主动前轮转向系统的控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
转向系统是控制汽车行驶路线和方向的重要装置,其性能直接影响到汽车的操纵性能和稳定性能。主动前轮转向(AFS-Active front steering)通过电机根据车速和行驶工况改变转向传动比。低、中速时,转向传动比较小,转向直接,以减少转向盘的转动圈数,提高转向的灵敏性和操纵性;高速时,转向传动比较大,提高车辆的稳定性和安全性。同时,系统中的机械连接使得驾驶员直接感受到真实的路面反馈信息。因此,主动前轮转向为车辆行驶的灵敏性、舒适性和安全性设定了新标准,代表着转向技术的发展趋势。
     现有主动前轮转向系统大多在液压转向系统结构的基础上,采用行星齿轮机构,实现主动转向。系统中,通过调节液压油的输入输出实现对转向盘手力的调节,但必须对液压油进行冷却,因而系统复杂且不可避免存在着液压转向系统的弊端。
     本文在电动助力转向机构的基础上,设计了新型的主动前轮转向系统结构,通过一套行星齿轮机构与助转角电机实现主动前轮转向。助转角电机(AFS执行器)用来实现可变传动比(VSR-Variable steering ratio)以及对车辆稳定性的控制;原助力转向系统中的助力电机(EPS执行器),根据转向盘转矩和当前车辆行驶情况,对驾驶员转向手力进行调整。因而,该转向系统通过助力电机和助转角电机,分别对转向力矩和前轮转角进行调节,实现主动转向。利用助力电机对转向手力调节避免了现有主动前轮转向系统中液压助力的缺点。
     控制系统是主动前轮转向系统的核心,控制策略的优劣直接影响主动前轮转向系统的性能。为对该主动前轮转向系统进行控制研究,文中在系统结构分析的基础上,建立主动前轮转向系统模型和车辆操纵动力学模型,从转向性能和整车操纵稳定性要求出发,设计主动前轮转向控制系统,制定相应的控制逻辑和控制策略。研究中,将系统解耦为EPS执行器和AFS执行器,分别进行控制研究。EPS执行器实现转向盘转向力矩的控制;AFS执行器实现可变传动比控制和车辆稳定性控制。车辆稳定性控制过程中,采用横摆角速度和估计的质心侧偏角共同对车辆进行控制,利用质心侧偏角的控制补偿单一横摆角速度控制所引起的行驶跟踪误差。
     实际行驶过程中,车辆会受到系统内部和外界的干扰,车辆参数产生波动;同时系统中还存在非线性摩擦、传感器噪声以及负载扰动等不确定因素的干扰。为较好地实现对目标车辆运动状态轨迹的跟踪控制,文中将鲁棒控制理论引入主动前轮转向的控制。根据控制系统的不同特点,对EPS执行器进行抵抗传感器噪声和外部干扰输入的标准H∞鲁棒控制器设计;对AFS执行器针对车辆行驶过程中侧偏刚度的摄动和外界侧向风干扰,进行混合LQR/H∞的鲁棒最优控制器设计,以提高主动前轮转向控制系统的稳定性能、鲁棒性能和抗干扰性能。
     本文最后,根据所设计的控制策略,开发主动前轮转向系统的控制软硬件,并进行控制器硬件在环台架试验。硬件在环台架试验中,通过非线性车辆动力学模型和转向系统实物,构建主动前轮转向系统的仿真试验平台,对所设计的主动前轮转向控制器进行控制性能验证。试验结果表明:本文设计的主动前轮转向系统具有较好的转向轻便性能、回正性能,同时能够有效地提高车辆的稳定性。
Steering system is an important component for lane changing control of wheeled vehicles. Its performance influences vehicle steerability and stability directly. Active front steering (AFS) varies the steering ratio electronically in direct relation to the speed and road conditions. Under normal road conditions at low and medium speeds, the steering becomes more direct, requiring less steering effort of the driver, increasing the car’s agility and drivability. At high speed, the steering becomes less direct offering improved directional stability. In addition, road information can be fed by the mechanical link maintained between the front wheels and the steering wheel. As a result, the AFS system provides the vehicle with a new standard of driving agility, amenity and safety. It is the trend in development of the steering system.
     Most of the existing AFS systems are developed in association with hydraulic power units and a planetary gear set. Therefore, some disadvantages appear inevitably due to the servo system in the hydraulic power steering and its cooling.
     The AFS system is designed based on a commercial electric power steering (EPS) system. Active steering is realized with a planetary gear set and an angle assist motor. The angle assist motor (AFS actuator) is used to impose variable steering ratio (VSR) control and to improve vehicle stability. The original torque assist motor (EPS actuator) is applied to modify the driver steering torque according to the speed and driving conditions. Therefore, the AFS system can regulate the steering torque and steering angle by the EPS actuator and AFS actuator, respectively. The motor used to regulate the steering torque can avoid the disadvantages of using hydraulic system in the existing AFS system.
     As a core part in the AFS system, the controller plays an important role in the AFS’performance. For investigation to the AFS control, a simplified model and the vehicle model are developed. Then, the control logic and the strategy of the AFS system are designed based on steering performance and vehicle stability. In treatment of the AFS system, the controls of EPS actuator and AFS actuator are decoupled. The EPS actuator is controlled to modify the steering effort, while the AFS actuator is controlled to impose VSR for the vehicle stability enhancement. In control of the vehicle dynamic stability, both the yaw rate and estimated sideslip angle are applied. The sideslip angle control is utilized to compensate the tracking error caused by single yaw rate control.
     During the driving, the vehicle is subjected to internal and external disturbance of the system. In addition, uncertainties caused due to the nonlinear friction, sensor noise and load varieties also exist in the system. The theory of robust control is introduced to the AFS control. According to working conditions, a standard H∞control is applied in the EPS actuator control for the purpose of prevention from external disturbance and sensor noise, while a mixed LQR/H∞optimal control is applied to the vehicle stability control of AFS actuator to deal with the crosswind disturbance and perturbation of cornering stiffness. Therefore, the stability and robustness of the AFS system control to all kinds of disturbance can be ensured.
     The AFS controller is developed according to the control strategy and also tested by means of the hardware-in-the-loop (HIL) simulation method. For the HIL simulation, a nonlinear vehicle model is provided to be a simulation platform for the AFS system. Effectiveness of the present AFS controller is verified by the HIL simulation procedure. By test results, it is indicated that the present AFS system appears to be effective in modifying the steering effort and improving the vehicle stability.
引文
[1]陈家瑞主编.汽车构造(下册) [M].北京:机械工业出版社. 2001: 247-249.
    [2]汽车工程手册·设计篇[M].北京:人民交通出版社. 2001: 600-613.
    [3]张尚海.汽车电动转向系统(EPS)控制策略研究[硕士论文].天津:天津大学. 2003.
    [4]施国标.电动助力转向助力特性仿真与控制策略研究[博士论文].吉林:吉林大学, 2002.
    [5]朱海.电动助力转向匹配分析及性能评价研究[硕士论文].吉林:吉林大学, 2004.
    [6]张昌华.电动助力转向系统的研究与设计[硕士论文].武汉:武汉理工大学, 2004.
    [7] YIH P, CHRISTIAN G J. Steer-by-wire for vehicle state estimation and control [C]. Proceedings of the 2004 International Symposium on Advanced Vehicle Control. 2004, Arnheim.
    [8] YIH P. Steer-by-wire: implications for vehicle handling and safety [Dissertation]. California: Stanford University, 2005.
    [9] LIEBEMANN E K, MEDER K, SCHUH J, et al. Safety and performance enhancement: the Bosch electronic stability control (ESP) [C]. SAE. 2004, No. 2004-21-0060.
    [10] PALKOVICS L. Intelligent electronic systems in commercial vehicles for enhanced traffic safety [J]. Vehicle System Dynamics. 2001, 35(4-5): 227-289.
    [11] SIENEL W. Estimation of the tire cornering stiffness and its application to active car steering [C]. Proceedings of the 36th Conference on Decision & Control. 1997.
    [12] ACKERMANN J. Robust control prevents car skidding [J], Control Systems Magazine, IEEE. 1996, 17(3): 23-31.
    [13] REINELT W, Safety related development process for automotive suppliers[R]. Fifth Bieleschweig Workshop“Systems Engineering”, Germany, 2005.
    [14]余志生.汽车理论[M],第3版.北京:机械工业出版社. 2000: 107-108.
    [15] ACKERMANN J, BUNTE T, ODENTHAL D. Advantage of active steering for vehicle dynamics control [C]. Proceeding of International Symposium on Automotive Technology and Automation. 1999, Vienna.
    [16] ALLEYNE A. A comparison of alternative intervention strategies for unintended roadway departure control [J]. Vehicle System Dynamics. 1997, 27(3): 157-186.
    [17] ALLEYNE A. A comparison of alternative obstacle avoidance strategies for vehicle control [J]. Vehicle System Dynamics. 1997, 27(5-6): 371-392.
    [18] GIETELINK O, PLOEG J, DE SCHUTTER B, et al. Development of advanced driver assistance systems with vehicle hardware-in-loop simulations [J]. Vehicle System Dynamics. 2006, 44(7): 569-590.
    [19] TINGVALL C, KRAFFT M, KULLGREN A, et al. The effectiveness of ESP in reducing real life accident [C]. ESV Conference. 2003.
    [20] STANTON N A, MARSDEN P. From fly-by-wire to drive-by-wire: Safety implications by vehicle automation [J]. Safety Science. 1996, 24(1): 35-49.
    [21] ACKERMANN J, BUNTE T. Automatic car steering control bridges over the driver reaction time[J]. Kybernetika. 1997, 33(1): 61-74.
    [22] E70 Lateral Dynamics Systems [R]. Data sheet, 2006: 10-11.
    [23] REIGER G, SCHEEF J, BECKER H, et al. Active safety systems change accident environment of vehicle significantly-a challenge for vehicle design [C]. 19th International Technical Conference on the Enhanced Safety of Vehicles. 2005, No.05-0053.
    [24] SVENSON A L, HAC A. Influence of chassis control systems on vehicle handling and rollover stability [C]. 19th International Technical Conference on the Enhanced Safety of Vehicles. 2005, No.05-0324.
    [25] VAN ZANTEN A T. Bosch ESP systems: 5 years of experience [C]. SAE. 2001, No. 2000-01-1633.
    [26] ORIZCO A R. Evaluation of an active steering system [Dissertation]. Sweden: KTH Vetenskap Och Konst. 2004.
    [27] http://delphi.com/manufacturers/auto/other/steering/electric/active/
    [28] http://www.nikkeibp.com.cn/china/news/news/200505/auto200505200115.html
    [29] KIM S J, KWAK B H, CHUNG S J, et al. Development of an active front steering system [J]. International Journal of Automotive Technology. 2006, 7(3): 315-320.
    [30] ZHENG B, OH P, LENART B. Active steering control with front wheel steering [C]. Proceeding of the American Control Conference, 2004: 1475-1480, Boston.
    [31] FUKAO T, MIYASAKA S, MORI K, et al. Active steering systems based on model reference adaptive nonlinear control [C]. IEEE Intelligent Transportation Systems Conference, 2001: 502-507, Oakland.
    [32] HE J J, CROLLA D A, LEVESLEY M C, et al. Coordination of active steering, driveline, and braking for integrated vehicle dynamics control [J]. IMechE, Part D: J. Automobile Engineering. 2006(220): 1401-1420.
    [33] MOKHIAMAR O, ABE M. Active wheel steering and yaw moment control combination to maximize stability as well as vehicle responsiveness during quick lane change for active vehicle handling safety [J], IMechE, Part D: J. Automobile Engineering. 2002(216): 115-124.
    [34] MAMMAR S. Combining active steering and independent wheels braking for CIVIC lateral assistance [C], Proceeding of the American Control Conference. 2004: 1469-1474, Boston.
    [35] ONO E, HOSOE S, TUAN H D, et al. Robust stabilization of vehicle dynamics by active front wheel steering control [C]. Proceedings of the 35th Conference on Decision and Control. 1996: 1777-1782, Japan.
    [36] KOEHN P, ECKRICH M. Active steering - the BMW approach towards modern steering technology [C]. SAE. 2004, No. 2004-01-1105.
    [37] AVAK B. Modeling and control of a superimposed steering system [Dissertation]. Atlanta: Georgia Institute of Technology. 2004.
    [38]蒋励,余卓平,高晓杰.宝马主动转向技术概述[J].汽车技术. 2006(4): 1-4.
    [39]高晓杰,余卓平,张立军等.机械式前轮主动转向系统的原理与应用[J].汽车工程. 2006, 28(10): 918-921.
    [40] ARMSTRONG E. Robust controller design for flexible structures using normalized coprimefactor plant descriptions [C]. NASA Technical Paper. 1993, No. 3325.
    [41]张勇.基于主动制动的汽车稳定性控制系统开发研究[博士论文].上海:上海交通大学. 2006.
    [42]刘玉石,娄金兰.新款丰田大霸王新技术剖析.汽车维修技师(http://repair.chg168.com/bencandy.php?fid=2&aid=141).
    [43] KIM J H, SONG J B. Control logic for an electric power steering system using assist motor [J]. Mechatronics. 2002(12): 447–459.
    [44]秦继荣,沈安俊编著.现代直流伺服控制技术及其系统设计[M].北京:机械工业出版社, 1999: 15-21.
    [45]刘照.汽车电动助力转向系统动力学分析与控制方法研究[博士论文].武汉:华中科技大学. 2004.
    [46]陶桂林,马志云,周理兵等.永磁无刷电机的建模与仿真分析[J].华中科技大学学报. 2003, 31(1): 83-85.
    [47]唐小琦,刘光启,李新华.电动助力转向用无刷直流电机控制系统的开发[J].机械与电子. 2004 (12): 22-25.
    [48]刘延柱,杨海兴,朱本华主编.理论力学[M].北京:高等教育出版社, 2000.
    [49] WONG. J Y. Theory of ground vehicles [M], 3rd Edition. New Jersey: John Wiley & Sons Ltd, 2001: 336.
    [50]喻凡.汽车系统动力学[M].北京:机械工业出版社. 2005: 276-283.
    [51]王望予.汽车设计[M].北京:机械工业出版社. 2005: 178-183.
    [52] RAJAMANI R. Vehicle Dynamics and Control [M]. Springer. 2006.
    [53] GUVENC B A, ACARMAN T, GUVEN L. Coordination of steering and individual wheel braking actuated vehicle yaw stability control [C]. Proceedings of Intelligent Vehicles Symposium, 2003: 288-293.
    [54] MILLIKEN W F, MILLIKEN D L. Race car vehicle dynamics [M], Society of Automotive Engineers, Warren, Pa, 1995.
    [55] STINTON D. The Design of the Aeroplane [M], Van Nostrand Reinhold, 1983.
    [56] NAGAI M, OHKI M. Theoretical study on active four-wheel-steering system by virtual vehicle model following control [J]. International Journal of Vehicle Design. 1989, 10(1).
    [57] DUGOFF H, FANCHER C, SEGEL L. An analysis of tire traction properties and their influence on vehicle dynamics performance [C]. SAE. 1972, No. 700377: 1219-1243.
    [58] KWAK B, PARK Y, KIM D. Design of observer for vehicle stability control system [C]. FISITA World Automotive Congress, 2000.
    [59] ALEJANDRO D, JOHN G K, JOEL E S. A backup system for automotive steer-by-wire, actuated by selective braking [C], 35th Annual IEEE Power Electronics Specialists Conference. 2004: 383-388.
    [60] BOADA M J, BOADA B L, MUNOZ A, et al. Integrated control of front-wheel steering and front braking forces on the basis of fuzzy logic [J], Proceeding of IMechE Part D: Journal of Automobile Engineering. 2006(220): 253-267.
    [61] MACIEJOWSKI J M. Multivariable feedback design [M]. Addison-Wesley, 1989.
    [62]吴文江.基于H∞控制理论的汽车电动助力转向控制系统研究[博士论文].北京:北京交通大学. 2004.
    [63] YIH P, RYU J, GERDES J C. Modification of vehicle handling characteristics via steer-by-wire [C]. Proceedings of American Control Conference. 2003(3): 2578-2583.
    [64] TAI M, HINGWE P, TOMIZUKA M. Modeling and control of steering system of heavy vehicles for automated highway systems [J]. IEEE/ASME Transactions on Mechatronics, 2004, 9(4): 609-618.
    [65]林逸,施国标,邹常丰等.电动助力转向系统转向性能的客观评价[J].农业机械学报. 2003, 34(4): 4-7.
    [66] PARK T J, HAN C S, LEE S H. Development of the electronic control unit for the rack-actuating steer-by-wire using the hardware-in-the-loop simulation system [J]. Mechatronics. 2005(15): 889-918.
    [67] ADAMS F J. Power steering‘Road Feel’[C]. SAE. 1983, No.830998.
    [68]刘永.汽车线控转向系统的研究[硕士论文].武汉:武汉理工大学. 2005.
    [69] SHIMIZU Y, KAWAI T, YUZURIHA J J. Improvement in driver vehicle system performance by varying steering gain with vehicle speed and steering angle: VGS (variable gear ratio steering system) [C]. SAE. 1999, No.1999-01-0395.
    [70] NAKAYAMA T, SUDA E. The present and future of electric power steering [J]. International of Vehicle Design. 1994, 15(3/4/5).
    [71] ESMAILZADEH E, GOODARZI A, VOSSOUGHI G R. Optimal yaw moment control law for improved vehicle handling [J]. Mechatronics. 2003(13): 659-675.
    [72]徐正会,张元鸿.车辆可变齿轮比转向系统之创新设计[C].第十九届机械工程研讨会论文集. 2002.
    [73] HEATHERSHAW A. Optimizing variable ratio steering for improved on-centre sensitivity and cornering control [C]. SAE. 2000, No. 2000-01-0821.
    [74] MILLSAP S A. Handling enhancement due to an automotive variable ratio electric power steering system using model reference robust tracking control [C]. SAE, 1996, No. 960931.
    [75] ABE M, SHIBAHATA Y, SHIMIZU Y. Analysis on steering gain and vehicle handling performance with variable gear-ratio steering System (VGS) [C]. FISITA. 2000, No. F2000G349.
    [76]左建令.汽车电子转向系统控制方法研究[硕士论文].吉林:吉林大学. 2003.
    [77] MAMMAR S, BAGHDASSARIA V B. Two-degree-of-freedom formulation of vehicle handling improvement by active steering [C], Proceedings of the American Control Conference. 2000.
    [78] MAMMAR S, KOENIG D. Vehicle handling improvement by active steering [J]. Vehicle System Dynamics. 2002, 38(3): 211-242.
    [79] COUDON J, CANUDAS-DE-WIT C, CLAEYS X. A new reference model for steer-by-wire applications with embedded vehicle dynamics [C]. Proceedings of the 2006 American Control Conference Minneapolis. 2006: 3390-3995, USA.
    [80] PILUTTI T, ULSOY G, HROVAT D. Vehicle steering intervention through differential braking [C]. Proceedings of the American Control Conference. 1995, Washington: 1667-1671.
    [81] RAJAMANI R. Vehicle Dynamics and Control [M]. USA: Springer. 2006: 233-235.
    [82] CHAWLA J S. Estimation of side slip in vehicles [Dissertation]. Bombay: Indian Institute ofTechnology. 2006.
    [83] MALINEN S. Active front steering change detection using signal estimation [Dissertation]. Linkoping: Linkopings Universitet. 2005.
    [84] KAMINAGA M, NAITO G. Vehicles body slip angle estimation using an adaptive observer [C]. Proceedings of International Symposium on Advanced Vehicle Control, 1998.
    [85] ANDERSON R A. Using GPS for model based estimation of critical vehicle states and parameters [Dissertation]. Alabama: Auburn University. 2004.
    [86] RYU J. State and parameter estimation for vehicle dynamics control using GPS [Dissertation]. California: Stanford University. 2004.
    [87] UNGOREN A L, PENG H. A study on lateral estimation methods [J]. International Journal of Vehicle Autonomous Systems. 2004, 2(1/2): 126-144.
    [88] HIRAOKA T, KUMAMOTO H, NISHIHARA O. Sideslip angle estimation and active front steering system based on lateral acceleration data at centers of percussion with respect to front/rear wheels [J]. JASE Reviews. 2004(2): 37-42.
    [89]黄忠霖.控制系统MATLAB计算及仿真[M],第2版.北京:国防工业出版社. 2001: 457-463.
    [90] AOKI Y, UCHIDA T, HORI Y. Experimental demonstration of body slip angle control based on a novel linear observer for electric vehicle [C]. The 31st Annual Conference of Industrial Electronics Society. 2005: 2620-2625.
    [91] AOKI Y, HORI Y. Robust design of body slip angle observer for electric vehicles and its experimental demonstration [J]. Electrical Engineering in Japan. 2007, 159(1). (Translated from Denki Gakkai Ronbunshi. 2005, 125(5): 467–472.)
    [92] AOKI Y, HORI Y. Robust estimation and control of body slip angle for electric vehicle [C]. The International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium & Exposition. 2006. Yokohama.
    [93]张嗣瀛.现代控制理论[M].北京:清华大学出版社. 2006: 290.
    [94] RAJAMANI R. Vehicle Dynamics and Control. New York: Springer Science and Business Media, 2006: 56-58.
    [95]韩建宝.车辆主动转向系统的功能与电控原理[J].世界汽车. 2003 (07): 61.
    [96]魏元东.汽车电动助力转向系统(EPS)研究[硕士论文].安徽:合肥工业大学. 2004.
    [97] CHU C C, DOYLE J C, LEE E B. The general distance problem in H∞optimal control theory [J]. International Journal of control. 1986, 44(2): 565-596.
    [98]褚健.鲁棒控制理论及应用[M].浙江:浙江大学出版社. 2000.
    [99]杨盐生,贾欣乐.不确定系统的鲁棒控制及其应用[M].大连:大连海事学院出版社. 2003.
    [100] MCFARLAND D, GLOVER K. An H∞design procedure using robust stabilization of normalized coprime factors[C]. Proceedings of 27th Conference on Decision and Control. 1988.
    [101] YOU S S, CHAI Y H. Multi-objective control synthesis: and application to 4WS passenger vehicles[J]. Mechatronics. 1999(9): 363-390.
    [102] YOU S S, JEONG S K, Controller design and analysis for automatic steering of passenger cars [J]. Mechatronics. 2002(12): 427-446.
    [103] DOUGLAS J, ATHANS M. Robust linear quadratic designs with real parameter uncertainty [J].IEEE Transactions on Automatic Control. 1994, 39(1): 107-111.
    [104] GLOVER K, DOYLE J C. State space formula for all stabilizing controllers that satisfy an H∞norm bound and relations to risk sensitivity [J]. Systems & Control Letters. 1988(11): 167-72.
    [105]张洪钺,王青.最优控制理论与应用[M] .北京:高等教育出版社. 2006: 200-211.
    [106]俞立.鲁棒控制—线性矩阵不等式处理方法[M].北京:清华大学出版社. 2002.
    [107] GIANONE L, PALKOVICS L, BOKOR J. Design of an active 4WS system with physical uncertainties [J]. Control Engineering Practice. 1995, 3(8): 1075-1083.
    [108]吴文江,杜彦良,季学武等.电动转向系统稳定性能与抗干扰性能的研究[J].振动工程学报. 2004, 17(2): 196-200.
    [109]叶红弟.电动助力转向系统转矩传感器故障自诊断的研究[J].汽车技术. 2005(11): 34-38.
    [110]何仁,苗立东,叶红弟.汽车电动助力转向装置的安全性探讨[J].中国安全科学学报. 2004(10): 72-75.
    [111]吴文江,杜彦良,季学武等.增强电动转向系统助力跟踪性能的H∞控制[J].汽车工程, 2004, 26(4): 465-467.
    [112]赵治国,余卓平,孙泽昌等.电动助力转向系统H∞鲁棒控制研究[J].汽车工程, 2005, 27(6): 730-735.
    [113]吴文江,杜彦良,季学武等.调整电动转向系统路感的H∞控制算法[J].中国工程机械学报,2004, 2(2): 145-148.
    [114] RAKAN C. H-infinity control design and gain scheduling of electrical power assist steering systems to improvement system robustness and stability [Dissertation]. Detroit: Wayne State University, 2000.
    [115] LIU Q, CHEN H, ZHENG H Y. Bobust control of electric power steering system [C]. The 33rd conference of the IEEE industrial electronics society, 2007, Taipei, 874-879.
    [116]田大庆.基于鲁棒控制理论的汽车电动转向助力系统控制技术研究[博士论文].成都:四川大学. 2006.
    [117] TIAN D Q, YIN G F, XIE G. Model and H∞robust control design for electric-power steering system [C]. Proceedings of the 2004 international conference on intelligent mechatronics and automation, 2004: 779-783. Chengdu.
    [118]田大庆,郭祚达,殷国富.基于状态空间EPS系统动力学建模及H∞控制器设计[J].振动、测试与诊断, 2004, 24(sup): 219-222.
    [119]王望予,张昕,陈万忠等.电动助力转向助力控制策略的研究[J].汽车技术. 2003(03): 8-10.
    [120]尚喆.电动转向(EPS)控制系统研究及实现[硕士论文].天津:天津大学. 2004.
    [121]沈晓鸣.基于广义执行器-受控对象的车辆底盘集成控制的研究[博士论文].上海:上海交通大学. 2006.
    [122] SIENEL W. Robust decoupling for active car steering holds for arbitrary dynamic tire characteristics [C]. Proceedings of the 3rd European Control Conference. 1995: 744-748, Italy.
    [123] KOUMBOULIS F N, SKARPETIS M G. Robust control of cars with front and rear wheel steering [J]. IEEE Proceeding of Control Theory Application. 2002, 149(5): 394-404.
    [124]何仁,李强,郭孔辉. LQG理论的电动助力转向系统最优控制[J].农业机械学报. 2007,38(2): 17-21.
    [125] ORABY W A H, EI-DEMERDASH S M, SELIM A M, et al. Improvement of vehicle lateral dynamics by active front steering control [C]. SAE. 2004. No. 2004-01-2081.
    [126]刘豹.现代控制理论[M],第2版.北京:机械工业出版社. 2003: 272-273.
    [127]李普,陈南等.基于状态观测器的4WS车辆最优随动操纵研究[J].机械工程学报, 2004, 40(1): 50-55.
    [128] PARMAR M, HUNG J Y. A sensorless optimal control system for an automotive electric power assist steering system [J], IEEE Transactions of Industrial Electronics. 2004, 51(2): 290-298.
    [129] PARMAR M, HUNG J Y. Modeling and sensorless optimal controller design for an electric power assist steering system [C]. IEEE 28th Annual Conference of the Industrial Electronics Society. 2002, 1784-1789.
    [130] ACARMAN T. An advanced driver assistance system by using state dependent Riccati Equation technique[C]. Intelligent Vehicle Symposium. 2006: 114-119, Japan.
    [131] HIGUCHI A, SAITOH Y. Optimal control of four wheel steering vehicle [J]. Vehicle System Dynamics. 1993(22): 397-410.
    [132] XU X J. Non-fragile mixed LQR/H∞control problem for linear systems with controller uncertainty [C]. Proceedings of the 25th Chinese Control Conference. 2006: 579-583, China.
    [133] XU X J. Discrete time mixed LQR/H∞control problem: static output feedback case[C]. Proceedings of the 6th World Congress on Intelligent Control and Automation. 2006, China.
    [134] CHEN B S, TSENG C S, UANG H J. Mixed H2/H∞fuzzy output feedback control design for nonlinear dynamic systems: an LMI approach [J]. IEEE Transactions on Fuzzy systems. 2000, 8(3): 249-265.
    [135] ZHOU K, GLOVER K, BODENHEIMER B, et al. Mixed H2 and H∞performance objectives I: robust performance analysis [J]. IEEE Transactions on Automatic Control. 1994, 39(8): 1564-1574.
    [136] DOYLE J C, ZHOU K, GLOVER K, et al. Mixed H2 and H∞performance objectives II: optimal control [J]. IEEE Transactions on Automatic Control. 1994, 39(8): 1575-1587.
    [137] YEH H, BANDA S S, CHANG B. Necessary and sufficient conditions for mixed H2 and H∞optimal control [J]. IEEE Transactions on Automatic Control. 1992, 37(3): 355-358.
    [138] SUN W A, ZHAO J. Hybrid output-feedback guaranteed cost H∞robust control for linear systems [C]. American Control Conference. 2005: 2805-2810.
    [139] XU X. Mixed LQR/H∞control problem for linear systems with static output feedback [C]. Proceeding of the 24nd Chinese Control Conference. 2005: 421-425, China.
    [140]李普,陈南,孙庆鸿.基于状态观测器的4WS车辆最优随动操纵研究[J].机械工程学报. 2004, 40(1): 50-55.
    [141] AZAD N L, KHAJEPOUR A, MCPHEE J. Robust state feedback stabilization of articulated steer vehicles [J]. Vehicle System Dynamics. 2007, 45(3): 279-275.
    [142] YU N. Yaw-control enhancement for buses by active front- wheel steering [Dissertation]. Pennsylvania: Pennsylvania State University. 2007.
    [143]高勇,陈龙,袁传义等.电动助力转向系统回正控制研究[J].农业机械学报. 2007, 38(5): 6-10.
    [144]程勇,王锋,罗石等.电动助力转向系统回正控制策略研究[J].汽车技术. 2007(3): 8-10.
    [145]孟涛,陈慧,余卓平等.电动助力转向系统的回正与主动阻尼控制策略研究[J].汽车工程. 2006, 28(12): 1125-1128.
    [146] BRUIN D. Lateral Guidance of All-Wheel Steered Multiple-Articulated Vehicles. Technology University Eindhoven. 2001.
    [147]周宇奎.侧风影响下高速汽车响应特性的分析与控制研究[硕士论文].湖南:湖南大学. 2005.
    [148] FUJIMOTO H, TSUMASAKA A, NOGUCHI T. Direct yaw-moment control of electric vehicle based on cornering stiffness estimation [C]. 31st Annual Conference of Industrial Electronics Society, 2005: 2626-2631.
    [149] RAKSINCHAROENSAK P, NAGAI M. Vehicle motion control issues using micro electric vehicle“Novel”[C]. The 22nd International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium & Exposition, EVS-22. 2006, Japan.
    [150] SAVKOOR A R, CHOU C T. Application of aerodynamic actuators to improve vehicle handling [J]. Vehicle System Dynamics. 1999(32): 345–374.
    [151] ELBEHEIRY E M, ZEYADA Y F, ELARABY M E. Handling capabilities of vehicles in emergencies using coordinated AFS and ARMC systems [J]. Vehicle System Dynamics. 2001, 35(3): 195-215.
    [152] HAC A, DOMAN D, OPPENHEIMER M. Unified control of brake- and steer-by-wire systems using optimal control allocation methods [C]. SAE. 2006, No.2006-01-0924.
    [153] KUNSOO H. Active steering control based on the estimated tire forces [C]. Proceedings of the American Control Conference, 1999: 729-733, California.
    [154] JANG S H, PARK T J, HAN C S. A control of vehicle using steer-by-wire system with Hardware-in-the-Loop-Simulation system [C]. Proceedings of the 2003 IEEE/ASME International Conference on Advanced Intelligent Mechatronlcs, 2003: 389-394.
    [155] GIIVENQ L, GIIVENP B A, YIGIT T, et al. HIL system for steering controller tests [C], Proceedings of 2003 IEEE Conference on Control Applications. 2003: 13-18.
    [156]顾兰智,台晓虹,申荣卫.电动助力转向系统硬件在环仿真试验平台设计[J].拖拉机与农用运输车. 34(4), 2007: 93-95.
    [157]任延,杨家军,刘照.电动助力转向器硬件在环仿真系统的设计[J].湖北工学院学报, 19(3), 2004: 44-46.
    [158]黄立培主编.电机控制[M],北京:清华大学出版社, 2003: 42-43.
    [159]刘刚,王志强,房建成.永磁无刷直流电机控制技术与应用[M],北京:机械工业出版社, 2008: 50-51.
    [160]陈兆宽.计算机过程控制软件设计[M],北京:电子工业出版社, 1993: 363-389.
    [161]韩胜利.基于DSP的汽车电动助力转向控制系统研究[硕士论文].吉林:吉林大学, 2006.
    [162]姚胜华.电动助力转向系统的研制[硕士论文].浙江:浙江大学, 2004.
    [163]宋武强.汽车电动助力转向控制系统研究与设计[硕士论文].湖北:武汉科技大学, 2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700