.P., Integrated Flight/Propulsion Control[C], AIAA-85-1425
    [11] Yonke, W.A., Landy, R.J., HIDEC Adaptive Engine Control System Flight Evaluation Results[J], ASME 87-GT-257
    [12] Smith, R.H., Chisholm, J.D. and J.F. Stewart, Optimizing Aircraft Performance with Adaptive Integrated Flight/Propulsion Control[J], Journal of Engineering for Gas Turbines and Power, 1991.11, Vol.113, pp.847-94
    [13] Lambert, H.H., Gilyard, G.B., Chisholm, J.D., Lousis, S.M., and L.J. Kerr, Preliminary Flight Evaluation of An Engine Performance Optimization Algorithm[C], AIAA-91-1998
    [14] G. Gilyard and J. Orme, Subsonic Flight Test Evaluation of A Performance Seeking Control Al-gorithm On An F-15 Airplane[C], AIAA-92-3743
    [15] J. Orme and G.Gilyard, Preliminary Supersonic Flight Test Evaluation of Performance Seeking Control[C], AIAA-92-3743
    [16] Kenneth L.Smith, W.Bernie Kerr and Gary L.Hartmann, Aircraft Control Integration Methodol-ogy and Performance Impact[C], AIAA-85-1424
    [17] Peter D.Shaw, Karl R.Haiges and Charles A.Skira, Validation of An Integrated Flight and Pro-pulsion Control Design for Fighter Aircraft[C], AIAA-87-1928
    [18] G.W. Gallops, C.F. Welss and R.A. Carlton, Integrated Propulsion System Requirements for Control of STOVL Aircraft[J], Transaction of the ASME 90-GT-364
    [19]李松林,飞行/推进系统综合控制-性能寻优自适应控制研究[D],南京航空航天大学博士学位论文,1998.6
    [20]袁春飞,飞行/推进系统综合优化控制模式及其关键技术[D],南京航空航天大学博士学位论文,2004.3
    [21] K.L. Smith, Design Methods for Integrated Control Systems[J], Wright Patterson AFB, OH, Rep. AFWAL-TR-86-2103, Dec. 1986
    [22] S. Garg, D.L. Mattern, and R.E. Bullard, Integrated Flight/Propulsion Control System Design Based on a Centralized Approach[C], AIAA Paper 89-3520, presented at the AIAA Guidance, Navigation and Control Conference, Boston, MA, August 1989
    [23] P.D. Shaw, S.M. Rock, and W.S. Fisk, Design Methods for Integrated Control Systems[J], Wright Patterson AFB, OH, Rep. AFWAL-TR-88-2061, June 1988
    [24] D.L. Mattern, S. Garg, and R.E. Bullard, Integrated Flight/Propulsion Control System Design Based on a Decentralized, Hierarchical Approach[C], AIAA Paper 89-3519, presented at the AIAA Guidance, Navigation and Control Conference, Boston, MA, August 1989
    [25] S. Garg, P. Ouzts, C.F. Lorenzo, and D.L. Mattern, IMPAC - an Integrated Methodology for Propulsion and Airframe Control[J], 1991 American Control Conference, Boston, MA, June 1991
    [26] S. Garg, D.L. Mattern, Application of an Integrated Methodology for Propulsion and Airframe Control Design to a STOVL Aircraft[C], AIAA Paper, 94-3611-CP
    [27] S. Garg, Partitioning of Centralized Integrated Flight/Propulsion Control Design for Decentra-lized Implementation[J], IEEE Trans. on Control Systems Technology, Vol. 1, No. 2, pp. 93-100, 1993
    [28] S. Garg, and D.L. Mattern, Application of an Integrated Flight/Propulsion Control Design Me-thodology to a STOVL Aircraft[C], presented at the AIAA Guidance Navigation Control Confe-rence, New Orleans, LA, Aug. 1991, AIAA Paper 91-2792
    [29] P.H. Schmidt, S. Garg, and B. Holowecky, A Parameter Optimization Approach to Controller Partitioning for Integrated Flight/Propulsion Control Application[J], IEEE Transactions on Con-trol Systems Technology, Vol. 1, No. 1, pp. 21-36,1993
    [30] R.J. Veillette, and S. Garg, A Modified Approach to Controller Partitioning[C], NASA TechnicalMemorandum 106167, N93-28051, May 1993
    [31] W.K. Neighbors, and S.M. Rock, Integrated Flight/Propulsion Control Specifications: Account-ing for Two-Way Coupling[C], AIAA Paper, 94-3613-CP
    [32] W.K. Neighbors, and S.M. Rock, Integrated Flight/Propulsion Control: Subsystem Specification for Performance[C], AIAA Paper, 93-3808-CP
    [33]王曦,林永霖,吴永康, H∞控制在飞行/推进综合控制系统中的应用[J],航空动力学报,2004,19(5):698-702
    [34]何信鉴,何兵,竹东翔,LQG/LTR法在综合飞行/推进控制系统中的应用[J],西北工业大学学报,1996,Vol. 14, No. 1:1-5
    [35]唐宏刚,蔡元虎,屠秋野,综合飞行/推进系统H∞控制设计[J],飞行力学,2006,Vol. 24, No. 3:80-84
    [36]姜再明,张曙光,飞行/推进综合控制设计研究[J],北京航空航天大学学报,2003,Vol. 29, No. 11:1042-1046
    [37]郭齐胜,系统建模与仿真[M],北京,国防工业出版社,2007.7
    [38]刘薇,飞/推综合控制系统仿真平台开发[D],南京航空航天大学硕士学位论文,2006.1
    [39]徐明友,丁松滨,飞行动力学[M],北京,科学出版社,2003.8:163~197
    [40]方振平,陈万春,张曙光,航空飞行器飞行动力学[M],北京,北京航空航天大学出版社,2005.11:174~204
    [41]单贵平,航空发动机建模与推力矢量控制研究[D],南京航空航天大学硕士学位论文,2007.1
    [42]何光渝,Delphi常用数值算法集[M],北京,科学出版社,2001.10
    [43]廉筱纯,吴虎,航空发动机原理[M],西安,西北工业大学出版社,2005.6
    [44] [美]G.C. Oates著,陈大光,张津等译,飞机推进系统技术与设计[M],北京,航空工业出版社,1992.3
    [45]骆广琦,桑增产等,航空燃气涡轮发动机数值仿真[M],北京,国防工业出版社,2007.4:49~70
    [46]孙丰诚,航空发动机性能寻优控制技术研究[D],南京航空航天大学博士学位论文,2007.4
    [47]姚彦龙,航空发动机神经网络直接推力逆控制[D],南京航空航天大学硕士学位论文,2008.1
    [48]章霖官,刘爱萍,林青峰,在MATRIXX平台上进行的涡扇发动机控制系统数字仿真[R],青岛:第十届发动机自动控制专业学术交流会,2000
    [49]杨刚,孙健国,李秋红,航空发动机控制系统中的增广LQR方法[J],航空动力学报,2004,19(1):153-158
    [50] Carl J.D., Susan M.K., Generation of Linear Dynamic Models from a Digital Nonlinear Simula-tion[R], NASA TP-1388,1979
    [51] Sugiyama N., Derivation of ABCD System Matrices from Nonlinear Dynamic Simulation of Jet Engines[C], AIAA-92-3319
    [52]冯正平,孙健国,黄金泉等,一种建立航空发动机状态变量模型的新方法[J],航空动力学报,Vol. 13, No.4, pp. 435~438, 1998.10
    [53]冯正平,孙健国,航空发动机小偏差状态变量模型的建立方法[J],推进技术,2001,22(1):54-57
    [54]李秋红,孙健国,基于遗传算法的航空发动机状态变量模型建立方法[J],航空动力学报,2006,21(2):427-431
    [55] Control System Toolbox User’s Guide [M], MathWorks, 2005
    [56] Optimization Toolbox User’s Guide [M], MathWorks, 2005
    [57]杨刚,姚华,实用航空发动机LQR权阵选取方法[J],南京航空航天大学学报,2006,38(4):403-407
    [58] Sanjay Garg, Duane L. Mattern, Michelle M. Bright and Peter J. Ouzts, H-Infinity Based Inte-grated Flight/Propulsion Control Design for a STOVL Aircraft in Transition Flight[C], NASA Technical Memorandum 103198, Guidance Navigation and Control Conference, Portland, Ore-gon, August 20-22, 1990
    [59] Sanjay Garg and Peter J.Ouzts, Integrated Flight/Propulsion Control Design for a STOVL Air-craft Using H-Infinity Control Design Techniques[C], NASA Technical Memorandum 104340, American Control Conference, Boston, Massachusettes, June 26-28, 1991
    [60] Sanjay Garg, Robust Integrated Flight/Propulsion Control Design for a STOVL Aircraft Using H-Infinity Control Design Techniques[J], Automatics, Vol. 29, No. 1, pp. 129-145, 1993
    [61] Declan G. Bates, Sarah L. Gately, Ian Postlethwaite, Integrated Flight and Propulsion Control System Design using H∞Loop-Shaping Techniques[C], Proceedings of the 38th Conference on Decision & Control, Phoenix, Arizona USA December 1999
    [62] Declan G. Bates, Sarah L. Gately, and Ian Postlethwaite, Design and Piloted Simulation of a Ro-bust Integrated Flight and Propulsion Controller [J], Journal of Guidance, Control, and Dynamics, Vol. 23, No. 2, March-April 2000
    [63]薛定宇,控制系统计算机辅助设计—MATLAB语言与应用(第2版)[M],清华大学出版社,2006
    [64]姜长生,吴庆宪,陈文华,王从庆,现代鲁棒控制基础[M],哈尔滨工业大学出版社,2005
    [65] M. G. Safonov and R. Y. Chiang, A Schur Method for Balanced Model Reduction[J], IEEE Trans.on Automat. Contr., vol. 34, no. 7, July 1989, pp. 729-733
    [66] Sarah L. Gately, Declan G. Bates and Ian Postlethwaite, Partitioning and Re-design of H∞Loopshaping Integrated Flight and Propulsion Control Systems[C], AIAA Paper AIAA 2001-4384, AIAA Guidance, Navigation, and Control Conference and Exhibit, 6-9 August 2001, Montreal, Canada
    [67] Sarah L. Gately, Declan G. Bates, Ian Postlethwaite, A Partitioned Integrated Flight and Propul-sion Control System with Engine Safety Limiting [J], Control Engineering Practice 8 (2000) 845-859
    [68] Ian Postlethwaite and Declan G. Bates, Robust Integrated Flight and Propulsion Controller for the Harrier Aircraft[J], Journal of Guidance, Control, and Dynamics, Vol. 22, No. 2, March-April 1999
    [69] Ian Postlethwaite and Declan G. Bates, Integrated Flight and Propulsion Control System Design, via H∞Loop Shaping and Partitioning[C], AIAA Paper, AIAA-98-4295
    [70] P.D. Shaw, S.M. Rock, and R.E. Fisk, Design Methods for Integrated Control System[J], Wright Patterson AFB, OH, Rep. AFWAL-TR-88-2061, June 1988
    [71] S. K. Nagar, S. K. Singh, An Algorithmic Approach for System Decomposition and Balanced Realized Model Reduction [J], Journal of The Franklin Institute 341 (2004) 615-630
    [72] Robust Control Toolbox User’s Guide [M], MathWorks, 2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700