载脂蛋白E和巨噬细胞低密度脂蛋白相关受体1(LDLR1)在动脉粥样硬化中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本实验室前期的实验结果表明巨噬细胞(MФ)来源的低密度脂蛋白受体相关蛋白(Low density lipoprotein receptor-related protein,LRP)具有防止动脉粥样硬化发生的作用。在本研究中,我们对MФ分泌的载脂蛋白E(Apolipoprotein E,ApoE)和LRP在MФ功能和动脉粥样硬化发生中的相关性进行了研究,有助于进一步揭示泡沫细胞的成因并为预防动脉粥样硬化发生发展提供新的理论依据。对骨髓移植小鼠的分析表明,以低密度脂蛋白受体缺失小鼠(Low density lipoprotein receptor deficient mice,LDLR-/-)为受体,ApoE和LRP同时缺失与单一ApoE缺失相比较,在不改变血脂水平的情况下,主动脉根部的脂质沉积增加;移植ApoE-/-MФLRP-/-骨髓的受体小鼠与移植ApoE-/-骨髓的受体小鼠相比较,主动脉根部病变处巨噬泡沫细胞和细胞凋亡指数也显著增加;对ApoE-/-和ApoE-/-MФLRP-/-两种基因型小鼠进行比较后得到的结果与骨髓移植实验结果相一致。体外研究表明ApoE和LRP相互作用可以进一步促进巨噬细胞胆固醇外流和防止细胞发生细胞凋亡。LPS刺激后,ApoE或者LRP的缺失都可以加速巨噬细胞的炎症反应。然而,在ApoE缺失的情况下,LRP的缺失可以缓解巨噬细胞的炎症反应。
     在高胆固醇血症条件下,我们的实验证明了小鼠巨噬细胞LRP具有防止动脉粥样硬化发生的作用。巨噬细胞表达的ApoE和LRP在调节胆固醇外流、细胞凋亡及炎症反应中都可以独立发挥作用或者相互协调共同发挥作用,从而防止动脉粥样硬化的发生。
Macrophages play a critical role in atherogenesis. Macrophages avidly engorge modified LDL particles trapped in the subendothelial space in the artery intima where the efflux machinery cannot pump out a corresponding amount of cholesterol, eventually resulting in foam cell formation. As foam cell formation is an obligatory step for initiation of atherosclerosis, the consequent vessel wall local inflammation and cell apoptosis triggered by macrophage foam cells are the driving force for atherosclerosis progression and the plaque rupture. Many molecules participate in the macrophage cholesterol homeostasis maintenance, inflammatory response, apoptotic transformation and dead cell clearance. Among them, apolipoprotein E (apoE) and LDL receptor-related protein (LRP) are critical.
     A number of studies have proved that apoE has a multiple functions including the lipoprotein remnants clearance in the liver and neuronal plasticity in the brain. Macrophages contribute to less than 10% of plasma apoE, and in the unique microenvironment of the vessel wall, macrophage-derived apoE plays a crucial protective role in the pathology of atherosclerosis. In the compact intima space where exogenous cholesterol acceptors have limited availability, macrophage-derived apoE is uniquely positioned as a molecule in efficiently mediating cholesterol efflux from foam cells. Bone marrow transplantation studies have convincingly demonstrated that macrophage apoE deletion is the most efficient single macrophage gene deletion in promoting atherogenesis irrespective of the degree of hypercholesterolemia.
     LRP is both an endocytic and a signaling receptor through binding to over 30 distinct ligands and a large number of cytoplasmic adaptor proteins. The fact that the systemic LRP knockout in mice is lethal demonstrates an irreplaceable role of LRP in development and survival, also presents a challenge in studying its function in vivo through a systemic gene deletion approach. In recent years, through a tissue-specific knockout approach, LRP has been shown to protect the vessel wall from atherosclerosis at the levels of vascular smooth muscle cells (SMCs), hepatocytes and macrophages. In SMCs, LRP may inhibit PDGF-mediated signaling through incompletely understood mechanisms, thus suppressing SMC proliferation and migration. In hepatocytes, LRP not only mediates remnant clearance through apoE-LRP interaction, contributing significantly to plasma lipoprotein metabolism, but also has other anti-atherogenic roles independent of the remnant clearance. At the macrophage level, LRP was previously speculated to be pro-atherogenic since it functions in lipoprotein uptake. However, ours and another study demonstrated that macrophage LRP is anti-atherogenic, even though the mechanisms are largely unknown.
     ApoE is one of the most important ligands for LRP. In hepatocytes, apoE-LRP interaction mediates lipoprotein remnants clearance. In neurons, apoE-LRP mediated signaling modulates many neuron functions. In macrophages, LRP may be utilized as a receptor to mediate lipoprotein uptake via binding to apoE residing on the surface of the lipoprotein particles and thereafter to route the internalized cholesterol to a specific intracellular handling pathway; apoE-LRP may also mediate lipid-independent signaling pathway to regulate macrophage functioning. Recently, we demonstrated an intracellular direct physical interaction between apoE and LRP uniquely in macrophages which regulates macrophage apoE secretion, highlighting a close apoE-LRP relation in macrophages. In the current study, we use both in vivo atherosclerosis analysis and in vitro macrophage assays to investigate the impact of apoE-LRP interaction in macrophage function and atherogenesis.
     Previous studies demonstrated an atheroprotective role for macrophage LRP. We found macrophage LRP deletion promotes atherosclerosis, although those macrophages produce and secrete more apoE than wild type macrophages. Since macrophage apoE is a potent anti-atherogenic molecule, we propose that the failure of the increased expression of apoE in LRP-/- macrophages in reducing atherosclerosis may be due to the abrogation of apoE-LRP axis-mediated benefits. So in the current study, we aim at investigating the role of apoE-LRP interaction in macrophage function and atherosclerosis.
     Atherosclerosis analyses of bone marrow transplanted mice showed that ApoE-/-MФLRP-/- bone marrow recipient LDLR-/- mice developed 79% atherosclerosis lesion in promimal aorta compared to ApoE-/- bone marrow recipient LDLR-/- mice, even though they did not have difference in plasma lipoprotein levels. We also found that combined apoE and LRP deletion in macrophages increased the numbers of macrophage foam cell and apoptotic cell in atherosclerotic lesion by138% and 89.5%, respectively, compared to apoE single deletion. To eliminate the effects of systemic apoE from other tissues on macrophage in the recipient mice, we further directly compared the atherosclerosis lesion sizes and macrophage foam cell numbers in proximal aortas of apoE-/- mice and ApoE-/-MФLRP-/- mice. We found that in apoE-/- MΦLRP-/- mice, the average oil red O stained area was increased by 123%, and the MOMA-2 stained area was increased by 112%, compared to apoE-/- mice. These results demonstrate that macrophage LRP is athero-protective regardless of the absence or presence of macrophage or systemic apoE.
     In vitro, we collected peritoneal macrophages from mice of four different genotypes (WT, ApoE-/-, MФLRP-/- and apoE-/-MФLRP-/-), and performed experiments to study the cholesterol efflux, cell apoptosis and inflammatory response in order to study the correlation of macrophage apoE-LRP in macrophage functioning. We found that LRP deletion impaired macrophage cholesterol efflux regardless of the state of apoE expression. It demonstrates that LRP has an apoE-independent role in promoting cholesterol efflux from macrophages. These data also highlights the pivotal role of macrophage apoE in maintaining the cholesterol homeostasis in the absence of exogenous cholesterol acceptors. Macrophage apoptosis analysis suggests that macrophage LRP and apoE work both independently and inter-dependently in promoting macrophage survival. Cytokine measurement indicates that apoE and LRP correlatively modulate the inflammatory response to LPS stimulation.
     Taken together, our data confirmed the atheroprotective role of macrophage LRP in mice irrespective of the degree of hypercholesterolemia. Macrophage apoE and LRP work in both independent and interdependent fashions to modulate macrophage cholesterol homeostasis, apoptosis and inflammation, limiting atherosclerosis development.
引文
[1] LINSEL-NITSCHKE P, TALL AR. HDL as a target in the treatment of atherosclerotic cardiovascular disease[J]. Nat Rev Drug Discov, 2005, 4(3):193-205.
    [2] HANSSON GK.Immune mechanisms in atherosclerosis[J]. Arterioscler Thromb Vasc Biol, 2001, 21(12): 1876-1890.
    [3] HANSSON GK, LIBBY P, SCH?NBECK U, et al. Innate and adaptive immunity in the pathogenesis of atherosclerosis[J]. Circ Res, 2002, 91(4):281-291.
    [4] ROSS R.Atherosclerosis is an inflammatory disease[J]. Am heart J, 1999, 138(5):419-420.
    [5] BROWN MS, GOLDSTEIN JL. Lipoprotein metabolism in the macrophage: implications for cholesterol deposition in atherosclerosis [J]. Annu Rev Biochem, 1983, 52: 223-261.
    [6] KRUTH HS, JONES NL, HUANG W, et al. Macropinocytosis is the endocytic pathway that mediates macrophage foam cell formation with native low density lipoprotein[J]. J Biol Chem, 2005, 280(3):2352-2360.
    [7] MA HT, LIN WW, ZHAO B, et al. Protein kinase C beta and delta isoenzymes mediate cholesterol accumulation in PMA-activated macrophages[J]. Biochem Biophys Res Commun, 2006, 349(1):214-220.
    [8] ZHAO B, LI Y, BUONO C, et al. Constitutive receptor-independent low density lipoprotein uptake and cholesterol accumulation by macrophages differentiated from human monocytes with macrophage-colony-stimulating factor (M-CSF)[J]. J Biol Chem, 2006, 281(23):15757-15762.
    [9] AIELLO RJ, BOURASSA PA, LINDSEY S, et al. Monocyte chemoattractant protein-1 accelerates atherosclerosis in apolipoprotein E-deficient mice[J]. Arterioscler Thromb Vasc Biol, 1999, 19(6):1518-1525.
    [10] YUDKIN JS, KUMARI M, HUMPHRIES SE, et al. Inflammation, obesity, stress and coronary heart disease: is interleukin-6 the link[J]. Atherosclerosis, 2000, 148(2):209-214.
    [11] ROSS R. Atherosclerosis is an inflammatory disease[J]. N Engl J, 1999, 340: 115-126.
    [12] GERRITY RG. The role of the monocyte in atherogenesis.I. Transition of blood - borne monocytes into foam cells in fatty lesions[J]. Am. J Pathol, 1981, 103(2): 181-190.
    [13] NAKASHIMA Y, RAINES EW, PLUMP A.S, et al. Upregulation of VCAM-1 and ICAM-1 at atherosclerosis-prone sites on the endothelium in the apoE deficient mouse[J]. Arterioscler Thromb Vasc Biol, 1998, 18(5):842-851.
    [14] CYBULSKY MI, GIMBRONE MA. Endothelial expression of a mononuclear leukocyte adhesion molecule during atherosclerosis[J]. Science, 1991, 251(4995):788-791.
    [15] SMITH JD, TROGAN E, GINSBERG M, et al. Decreased atherosclerosis in mice deficient in both macrophage colony-stimulating factor (op) and apolipoprotein E[J]. Proc Natl Acad Sci USA, 1995, 92(18):8264-8276.
    [16]沈同,王镜岩.生物化学[M]第二版上册,高等教育出版.北京: 69-70
    [17] TUBB MR, SILVA RA, FANG J, et al. A three-dimensional homology model of lipid-free apolipoprotein A-IV using cross-linking and mass spectrometry[J]. J Biol Chem, 2008, 283(25):17314-17323.
    [18] FARKAS MH, SWIFT LL, HASTY AH, et al. The recycling of apolipoprotein E in primary cultures of mouse hepatocytes. Evidence for a physiologic connection to high density lipoprotein metabolism[J]. J Biol Chem, 2003, 278(11):9412-9417.
    [19] ZHU MY, HASTY AH, HARRIS C, et al. Physiological relevance of apolipoprotein E recycling: studies in primary mouse hepatocytes[J]. Metabolism, 2005, 54(10):1309-1315.
    [20] YANCEY PG, JEROME WG, YU H, et al. Severely altered cholesterol homeostAsis in macrophages lacking apoE and SR-BI[J]. J Lipid Res, 2007, 48(5):1140-1149.
    [21] SHORE VG, SHORE B. Heterogeneity of human plasma very low density lipoproteins. Separation of species differing in protein components[J]. Biochemistry, 1973, 12(3):502-507.
    [22] PLUMP AS, BRESLOW JL. Apolipoprotein E and the apolipoprotein E-deficient mouse[J].Annu Rev Nutr, 1995, 15:495-518.
    [23] YU DC,WANG AL,WANG CC. The putative transcription initiation site in giardiavirus double-stranded RNA genome[J]. Mol Biochem Parasitol, 2000,110(2):417-421.
    [24] SCHAEFER E, GREGG R, Ghiselli G, et al. Familial apolipoprotein E deficiency[J]. J Clin Invest, 1986, 78(5):1206-1219.
    [25] GHISELLI G, SCHAEFER EJ, GASCON P, et al. Type III hyperlipoproteinemia associated with apolipoprotein E deficiency[J]. Science, 1986, 214:1239-1241.
    [26] KOLOVOU G, ANAGNOSTOPOULOU K, MIKHAILIDIS DP, et al. Apolipoprotein E knockout models[J]. Curr Pharm Des, 2008, 14(4):338-351.
    [27] LINTON MF, GISH R, HUBL ST, et al. Phenotypes of apolipoprotein B and apolipoprotein E after liver transplantation[J]. J Clin Invest, 1991, 88(1):270-281.
    [28] FAZIO S, LINTON MF, HASTY AH, et al. Recycling of apolipoprotein E in mouse liver [J]. J Biol Chem, 1999, 274(12):8247-8253.
    [29] RAFFA? RL, HASTY AH, WANG Y, et al. Hepatocyte-derived ApoE is more effective than non-hepatocyte-derived ApoE in remnant lipoprotein clearance[J]. J Biol Chem. 2003, 278(13):11670-11675.
    [30] TSUKAMOTO K, TANGIRALA R, CHUN SH, et al. Rapid regression of atherosclerosis induced by liver-directedgene transfer of ApoE in ApoE-deficient mice[J]. Arterioscler Thromb Vasc Biol, 1999, 19(9):2162–2170.
    [31] DESURMONT C, CAILLUND JM, EMMANUEL F, et al. Complete atherosclerosis regression after human apoE gene transfer in apoE-deficient/nude mice[J]. Arterioscler Thromb Vasc Biol, 2000, 20(2):435-442.
    [32] SHIMANO H, YAMADA N, KATSUKI M, et al. Overexpression of apolipoprotein E in transgenic mice: marked reductionin plasma lipoproteins Axcept high density lipoprotein and resistance against diet-induced hypercholesterolemia[J]. Proc Natl Acad Sci U S A, 1992, 89(5):1750-1754.
    [33] NIKOULIN IR, CURTISS LK. An apolipoprotein synthetic peptide targets to lipoproteins in plasma and mediates both cellular lipoprotein interactions in vitro and acute clearance of cholesterol-rich lipoproteins in vivo[J]. J Clin Invest, 1998, 101(1):223-234.
    [34] FAZIO S, BABAEV VR, MURRAY AB, et al. Increased atherosclerosis in mice reconstituted with apolipoprotein E null macrophages[J]. Proc Natl Acad Sci USA 1997, 94(9):4647-4652.
    [35] BOISVERT WA, CURTISS LK. Elimination of macrophage specific apolipoprotein E reduces diet-induced atherosclerosis in C57BL/6 J male mice [J]. J Lipid Res, 1999, 40(5):806-813.
    [36] VAN ECK M, HERIJGERS N, VIDGEON-HART M, et al. Accelerated atherosclerosis in C57BL/6 mice transplanted with ApoE-deficientbone marrow [J]. Atherosclerosis, 2000, 150(1):71-80.
    [37] FAZIO S, BABAEV VR, BURLEIGH ME, et al. Physiological expression of macrophage apoE in the artery wall reduces atherosclerosis in severely hyperlipidemic mice[J]. J Lipid Res, 2002, 43(10):1602-1609.
    [38] YU H, ZHANG W, YANCEY PG, et al. Macrophage apolipoprotein E reduces atherosclerosis and prevents premature death in apolipoprotein E and scavenger receptor-class BI double-knockout mice[J]. Arterioscler Thromb Vasc Biol, 2006, 26(1):150-156.
    [39] RIDDELL DR, GRAHAM A, OWEN JS, et al. Apolipoprotein E inhibits platelet aggregation through the L-arginine: nitric oxide pathway. Implications for vascular disease[J]. J Biol Chem, 1997, 272(1):89-95.
    [40] STANNARD AK, RIDDELL DR, SACRE SM, et al. Cell-derived apolipoprotein E (apoE) particles inhibit vascular cell adhesion molecule-1 (VCAM-1) expression in human endothelial cell[J]. J Biol Chem, 2001, 276:46011–46016.
    [41] AVILA EM, HOLDSWORTH G, SASAKI N, et al. Apoprotein E suppresses phytohemagglutinin-activated phospholipid turnover in peripheral blood mononuclear cells[J]. J Biol Chem, 1982, 257(10):5900-5909.
    [42] HUI DY, HARMONY JAK. Inhibition of calcium accumulation in mitogen-activated lymphocytes: role of membrane-bound plasma lipoproteins [J]. Proc Natl Acad Sci USA, 1980, 77(8):4764-4768.
    [43] KELLY ME, CLAY MA, MISTRY MJ, et al. Apolipoprotein E inhibition of mitogen-activated Tlymphocytes: production of interleukin 2 with reduced biological activity[J]. Cell Immunol, 1994, 159(2):124-139.
    [44] HAYEK T, OIKNINE J, BROOK JG, et al. Role of HDL apolipoprotein E in cellular cholesterol efflux. Studies in apoE knockout transgenic mice[J]. Biochem Biophys Res Commun, 1994, 205(2):1072-1078.
    [45] MIYATA M, SMITH JD. Apolipoprotein E allele-specificantioxidant activity and effects on cytotoxicity by oxidativeinsults and beta-amyloid peptides[J]. NatGenet, 1996, 14(1):55-61.
    [46] GRAINGER DJ, RECKLESS J, MCKILLIGIN E, et al. Apolipoprotein E modulates clearance of apoptotic bodies in vitro and in vivo, resulting in a systemic proinflammatory state in apolipoprotein E-deficient mice[J]. J Immunol, 2004, 173(10):6366-6375.
    [47] HERZ J, HAMANN U, ROGNE S, et al. Surface location and high affinity for calcium of a 500-kd liver membrane protein closely related to the LDL-receptor suggest a physiological role As lipoprotein receptor[J]. EMBO J, 1988, 7(13):4119-4127.
    [48] LENDON CL, ASHALL F, GOATE AM. Exploring the etiology of Alzheimer disease using molecular genetics [J]. JAMA, 1997, 277(10):825-831.
    [49] ASHCOM JD, TILLER SE, DICKERSON K, et al. The human alpha 2-macroglobulin receptor: identification of a 420-kD cell surface glycoprotein specific for the activated conformation of alpha 2-macroglobulin[J]. J Cell Biol, 1990, 110(4):1041-1048.
    [50] STRICKLAND DK, ASHCOM JD, WILLIAMS S, et al. Sequence identity between the alpha 2-macroglobulin receptor and low density lipoprotein receptor-related protein suggests that this molecule is a multifunctional receptor [J]. J Biol Chem, 1990, 265(29):17401-17404.
    [51] NEELS, J.G. The second and fourth cluster of class A cysteinerich repeats of the low density lipoprotein receptor-related protein shareligand-binding properties [J]. J Biol Chem, 1999, 274(44):31305-31311.
    [52] SPRINGER, T.A. An extracellular beta-propeller module predicted in lipoprotein and scavenger receptors, tyrosine kinases, epidermal growth factor precursor, and extracellular matrix components[J]. J. Mol. Biol, 1998, 283(4):837-862.
    [53] TROMMSDORFF, M, BORG, J P, MARGOLIS B, et al. Interaction of cytosolic adaptor proteins with neuronal apolipoprotein E receptors and the amyloid precursor protein[J]. J Biol Chem, 1998, 273(50):33556-33560.
    [54] MOESTRUP SK, GLIEMANN J, PALLESEN G, et al. Distribution of the alpha 2-macroglobulin receptor/low density lipoprotein receptor-related protein in human tissues[J]. Cell Tissue Res, 1992, 269(3):375-382.
    [55] YL?-HERTTUALA S, LUOMA J, VIITA H, et al. Transfer of 15-lipoxygenase gene into rabbit iliac arteries results in the appearance of oxidation-specificlipid-protein adducts characteristic of oxidized low density lipoprotein[J]. J Clin Invest, 1995, 95(6):2692-2698.
    [56] LUPU F, HEIM D, BACHMANN F, et al. Expression of LDL receptor-related protein/alpha 2-macroglobulin receptor in human normal and atherosclerotic arteries[J]. Arterioscler Thromb, 1994, 14(9):1438-1444.
    [57] ROHLMANN A, GOTTHARDT M, HAMMER RE, et al. Inducible inactivation of hepatic LRP1 gene by cre-mediated recombination confirms role of LRP1 in clearance of chylomicron remnants [J]. J Clin Invest, 1998, 101(3):689-695.
    [58] WILLNOW TE, ARMSTRONG SA, HAMMER RE, et al.Functional expression of low density lipoprotein receptor-related protein is controlled by receptor-associated protein in vivo[J]. Proc Natl Acad Sci U S A, 1995, 92(10):4537-4541.
    [59] ESPIRITO SANTO SM, PIRES NM, BOESTEN LS, et al. Hepatic low-density lipoprotein receptor-related protein deficiency in mice increases atherosclerosis independent of plasma cholesterol[J]. Blood, 2004, 103(10):3777-3782.
    [60] LUPU F, HEIM D. BACHMANN F, et al. Expression of LDL receptor-related protein/alpha 2-macroglobulin receptor in human normal and atherosclerotic arteries[J]. Arterioscler Thromb, 1994, 14(9):1438-1444.
    [61] BOUCHER P, LIU P, GOTTHARDT M, et al. Platelet-derived growth factor mediates tyrosine phosphorylation of the cytoplasmic domain of the low Density lipoprotein receptor-related protein in caveolae[J]. J Biol Chem, 2002, 277(18):15507-15513.
    [62] BOUCHER P, GOTTHARDT M, LI WP, et al. LRP: role in vascular wall integrity and protection from atherosclerosis [J]. Science, 2003, 300(5617):329 -332.
    [63] YEPES M, SANDKVIST M, MOORE EG, et al. Tissue-type plasminogen activator induces opening of the blood-brain barrier via the LDL receptor-related protein[J]. J Clin Invest, 2003, 112(10):1533-1540.
    [64] CAO C, LAWRENCE DA, LI Y, et al. Endocytic receptor LRP1 together with tPA and PAI-1 coordinates Mac-1-dependent macrophage migration[J]. EMBO J, 2006, 25(9):1860-1870.
    [65] KOSAKA S, TAKAHASHI S, MASAMURA K, et al. Evidence of macrophage foam cell formation by very low-density lipoprotein receptor: interferon-gammainhibition of very low-density lipoprotein receptor expression and foam cell formation in macrophages[J]. Circulation, 2001, 103(8):1142-1147.
    [66] LLORENTE-CORTéS V, MARTíNEZ-GONZáLEZ J, BADIMON L, et al. LDL receptor-related protein mediates uptake of aggregated LDL in human vascular smooth muscle cells[J]. Arterioscler Thromb Vasc Biol, 2000, 20(6):1572-1579
    [67] BOUCHER P, GOTTHARDT M. LRP and PDGF signaling: a pathway to atherosclerosis[J]. Trends Cardiovasc Med, 2004, 14(2):55-60.
    [68] BEISIEGEL U, WEBER W, BENGTSSON-OLIVECRONA G, et al. Lipoprotein lipase enhances the binding of chylomicrons to low density lipoprotein receptor-related protein[J]. Proc Natl Acad Sci U S A, 1991, 88(19):8342-8346.
    [69] CHAPPELL DA, FRY GL, WAKNITZ MA, et al. Low density lipoprotein receptors bind and mediate cellular catabolism of normal very low density lipoproteins in vitro[J]. J Biol Chem, 1993, 268(34):25487-25493.
    [70] WU S.M, PIZZO S.V. Low-density lipoprotein receptor-related protein/alpha 2-macroglobulin receptor on murine peritoneal macrophages mediates the binding and catabolism of low-density lipoprotein[J]. Arch Biochem Biophys, 1996, 326(1):39-47.
    [71] HU L, BOESTEN LS, MAY P, et al. Macrophage low-density lipoprotein receptor-related protein deficiency enhances atherosclerosis in ApoE/LDLR double knockout mice[J]. Arterioscler Thromb Vasc Biol, 2006, 26(12):2710-2715.
    [72] OVERTON C.D, YANCEY P.G., MAJOR A.S, et al. Deletion of macrophage LDL receptor-related protein increases atherogenesis in the mouse[J]. Circ Res, 2007, 100(5):670-677.
    [73] LALAZAR A, WEISGRABER KH, RALL SC JR, et al. Site-specific mutagenesis of human apolipoprotein E receptor binding activity of variants with single amino acid substitutions[J]. J Biol Chem, 1988, 263(8): 3542–3545.
    [74] MORROW JA, ARNOLD KS, DONG J, et al. Effect of arginine 172 on the binding of apolipoprotein E to the low density lipoprotein receptor[J]. J Biol Chem, 2000, 275(4): 2576–2580.
    [75] LINTON MF, HASTY AH, BABAEV VR, et al. Hepatic apoE expression is required for remnant lipoprotein clearance in the absence of the low densitylipoprotein receptor[J].Clin Invest, 1998, 101(8):1726-1736.
    [76] BROWN MS, GOLDSTEIN JL. Receptor-mediated endocytosis: insights from the lipoprotein receptor system[J]. Proc Natl Acad Sci USA, 1979, 76(7):3330 -3337.
    [77] HAYSSHI H, CAMPENOT RB, VANCE DE, et al. Apolipoprotein E-containing lipoproteins protect neurons from apoptosis via a signaling pathway involving low-density lipoprotein receptor-related protein-1[J]. J Neurosci, 2007, 27(8):1933-1941.
    [78] ZERBINATTI CV, WAHRLE SE, KIM H, et al. Apolipoprotein E and low density lipoprotein receptor-related protein facilitate intraneuronal Abeta42 accumulation in amyloid model mice[J]. J Biol Chem. 2006, 281(47):36180 -36186.
    [79] ASSMANN G, GOTTO AM JR. HDL cholesterol and protective factors in atherosclerosis[J]. Circulation, 2004, 109: 8-14.
    [80] CHOI B G, VILAHUR G, YADEGAR D, et al. The role of high-density lipoprotein cholesterol in the prevention and possible treatment of cardiovascular diseases[J].Curr Mol Med, 2006 (6): 571-587.
    [81] CUCUIANU M, COCA M, H?NCU N, et al. Reverse cholesterol transport and atherosclerosis. A mini review[J]. Rom J Intern Med, 2007, 45(1):17-27.
    [82] SAHOO D, TRISCHUK TC, CHAN T, et al. ABCA1-dependent lipid efflux to apolipoprotein A-I mediates HDL particle formation and decreases VLDL secretion from murine hepatocytes[J]. J Lipid Res, 2004, 45(6):1122-1131.
    [83] OUT R, JESSUP W, LE GOFF W, et al. Coexistence of foam cells and hypocholesterolemia in mice lacking the ABC transporters A1 and G1[J].Circ Res, 2008, 102(1):113-120.
    [84] ATTIE AD. ABCA1: at the nexus of cholesterol, HDL and atherosclerosis[J]. Trends Biochem Sci, 2007, 32(4):172-179.
    [85] HORIUCHI S, SAKAMOTO Y, SAKAI M, et al. Scavenger receptors for oxidized and glycated proteins[J]. Amino Acids, 2003, 25(3-4):283-292.
    [86] WEBB NR, DE BEER MC, YU J, et al. Overexpression of SR-BI by adenoviral vector promotes clearance of apoA-I, but not apoB, in human apoB transgenic mice[J]. J Lipid Res, 2002, 43(9):1421-1428.
    [87] HUBY T, DOUCET C, DACHET C, et al. Knockdown expression and hepaticdeficiency reveal an atheroprotective role for SR-BI in liver and peripheral tissues[J]. J Clin Invest, 2006, 116(10):2767-2776.
    [88] DELVECCHIO CJ, BILAN P, RADFORD K, et al. Liver X receptor stimulates cholesterol efflux and inhibits expression of proinflammatory mediators in human airway smooth muscle cells[J]. Mol Endocrinol, 2007, (6):1324-1334.
    [89] BALDáN A, TARR P, LEE R, et al. ATP-binding cassette transporter G1 and lipid homeostasis[J]. Curr Opin Lipidol, 2006, 17(3):227-332.
    [84] OUT R, HOEKSTRA M, MEURS I, et al. Total body ABCG1 expression protects against early atherosclerotic lesion development in mice [J].Arterioscler Thromb Vasc Biol, 2007, 27(3):594-599.
    [90] ITO T. Physiological function of ABCG1[J]. Drug News Perspect, 2003, 16(8):490-492.
    [91] DUSSERRE E, MOULIN P, VIDAL H, et al. Differences in mRNA expression of the proteins secreted by the adipocytes in human subcutaneous and visceral adipose tissues[J]. Biochim Biophys Acta, 2000, 1500(1):88-96.
    [92] VAN HAPEREN R, VAN Tol A, VERMEULEN P, et al. Human plasma phospholipid transfer protein increases the antiatherogenic potential of high density lipoproteins in transgenic mice[J]. Arterioscler Thromb Vasc Biol, 2000, 20(4):1082-1088.
    [93] THOMPSON J S. Atheromata in an inbred strain of mice[J]. Atheroscler Res, 1969, 10(1):113-122.
    [94] PAIGEN B, MORROW A, BRANDON C, et al. Variation in susceptibility to atherosclerosis among inbred stains of mice[J]. Atherosclerosis, 1985, 57(1):65-73.
    [95] PLUMP AS, SMITH JD, HAYEK T, et al. Severe hypercholesterolemia and atherosclerosis in apolipoprotein E-deficient mice created by homologous recombination in ES cells [J]. Cell, 1992, 71(2):343-353.
    [96] ISHIBASHI S, BROWN M.S, GOLDSTEIN J.L, et al. Hypercholesterolemia in low density lipoprotein receptor knockout mice and its reversal by adenovirus-mediated gene delivery [J]. J Clin Invest, 1993, 92(2):883-893.
    [97] ZHANG X, QI R, XIAN X, et al. Spontaneous atherosclerosis in aged lipoprotein lipAse-deficient mice with severe hypertriglyceridemia on a normal chow diet [J]. Circ Res, 2008, 102(2):250-256.
    [98] MAHLEY R.W. Apolipoprotein E: cholesterol transport protein with expanding role in cell biology [J]. Science, 1988, 240(4852):622-630.
    [99] HOBBS H H, BROWN MS, GOLDSTEIN JL, et al. Molecular genetics of the LDL receptor gene in familial hypercholesterolemia[J]. Hum Mutat, 1992, 1(6):445-466.
    [100] ISHIBASHI S, GOLDSTEIN JL, BROWN MS, et al. Massive xanthomatosis and atherosclerosis in cholesterol-fed low density lipoprotein receptor-negative mice[J]. J Clin Invest, 1994, 93(5):1885-1893.
    [101] ANTISCHKOW. Classics in arteriosclerosis research: On experimental cholesterin steatosis and its significance in the origin of some pathological processes[J]. Arteriosclerosis, 1913, 3(2):178-182.
    [102] JEGATHESAN J, LIEBENTHAL JA, ARNETT MG, et al. Apoptosis: understanding the new molecular pathway[J].Medsurg Nurs, 2004, 13(6):371-375.
    [103] TABAS I. Apoptosis and efferocytosis in mouse models of atherosclerosis[J]. Curr Drug Targets, 2007, 8(12):1288-1296.
    [104] LANGER C, GANSZ B, GOEPFERT C, et al. Testosterone up-regulates scavenger receptor BI and stimulates cholesterol efflux from macrophages[J]. Biochem Biophys Res Commun, 2002, 296(5):1051-1057.
    [105] HAN J, HAJJAR DP, TAURAS JM, et al. Cellular cholesterol regulates expression of the macrophage type B scavenger receptor, CD36[J]. J Lipid Res. 1999, 40(5):830-838.
    [106] JEGATHESAN J, LIEBENTHAL JA, ARNETT MG, et al. Apoptosis: understanding the new molecular pathway.[J]. Medsurg Nurs, 2004, 13(6):371-375.
    [107] GUEVARA NV, CHEN KH, CHAN L. Apoptosis in atherosclerosis: pathological and pharmacological implications[J]. Pharmacol Res, 2001, 44(2):59-71.
    [108] WERNER MH, WU C, WALSH CM.Emerging roles for the death adaptor FADD in death receptor avidity and cell cycle regulation[J].Cell Cycle, 2006, (20):2332-2338.
    [109] CAMIDGE DR. The potential of death receptor 4- and 5-directed therapies in the treatment of lung cancer[J]. Clin Lung Cancer, 2007, 8(7):413-419.
    [110] JOFRE-MONSENY L, LOBODA A, WAGNER AE, et al. Effects of apoE genotype on macrophage inflammation and hemeoxygenase-1 expression [J].Biochem Biophys Res Commun, 2007, 357(1):319-324.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700