甘蓝型油菜硼营养及离子组遗传学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作物的生长因为土壤中矿质营养元素的缺乏或过量,会出现生长的紊乱,并发各种缺素综合症,最终导致作物减产和品质下降。在我国长江中下游油菜主产区微量元素硼缺乏比较严重,该地区曾出现过因为硼的缺乏导致油菜和棉花大量的减产或绝收。尽管现代农业在作物栽培过程中以增施硼肥的措施能保证油菜正常生长,但肥料的施用无疑给农户增添了经济上的负担,而且肥料随着农田地表水的流失,不仅仅带来肥料的浪费,也给江河湖泊水资源带来了严重的污染。发展大田绿色作物,培育肥料高效利用的作物品种,保持高产稳产的同时尽量降低肥料用量是现在农业研究中的重要课题。对于油菜硼高效的生理基础,前人作了很多研究,也提出了很多的假设,但都没有从根本上解释硼高效的生理和遗传机理。本研究为探明硼高效遗传规律,调查了缺硼环境下油菜籽粒产量和硼效率系数两个性状,检测到其对应的遗传位点。并调查油菜苗期地上部和根中硼和其他六种矿质离子的含量,将离子组和数量遗传学结合,寻找油菜基因组中控制离子含量的遗传位点。借助油菜和拟南芥基因组同源关系,用比较定位的办法找到同源候选基因。
     1.大田试验的油菜产量相关性状硼效率遗传分析
     TN群体202个株系,于2004和2005两年栽种在蕲春缺硼大田土壤中,苗期分别施用硼1.5 kg/ha和15 kg/ha以设置两组硼水平,三个重复,每个重复内的株系采取随机区组分布种植。营养生长阶段,低硼环境下的油菜长势明显弱于正常硼环境下的油菜;高效亲本宁油7和高效株系生长正常,而低效亲本Tapidor和低效株系出现叶缘紫红,茎纵裂,生长点坏死,多头等典型的缺硼症状。油菜蕾薹期对硼的缺乏最为敏感,缺硼油菜部分株系花期明显延迟,出现“返花”等症状,花蕾很多枯败,没有结实,出现典型的“花而不实”症状。
     为调查缺硼影响的产量性状,以每株系缺硼条件下的籽粒产量和硼效率系数作为指标,两年试验共检测到10个硼高效QTL和10对相关的互作位点。其中A2和A6连锁群上的QTL位点,在两年的试验中能重复被检测到,而且其中A2上的位点与以前BQ群体中定位的位点吻合,是一个较稳定的低硼环境下的产量相关QTL。而该位点同时还和基因组中其他位点发生互作,可能涉及更复杂的分子遗传机理。
     2.油菜苗期地上部和根在两种硼环境下的七种离子含量分析
     设置两个硼营养液培养水平,低硼水平为0.25μM,硼正常水平为50μM。分别测量TN亲本和群体地上部和根中7种离子的含量,而受胁迫影响的B含量变化最为明显,其次为Cu,Fe和Zn。而且根中和地上部的元素受影响程度不一致。
     3.七种离子含量的遗传分析
     两种B水平下,共检测到离子含量相关QTL107个和互作对154对。其中发现地上部的Ca和Mg的QTL存在三处重叠,另外位于Al连锁群上的地上部主效P-QTL稳定存在,不受环境B含量高低的影响。也有多处根中离子含量的QTL位点,特别是Ca,Mg,Cu,Fe,和Zn这些阳离子之间,有多达7处重叠位点。说明根中很多位点可能存在这些二价阳离子的一些共同的非选择性吸收机制。
     4.同源转运基因在TN图谱上的in silico定位及于QTL的比对
     根据拟南芥和油菜之间的同源共线关系,我们借助TN遗传图上含有序列信息的分子标记,将拟南芥的基因组区段比对到TN遗传图上,用以辅助分析QTL的位置以及和拟南芥基因组的同源区段。根据拟南芥中已发现的矿质元素转运基因和控制离子自稳态的转录因子等基因位置信息,在TN遗传图谱上,我们共电子定位了352个同源基因,发现其中46个基因位于先前定位的矿质元素QTL中。这种利用比较基因组的方法确定不同物种的同源基因和QTL关系的方法,为下一步定位克隆这些基因提供了丰富的信息。
     5.根据硼转运子发展特异标记定位到TN遗传图上
     根据已发现的拟南芥的硼转运基因NIP5;1,BORl及其家族的同源基因设计引物,在TN遗传图谱上定位5个硼转运子同源序列的SSCP标记,其中一个位于先前定位的A5连锁群低硼环境下根长QTL区间内。并用分离集团的策略将两个转运子起源的TRAP标记定位到A2连锁群的低硼产量QTL区间中。
     6.AFLP+BSA策略加密QTL区间
     用AFLP分离集团策略加密A2上的低硼产量高效QTL区间分子标记密度,在原本标记稀疏的30 cM区段内,增加了9个AFLP标记,为精细定位该QTL区间作了前期准备。
The growth of crops often occur various disorders because of the lack or excessive of elements in the soil.Middle and lower reaches of the Yangtze River in China's is main producing areas of rapeseed.In the past,a large number of rapeseed and cotton decreased production or total destruction for more serious lack of boron(B) in the region.Although fertilizer in the process of cultivation could guarantee the normal growth of crop,but the application of fertilizers to farmers undoubtedly added economic burden;and the loss of fertilizer from farmland by rain,resulted in not only waste of fertilizer,also caused serious water pollution.The development of green crops,and cultivating the efficient use of fertilizer varieties,in maintaining high and stable yield at the same time reducing the amount of fertilizer is an important subject in agricultural research.A lot of studies were concerning about the physiological basis of B efficient for oilseed.Although a lot of assumptions were proposed,but there still were not fundamentally explains for the mechanism of B efficient.
     Detection of B efficent loci in rapeseed genome is our research objection by investigating characters of mature stage traits combining with TN genetic resourses.A further inquiry was firstly performed about preliminary ionomics exploration in the seedling stage.
     1.Genetic analysis of rapeseed B efficiency in field experiments
     TN population of 202 lines was planted for two years in B deficiency soil,Qichun of Hubei.1.5 kg/ha of boron and 15 kg/ha of boron were fertilized to design two levels of controlled experiment.The experiment included three repeats,each repeat of random block design of 202 lines with the parents as control.In vegetative growth stage,rapeseed under low B environment grew significantly weaker than under normal B environment.In low B environment,efficient parent(Ningyou7) and efficient DH lines grew normally, but inefficient parent(Tapidor) and inefficient DH lines appeared with typical symptoms of B deficiency:purplish leaf edge,cracked stem,the SAM necrosis,many-branch.In bolting stage,rapeseed is most sensitive of the lack of B.Flowering time was significantly delayed for B deficiency with pod lost.It's the typical symptoms with "flowering not seeding".
     Two traits(the seed production under the low B environment and B efficient coefficient) were tested.Ten QTL and ten interaction pairs were detected.The two QTL on A2 and A6 lingkage groups could be validated by two years results.The major QTL on A2 linkage group of TN pupulation could be identical with QTL in LG9 of BQ population,The result found that a stable production-related QTL under low B conditions exist across two genetic populations.At the same time,we found the QTL on A2 linkage group interacted with other genetic locus in genome.It suggest complicated epistatic effect exists in the major B QTL.
     2.Concentrations of seven mineral elements of rapeseed seedling in the two B conditions
     Two B levels of hydroponical culture were low B levels for 0.25μM,B normal level for 50μM,respectively.The concentrations of seven mineral elements in shoots and roots were measured.B concentration has been most intensely decreased because of the stress, followed increased with concentrations of Cu,Fe and Zn.But fluctuation of elements concentrations in roots is comparative with elements in shoots.
     3.Genetic analysis for the concentrations of mineral elements
     In the two B conditions,total 107 QTL and 154 interation pairs were detected for the concentrations of 7 mineral elements.In shoots,wefound three overlapping QTL for Ca/Mg and the biggest effect P-QTL across two B conditions.In roots,QTL for cations (Ca,Mg,Cu,Fe and Zn) has 7 overlapping QTL intervals.It means the cations may exist the common non-selective absorption mechanism.
     4.Small regions of the Arabidopsis genome have already been targeted by comparative mapping between B.napus and Arabidopsis.
     The genes that were related to mineral absorption and allocation in each syntenic block of Arabidopsis were located according to their physical positions in the genome of Arabidopsis.The positions of putative genes were then aligned with the TN linkage map according to the position of close anchor marker(s) in the same syntenic block.If the position of an aligned gene(s) was located in the confidence interval of a QTL,the orthologous gene(s) was considered to be associated with the target QTL.By the method of in silico mapping,hundreds of mineral transporting genes in Arabidopsis have been aligned with the linkage map of B.napus.
     In our study,alignment results were used to construct blocks of syntenic or insertion fragment islands between the Arabidopsis chromosomes and TN linkage groups. According to homologue relationship between Arabidopsis and rapeseed,the genetic map of TN population with Arabidopsis thaliana section,used to support the position of QTL and there may be some candidate genes.We have found in the various ion transporter gene through this comparative genomic methods to determine their genes in the genome, to pave the way for map-based cloning of these genes.
     5.According to the sequence of the transporter genes of NIP5;1,BORl family in Arabidopsis,the primers were designed and amplified in TN population.Five single-strand conformation polymorphism(SSCP) markers were got and single marker was located in QTL intervcal for root length in low B condition.
     By using target region polymorphism(TRAP) and bulked segregate analysis(BSA), we identified 2 TRAP markers linked to the B efficient locus on A2 lingkage group.The markers will be useful for marker-assisted selection(MAS) in breeding programs and provide the bases for map-based cloning of this gene.
     6.AFLP markers were used to densify the target QTL interval on A2 linkage group. The original interval covers 30 cM with sparse markers.By BSA method,9 AFLP markers were added in the QTL interval.
引文
1.曹享云.对缺硼反应不同的油菜基因型根系生理特性的研究.[博士学位论文].武汉:华中农业大学图书馆,1996
    2.耿明建.不同硼效率棉花品种对缺硼反应差异及其机理研究.[博士学位论文].武汉:华中农业大学图书馆,2003
    3.韩燕来.拟南芥硼营养高效的生理基础和遗传基础研究.[博士学位论文].武汉:华中农业大学图书馆,2003
    4.龙艳.甘蓝型油菜基因组中开花期QTL的检测和分析.[博士学位论文].武汉:华中农业大学图书馆,2007
    5.陆景陵.植物营养学(上册).北京:中国农业大学出版社,2003
    6.泉美治,小川雅彌,加藤俊二,墟川二朗,芝哲夫.仪器分析导论(第二册).北京:化学工业出版社,2005
    7.萨姆布鲁克,D.W拉塞尔.分子克隆实验指南(第三版).黄培堂等译.北京:科学出版社,2002,96-99
    8.石磊.甘蓝型油菜硼高效的生理基础及硼高效基因的定位.[博士学位论文].武汉:华中农业大学图书馆,2004
    9.王丽侠,赵建伟,徐芳森,刘仁虎,孟金陵.与甘蓝型油菜重要经济性状有关的DNA克隆在拟南芥遗传图谱中的整合.遗传学报,2002,29:741-746
    10.王运华,兰莲芳.甘蓝型油菜品种对缺硼敏感性差异的研究(Ⅱ).华中农业大学学报,1995,21:79-82
    11.吴平.植物营养与分子生理学.科学出版社,2001
    12.严小龙,张福锁.植物营养遗传学.北京:中国农业出版社,1997
    13.杨锦鹏.利用TN群体定位甘蓝型油菜硼高效QTLs的研究.[硕士学位论文].武汉:华中农业大学图书馆,2007
    14.王俊霞,杨光圣,傅廷栋,孟金陵.甘蓝型油菜Pol CMS育性恢复基因的RAPD标记.作物学报,2000,26(5):575-578
    15.熊双莲,吴礼树,王运华,兰莲芳.不同甘蓝型油菜品种硼的吸收与分布.华中农业大学学报,1995,21:85-91
    16.曾长英.拟南芥硼高效QTLAtBE1-2的定位和基因表达谱分析.[博士学位论文].武汉:华中农业大学图书馆,2007
    17.张福锁,张亚科.植物矿质营养遗传性状的改良与利用.世界农业,1994,11:32-34
    18.赵华.甘蓝型油菜硼高效近等基因系的构建及硼高效基因BnBE2的定位.[博士学位论文].武汉:华中农业大学图书馆,2008
    19.周奕华,陈正华.分子标记在植物学中的应用及前景.武汉植物学研究,1999,17:75-86
    20.汪维鹏,倪坤仪,周国华.单核苷酸多态性检测方法的研究进展.遗传.2006,28:117-126
    21.Abdel-Ghany SE,M(u|¨)ller-Moule P,Niyogi KK,Pilon M,Shikanai T.Two P-type ATPases are required for copper delivery in Arabidopsis thaliana chloroplasts.Plant Cell,2005,17:1233-1251
    22.Alwala S,Suman A,Arro J A,Veremis J C,Kimbeng C A.Target region amplification polymorphism(TRAP) for assessing genetic diversity in sugarcane germplasm collections.Crop Science,2006,46:448-455
    23.Anneloor L M A,Asbroek T,Olsen J,Housman D,Baas F,Stanton V J.Genetic variation in mRNA coding sequences of highty conserved genes.Physiol Genomics,2001,5:113-118
    24.Arabidopsis Genome Initiative.Analysis of the genome sequence of the flowering plant Arabidopsis thaliana.Nature,2000,408:796-815
    25.Balint A F,Roder M S,Hell R,Galiba G,Borner A.Mapping of QTLs affecting copper tolerance and the Cu,Fe,Mn and Zn contents in the shoots of wheat seedlings.Biologia Plantarum,2007,51:129-134
    26.Barret P,Guerif J,Reynoird J P,Delourme R,Eber F,Renard M,Chevre A M.Selection of stable Brassica napus-Brassica juncea recombinant lines resistant to blackleg(Leptosphaeria maculans).2.A 'to and fro' strategy to localise and characterise interspecific introgressions on the B.napus genome.Theor Appl Genet,1998,96:1097-1103
    27.Baxter I R,Ouzzani M,Orcun S,Kennedy B,Jandhyala S S,Salt D E.Purdue Ionomics Information Management System(PiiMS):An integrated functional genomics platform.Plant Physiol,2007,143:600-11
    28.Baxter I R,Vitek O,Lahner B,Muthukumar B,Borghi M,Morrissey J,Guerinot M L,Salt D E.The leaf ionome as a multivariable system to detect a plant's physiological status.Proc Natl Acad Sci USA.2008,105:12081 - 12086
    29.Bentsink L,Yuan K,Koornneef M,Vreugdenhil D.The genetics of phytate and phosphate accumulation in seeds and leaves of Arabidopsis thaliana,using natural variation.Theor Appl Genet,2003,106:1234-1243
    30.Brenchley W E,Warington K.The role of boron in the growth of plants.Ann Bot,1927,41:167-187
    31.Broadley MR,Hammond JR King GJ,Astley D,Bowen HC,Meacham MC,Mead A,Pink DAC,Teakle GR,Hayden RM,Spracklen WP,White PJ.Shoot calcium(Ca) and magnesium(Mg)concentrations differ between subtaxa,are highly heritable,and associate with potentially pleiotropic loci in Brassica oleracea.Plant Physiol,2008,146:1707-1720
    32.Brown G G,Formanova N,Jin H,Wargachuk R,Dendy C,Patil P,Laforest M,Zhang J,Cheung W Y,Landry B S.The radish Rfo restorer gene of Ogura cytoplasmic male sterility encodes a protein with multiple pentatricopeptide repeats.Plant J,2003,35:262-272
    33.Brown P H,Bellaloui N,Wimmer M A,Bassil E S,Ruiz J,Hu H,Pfeffer H,Dannel F,Romheld V.Boron in plant biology.Plant Biol,2002,4:205-223
    34. Brown P H, Shelp B J. Boron mobility in plants. Plant Soil, 1997,193:85-102
    
    35. Camacho-Cristobal J J, Gonzalez-Fontes A. Boron deficiency decreases plasmalemma H~+-ATPase expression and nitrate uptake, and promotes ammonium assimilation into asparagine in tobacco roots. Planta, 2007, 226:443-451
    
    36. Camacho-Cristobal J J, Herrera-Rodriguez M B, Beato V M, Rexach J, Navarro-Gochicoa M T, Maldonado J M, Gonzalez-Fontes A. The expression of several cell wall-related genes in Arabidopsis roots is down-regulated under boron deficiency. Environ Exper Botany, 2008, 63:351-358
    
    37. Cavell A C, Lydiate D C, Parkin I A P, Dean C, Trick M. Colinearity between a 30-centimorgan segment of Arabidopsis thaliana chromosome 4 and duplicated regions within the Brassica napus genome. Genome, 1998,41:62-69
    
    38. Chantachume Y, Smith D, Hollamby G J, Paull J G, Rathjen A J. Screening for boron tolerance in wheat (T. aestivum) by solultion culture in filter paper. Plant Soil, 1995, 177:249-254
    
    39. Chen J F, Hu J G, Vick B A and Jan C C. Molecular mapping of a nuclear male-sterility gene in sunflower (Helianthus annuus L.) using TRAP and SSR markers. Theor Appl Genet, 2006, 113:122-127
    
    40. Chen X, Li M, Shi J, Fu D, Qian W, Zou J, Zhang C, Meng J. Gene expression profiles associated with intersubgenomic heterosis in Brassica napus. Theor Appl Genet, 2008, 117:1031-1040
    
    41. Chen X F, Fans J D, Hu J G, Stack R W, Adhikari T, Elias E M, Kianian S F and Cai X W. Saturation and comparative mapping of a major Fusarium head blight resistance QTL in tetraploid wheat. Mol Breed, 2007, 19:113-124
    
    42. Churchill G A, Doerge R W. Emprical threshold values for quantitative trait mapping. Genetics, 1994,138:963-971
    
    43. Clark R B, Duncan R R. Improvement of plant mineral nutrition through breeding. Field Crop Res, 1991,27:219-240
    
    44. Clemens S. Molecular mechanisms of plant metal tolerance and homeostasis. Planta, 2001, 212:475-486
    
    45. Coic Y, Lesaint C, Le Roux F. Effects of ammonium and nitrate nutrition and a change of ammonium and nitrate supply on the metabolism of anions and cations in tomatoes. Annales Physiol Feg, 1962, 4:117-125
    
    46. Colangelo E P, Guerinot M L. Put the metal to the petal: metal uptake and transport throughout plants. Curr Opin Plant Biol, 2006, 9:322-330
    
    47. Delhaize E, Randall PJ. Characterization of a phosphate-accumulator mutant of Arabidopsis thaliana. Plant Physiol, 1995, 107:207-213
    
    48. Delhaize E. A metal-accumulator mutant of Arabidopsis thaliana. Plant Physiol. 1996, 111:849-855
    
    49. Delourme R, Foisset N, Horvais R, Barret P, Champagne G, Cheung W Y, Landry B S, Renard M. Characterisation of the radish introgression carrying the Rfo restorer gene for the Ogu-INRA cytoplasmic male sterility in rapeseed (Brassica napus L.). Theor Appl Genet, 1998, 97:129-134
    
    50. Desloire S, Gherbi H, Laloui W, Marhadour S, Clouet V, Cattolico L, Falentin C, Giancola S, Renard M, Budar F, Small I, Caboche M, Delourme R, Bendahmane A. Identification of the fertility restoration locus, Rfo, in radish, as a member of the pentatricopeptiderepeat protein family. EMBO reports, 2003, 4:588-594
    
    51. DiDonato RJ, Roberts LA, Sanderson T, Eisley RB, Walker EL. Arabidopsis Yellow Stripe-Like2 (YSL2): a metal-regulated gene encoding a plasma membrane transporter of nicotianamine-metal complexes. Plant J, 2004, 39:403-414
    
    52. Doerge RW, Churchill GA. Permutation tests for multiple loci affecting a quantitative character. Genetics, 1996, 142:285-294
    
    53. Doyle J J, Doyle J L. Isolation of plant DNA from fresh tissue. Focus, 1990, 12:13-15
    
    54. Dunemann F, Peil A, Urbanietz A and Garcia-Libreros T. Mapping of the apple powdery mildew resistance gene Pl1 and its genetic association with an NBS-LRR candidate resistance gene. Plant Breed, 2007, 126:476-481
    
    55. Fleischer A, Titel C, Ehwald R. The boron requirement and cell wall properties of growing and stationary suspension-cultured Chenopodium album L. cells. Plant Physiol, 1998, 117:1401-1410
    
    56. Flint-Garcia S A, Thuillet A C, Yu J, Pressoir G, Romero S M, Mitchell S E, Doebley J, Kresovich S, Goodman M M, Buckler E S. Maize association population: a high-resolution platform for quantitative trait locus dissection. Plant J, 2005, 44:1054-64
    
    57. Fox T C, Guerinot M L. Molecular biology of cation transport in plants. Annu Rev Plant Physiol Plant Mol Biol. 1998,49:669-696
    
    58. Gale M D, Devos K M. Comparative genetics in the grasses. Proc Natl Acad Sci USA, 1998, 95:1971-1974
    
    59. Gardiner S J, Smith B D, Duggan P J, Karpa M J, Griffin G J. Selective fructose transport through supported liquid membranes containing diboronic acid or conjugated monoboronic acid-quaternary ammonium carriers. Tetrahedron, 1999,55:2857-2864
    
    60. Gauch H G, Dugger W M. The role of boron in the translocation of sucrose. Plant Physiol, 1953, 28:457-466
    
    61. Gion J M, Rech P, Grima-Pettenati J, Verhaegen D, Plomion C. Mapping candidate genes in Eucalyptus with emphasis on lignification genes. Mol Breed, 2000, 6:441-449
    
    62. Goldbach HE, Wimmer MA. Boron in plants and animals: Is there a role beyond cell-wall structure? J Plant Nutr Soil SC, 2007, 170:39-48
    
    63. Grotz N, Guerinot ML. Molecular aspects of Cu, Fe and Zn homeostasis in plants. BBA-Mol Cell Res, 2006, 1763:595-608
    
    64. Hammond JP, White PJ. Sucrose transport in the phloem: integrating root responses to phosphorus starvation. JExp Bot, 2008, 59:93-109
    
    65. Harada H, Leigh RA. Genetic mapping of natural variation in potassium concentrations in shoots of Arabidopsis thaliana. J Exp Bot, 2006, 57:953-960
    66. He J P, Ke L P, Hong D F, Xie Y Z, Wang G C, Liu P W, Yang G S. Fine mapping of a recessive genic male sterility gene (Bnms3) in rapeseed (Brassica napus) with AFLP- and Arabidopsis-derived PCR markers. Theor Appl Genet, 2008, 117:11-18
    
    67. Hirschi K D. Strike while the ionome is hot: making the most of plant genomic advances. Trends Biotech, 2003,21:520-521
    
    68. Hoagland DR, Arnon DI. The water-culture method for growing plants without soil. California Agriculture Experimental Station circular 347. 1950
    
    69. Hong D F, Wan L L, Liu P W, Yang G S, He Q B. AFLP and SCAR markers linked to the suppressor gene (Rf) of a dominant genetic male sterility in rapeseed (Brassica napus L.). Euphytica, 2006, 151:401-409
    
    70. Hu H N, Brown P H. Localization of boron in cell walls of squash and tobacco and its associaton with pectin, Evidence for a structural role of boron in the cell wall. Plant Physiol, 1994, 105:681-689
    
    71. Hu J G, Mou B Q, Vick B A. Genetic diversity of 38 spinach (Spinacia oleracea L.) germplasm accessions and 10 commercial hybrids assessed by TRAP markers. Gen Res Crop Evol, 2007,54:1667-1674
    
    72. Hu J G, Vick B A. Target region amplification polymorphism: A novel marker technique for plant genotyping. Plant Mol Biol Rep, 2003, 21:289-294
    
    73. Hansen M, Hallden C, Nilsson N O, Sail T. Marker-assisted selection of restored male-fertile Brassica napus plants using a set of dominant RAPD markers. Mol Breed, 1997, 3:449-456
    
    74. Ishii T, Matsunaga T. Isolation and characterization of a boron-rhamnogalacturonan-II complex from cell walls of sugar beet pulp. Carbohydr Res, 1996, 284:1-9
    
    75. Iwai H, Hokura A, Oishi M, Chida H, Ishii T, Sakai S, Satoh S. The gene responsible for borate cross-linking of pectin Rhamnogalacturonan-II is required for plant reproductive tissue development and fertilization. Proc Natl Acad Sci USA, 2006, 103:16592-16597
    
    76. Jefferies S P, Barr A R, Karakouisis A, Kretschmer J M, Manning S, Chalmers K J, Islam AKM, Nelson J C, Langridge P. Mapping of chromosome regions conferring boron toxicity tolerance in barley (Hordeum vulgare). Theor Appl Genet, 1999, 98:1293-1303
    
    77. Jefferies S P, Paull J G, Paull J G. Mapping and validation of chromosome regions conferring boron toxicity tolerance in wheat (Triticum aestivum). Theor Appl Genet, 2000, 101:767-777
    
    78. Kasajima I, Fujiwara T. Identification of novel Arabidopsis thaliana genes which are induced by high levels of boron. Plant Biotech, 2007, 24:355-360
    
    79. Kirkby E A. Influence of ammonium and nitrate nutrition on the cation-anion balance and nitrogen and carbohydrate metabolism of white mustard plants grown in dilute nutrient solutions. Soil Sci, 1968, 105:133-141
    
    80. Kobayashi M, Matoh T, Azuma J. Two chains of Rhamnogalacturonan II are cross-linked by borate-diol ester bonds in higher plant cell walls. Plant Physiol, 1996, 110: 1017-1020
    
    81. Kobayashi M, Mutoh T, Matoh T. Boron nutrition of cultured tobacco BY-2 cells. IV. Genes induced under low boron supply. J Exp Bot, 2004, 55:1441 -1443
    
    82. Kuhn D N, Motamayor J C, Meerow A W, Borrone J W, Schnell R J. SSCP markers provide a useful alternative to microsatellites in genotyping and estimating genetic diversity in populations and germplasm collections of plant specialty crops. Electrophoresis, 2008, 29:4096-4108
    
    83. Lagercrantz U. Comparative mapping between Arabidopsis thaliana and Brassica nigra indicates that Brassica genomes have evolved through extensive genome replication accompanied by chromosome fusions and frequent rearrangements. Genetics, 1998, 150:1217-1228
    
    84. Lahner B, Gong J M, Mahmoudian M, Smith E L, Abid K B, Rogers E E, Guerinot M L, Harper J F, Ward J M, Mclntyre L, Schroeder J I, Salt D E. Genomic scale profiling of nutrient and trace elements in Arabidopsis thaliana. Nat Biotech, 2003, 21:1215-1221
    
    85. Lei S L, Yao X Q, Bin Y, Chen W, Ma C Z, Tu J X, Fu T D. Towards map-based cloning: fine mapping of a recessive genic male-sterile gene (BnMs2) in Brassica napus L. and syntenic region identification based on the Arabidopsis thaliana genome sequences. Theor Appl Genet, 2007, 115:643-651
    
    86. Levi A, Paterson A, Barak V, Yakir D, Wang B, Chee P, Saranga Y. Field evaluation of cotton near-isogenic lines introgressed with QTLs for productivity and drought related traits. Mol Breed, 2009,23:179-195
    
    87. Li L G, Tutone A F, Drummond R S M, Gardner R C, Luan S. A novel family of magnesium transport genes in Arabidopsis. Plant Cell, 2001, 13:2761-2775
    
    88. Li Y Y, Ma C Z, Fu T D, Yang G S, Tu J X, Chen Q F, Wang T H, Zhang X G and Li C Y. Construction of a molecular functional map of rapeseed (Brassica napus L.) using differentially expressed genes between hybrid and its parents. Euphytica, 2006, 152:25-39
    
    89. Liu Z H, Anderson J A, Hu J, Friesen T L, Rasmussen J B, Faris J D.A wheat intervarietal genetic linkage map based on microsatellite and target region amplified polymorphism markers and its utility for detecting quantitative trait loci. Theor Appl Genet, 2005, 111:782-794
    
    90. Liu Z W, Fu T D, Wang Y, Tu J X, Chen B Y, Zhou Y M, Ma C Z, Shan L M. Development of SCAR and CAPS markers for a partially dominant yellow seed coat gene in Brassica napus L. Euphytica, 2006, 149:381-385
    
    91. Long Y, Shi J, Qiu D, Li R, Zhang C, Wang J, Hou J, Zhao J, Shi L, Park B S, Choi S R, Lim Y P, Meng J. Flowering time quantitative trait loci analysis of oilseed Brassica in multiple environments and genomewide alignment with Arabidopsis. Genetics, 2007, 177:2433-2444
    
    92. Lopez-Lefebre LR, Rivero RM, Garcia PC, Sanchez E, Ruiz JM, Romero L. Boron effect on mineral nutrients of tobacco. J Plant Nutr, 2002, 25:509-522
    
    93. Loudet O, Chaillou S, Merigout P, Talbotec J, Daniel-Vedele F. Quantitative trait loci analysis of nitrogen use efficiency in Arabidopsis. Plant Physiol, 2003, 131:345-358
    
    94. Loudet O, Chaillou S, Krapp A, Daniel-Vedele F. Quantitative trait loci analysis of water and anion contents in interaction with nitrogen availability in Arabidopsis thaliana. Genetics, 2003, 163:711-722
    95. Loudet O, Saliba-Colombani V, Camilleri C, Calenge F, Gaudon V, Koprivova A, North K A, Kopriva S, Daniel-Vedele F. Natural variation for sulfate content in Arabidopsis thaliana is highly controlled by APR2. Nat. Genet, 2007,39:896-900
    
    96. Maheswaran M, Subudhi P K, Nandi S, Xu J C, Parco A, Yang D C, Huang N. Polymorphism, distribution, and segregation of AFLP markers in a doubled haploid rice population. Theor Appl Genet, 1997,94:39-45
    
    97. Marschner H. Mineral nutrition of higher plants. London, UK: Academic Press. 1995
    
    98. Maser P, Thomine S, Schroeder JI, Ward JM, Hirschi K, Sze H, Talke IN, Amtmann A, Maathuis FJ, Sanders D, Harper JF, Tchieu J, Gribskov M, Persans MW, Salt DE, Kim SA, Guerinot ML. Phylogenetic relationships within cation transporter families of Arabidopsis. Plant Physiol. 2001, 126:1646-1667
    
    99. Matoh T, Ishigaki K, Ohno K Azuma J. Isolation and characterization of a boron-polysaccharide complex from radish roots. Plant cell Physiol, 1993, 34:639-642
    
    100. Matoh T, Kawaguchi S, Kobayashi M. Ubiquity of a borate-rhamnogalaacuronan- II complex in the cell walls of higher plant. Plant Cell Physiol, 1996, 37:636-640
    
    101. Matsunaga T, Ishii T, Matsumoto S, Higuchi M, Darvill A, Albersheim P, O'Neill M A. Occurrence of the primary cell wall polysaccharide rhamnogalacturonan-II in pteridophytes, lycophytes, and bryophytes. Implications for the evolution of vascular plants. Plant Physiol, 2004, 134:339-351
    
    102. Mauricio R. Mapping quantitative trait loci in plants: Uses and caveats for evolutionary biology. Nat Rev Genet, 2001, 2:370-381
    
    103. Mayerhofer R, Wilde K, Mayerhofer M, Lydiate D, Bansal V, Good A, Parkin I. Complexities of chromosome landing in a highly duplicated genome: Towards map based cloning of a gene controlling blackleg resistance in Brassica napus. Genetics, 2005, 171:1977-1988
    
    104. Mei H, Zhao J, Pittman JK, Lachmansingh J, Park S, Hirschi KD. In planta regulation of the Arabidopsis Ca~(2+)/H~+ antiporter CAX1. J Exp Bot, 2007, 58:3419-3427
    
    105. Meudt H M, Clarke A C. Almost forgotten or latest practice? AFLP applications, analyses and advances. Trends in Plant Science, 2007, 12:106-117
    
    106. Miklas P N, Hu J G, Grunwald N J, Larsen K M. Potential application of TRAP (targeted region amplified polymorphism) markers for mapping and tagging disease resistance traits in common bean. Crop Sci, 2006, 46:910-916
    
    107. Miwa K, Takano J, Fujiwara T. Improvement of seed yields under boron-limiting conditions through overexpression of BOR1, a boron transporter for xylem loading, in Arabidopsis thaliana. Plant J, 2006, 46:1084-1091
    
    108. Miwa K, Takano J, Omori H, Seki M, Shinozaki K, Fujiwara T. Plants tolerant of high boron levels. Science, 2007, 318: 1417-1417
    
    109. Muangprom A, Osborn T C. Characterization of a dwarf gene in Brassica rapa, including the identification of a candidate gene. Theor Appl Genet, 2004, 108:1378-1384
    110. Nable R O. Distribution of boron within barley genotypes with different susceptibilities to boron toxicity. J Plant Nutr, 1991,45:453-461
    
    111. Nable R O. Effects of boron toxicity amongst several barley and wheat cultivars - a preliminary examination of the resistance mechanism. Plant Soil, 1988, 112:45-52
    
    112. Nachiangmai D, Dell B, Bell R, Huang L B, Rerkasem B. Enhanced boron transport into the ear of wheat as a mechanism for boron efficiency. Plant Soil, 2004, 264:141-147
    
    113. Nakagawa Y, Hanaoka H, Kobayashi M, Miyoshi K, Miwa K, Fujiwara T. Cell-type specificity of the expression of os BOR1, a rice efflux boron transporter gene, is regulated in response to boron availability for efficient boron uptake and xylem loading. Plant Cell, 2007, 19:2624-2635
    
    114. Nicholson JK, Lindon JC, Holmes E. 'Metabonomics': understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica, 1999, 29:1181-1189
    
    115.Noguchi K, Dannel F, Pfeffer H, Romheld V, Hayashi H, Fujiwara T. Defect in root-shoot translocation of boron in Arabidopsis thaliana mutant bor1-1. J. Plant Physiol, 2000, 156:751-755
    
    116. Noguchi K, Yasmori M, Imai T, Naito S, Matsunaga T, Oda H, Hayashi H, Chino M, Fujiwara. bor1-1, an Arabidopsis thaliana mutant that requires a high level of boron. Plant Physiol, 1997, 115:901-906
    
    117. Nublat A, Desplans J, Casse F, Berthomieu P. sas1, an Arabidopsis mutant overaccumulating sodium in the shoot, shows deficiency in the control of the root radial transport of sodium. Plant Cell, 2001, 13:125-137
    
    118. O'Neill M A, Eberhard S, Albersheim P, Darvill A G Requirement of borate cross-linking of cell wall rhamnogalaacuronan-II for Arabidopsis growth. Science, 2001, 294:849-849
    
    119. O'Neill M A, Warrenfeltz D, Kates K, Pellerin P, Doco T, Darvill A G, Albersheim P. Rhamnogalacturonan-II, a pectic polysaccharide in the walls of growing plant cell, forms a dimer that is covalently cross-linked by a borate ester. J Biol Chem, 1996, 271:22923-22930
    
    120. Orita M, Iwahana H, Kanazawa H. Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms. Proc Natl Acad Sci USA, 1989, 86:2766-2770
    
    121. Palumbo R, Hong W F, Wang G L, Hu J G, Craig R, Locke J, Krause C, Tay D. Target region amplification polymorphism (TRAP) as a tool for detecting genetic variation in the genus Pelargonium. Hortscience, 2007,42:1118-1123
    
    122. Patterson J, Ford K, Cassin A, Natera S, Bacic A. Increased abundance of proteins involved in phytosiderophore production in boron-tolerant barley. Plant Physiol, 2007, 144:1612-1631
    
    123. Park M, Li Q, Shcheynikov N, Zeng W Z, Muallem S. NaBCl is a ubiquitous electrogenic Na+-coupled borate transporter essential for cellular boron homeostasis and cell growth and proliferation. Mol Cell, 2004, 16:331-341
    
    124. Parkin I A, Gulden S M., Sharpe A G, Lukens L, Trick M, Osborn, T C, Lydiate D J. Segmental structure of the Brassica napus genome based on comparative analysis with Arabidopsis thaliana. Genetics, 2005, 171:765-781
    
    125. Parkin I A, Lydiate D J, Trick M. Assessing the level of collinearity between Arabidopsis thaliana and Brassica napus for A. thaliana chromosome 5. Genome, 2002,45:356-366
    
    126. Payne K A, Bowen H C, Hammond J P, Hampton C R, Lynn J R, Mead A, Swarup K, Bennett M J, White P J, Broadley M R. Natural genetic variation in caesium (Cs) accumulation by Arabidopsis thaliana. New Phytol, 2004, 162:535-548
    
    127. Peleman J D, Wye C, Zethof J, Sorensen A P, Verbakel H, van Oeveren J, Gerats T, van der Voort J R. Quantitative trait locus (QTL) isogenic recombinant analysis: A method for high-resolution mapping of QTL within a single population. Genetics, 2005, 171:1341-1352
    
    128. Poirier Y, Thoma S, Somerville C, Schiefelbein J. Mutant of Arabidopsis deficient in xylem loading of phosphate. Plant Physiol, 1991, 97:1087-1093
    
    129. Price C A, Carell E F. Control by iron of chlorophyll formation and growth in Euglena gracilis. Plant Physiol, 1964,39:862-868
    
    130. Qiao L X, Liu H Y, Sun J W, Zhao F, Gu B T, Weng M L, Uu T, Da J X, Wang B. Application of target region amplification polymorphism (TRAP) technique to Porphyra (Bangiales, Rhodophyta) fingerprinting. Phycologia, 2007, 46:450-455
    
    131. Qiu D, Morgan C, Shi J, Long Y, Liu J, Li R, Zhuang X, Wang Y, Tan X, Dietrich E, Weihmann T, Everett C, Vanstraelen S, Beckett P, Fraser F, Trick M, Barnes S, Wilmer J, Schmidt R, Li J, Li D, Meng J, Bancroft I. A comparative linkage map of oilseed rape and its use for QTL analysis of seed oil and erucic acid content. Theor Appl Genet, 2006, 114:67-80
    
    132. Rana D T, Boogaart van den O'Neill C M, Hynes L, Bent E, Macpherson L, Park J Y, , Lim Y P, Bancroft I.. Conservation of the microstructure of genome segments in Brassica napus and its diploid relatives. Plant J, 2004, 40:725-733
    
    133. Reid R. Identification of Boron Transporter Genes Likely to be Responsible for Tolerance to Boron Toxicity in Wheat and Barley. Plant Cell Physiol, 2007, 48: 1673-1678
    
    134. Ren Z H, Gao J P, Li L G, Cai X L, Huang W, Chao D Y, Zhu M Z, Wang Z Y, Luan S, Lin H X. A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nat. Genet, 2005, 37:1141-1146
    
    135. Robinson A B, Pauling L. Techniques of orthomolecular diagnosis. Clin Chem, 1974, 20:961-965
    
    136. Roessner U, Patterson J H, Forbes M G, Fincher G B, Bacic A. An investigation of boron toxicity in barley using metabolomics. Plant Physiol, 2006, 142:1087-1101
    
    137. Rojas-Barros P, Hu J G, Jan C C. Molecular mapping of an apical branching gene of cultivated sunflower (Helianthus annuus L.). Theor Appl Genet, 2008, 117:19-28
    
    138. Rus A, Baxter I, Muthukumar B, Gustin J, Lahner B, Yakubova E, Salt D E. Natural variants of AtHKTl enhance Na+ accumulation in two wild populations of Arabidopsis. PLoS Genet, 2006, 2:e210
    139.Salt D E.Update on Plant Ionomics.Plant Physiol,2004,136:2451-2456
    140.Salt D E,Baxter I,Lahner B.Ionomics and the study of the plant ionome.Annual Review of Plant Biology,2008,59:709-733
    141.Sancenon V,Puig S,Mira H,Thiele D J,Penarrubia L.Identification of a copper transporter family in Arabidopsis thaliana.Plant Mol Biol,2003,51:577-587
    142.Schachtman D P,Shin R.Nutrient sensing and signaling:NPKS.Annu Rev Plant Biol,2007,58:47-69
    143.Schnurbusch T,Collins NC,Eastwood RF,Sutton T,Jefferies SP,Langridge P.Fine mapping and targeted SNP survey using rice-wheat gene colinearity in the region of the Bol boron toxicity tolerance locus of bread wheat.Theor Appl Genet,2007,115:451-61
    144.Schneider A K,Mary E B,James D K.Marker-assisted selection to improve drought resistance in common bean.Crop Sci,1997,37:51-60
    145.Shaul O.Magnesium transport and function in plants:the tip of the iceberg.Biometals,2002,15:309-323
    146.Shelp B J.Boron mobility and nutrition in Broccoli(Brassica oleracea var.italica).Ann Bot,1988,61:83-91
    147.Shi L,Nian F Z,Zhao H,Xu F S,Meng J L,Wang Y H.Responses to boron deficiency in 7varieties of rape(Brassica napus L.).Chin J Oil Crop Sci,2004,26:47-50
    148.Shigaki T,Rees I,Nakhleh L,Hirschi KD.Identification of three distinct phylogenetic groups of CAX cation/proton antiporters.J Mol Evol,2006,63:815-825
    149.Sommer A L,Lipman C B.Evidence on the indispensable nature of zinc and boron for higher green plants.Plant Physiol,1926,1:231-249
    150.Shorrocks V M.The occurrence and correction of boron deficiency.Plant Soil,1997,193:121-148
    151.Slabaugh M B,Huestis G M,Leonard J,Holloway J L,Rosato C,Hongtrakul V,Martini N,Toepfer R,Voetz M,Schell J,Knapp S J..Sequence-based genetic markers for genes and gene families:single-strand conformational polymorphisms for the fatty acid synthesis genes of Cuphea.Theor Appl Genet,1997,94:400-408
    152.Sutton T,Baumann U,Hayes J,Collins N C,Shi B J,Schnurbusch T,Hay A,Mayo G,Pallotta M,Tester M,Langridge P.Boron toxicity tolerance in barley arising from efflux transporter amplification.Science,2007,318:1446-1449
    153.Tanaka M,Wallace I S,Takano J,Roberts D M,Fujiwara T.NIP6;1 Is a Boric Acid Channel for Preferential Transport of Boron to Growing Shoot Tissues in Arabidopsis.Plant Cell,2008,20:2860-2875
    154.Takano J,Kobayashi M,Noda Y,Fujiwara T.Saccharomyces cerevisiae Borlp is a boron exporter and a key determinant of boron tolerance.FEMS MICROBIOLOGY Lett,2007,267:230-235
    155.Takano J,Miwa K,Fujiwara T.Boron transport mechanisms:collaboration of channels and transporters.Trends Plant Sci,2008,13:451-457
    156. Takano J, Miwa K, Yuan L, von Wiren N, Fujiwara T. Endocytosis and degradation of BOR1, a boron transporter of Arabidopsis thaliana, regulated by boron availability. Proc Natl Acad Sci USA,2005, 102:12276-12281
    
    157. Takano J, Noguchi K, Yasumori M, Kobayashi M, Gajdos Z, Miwa K, Hayashi H, Yoneyama T, Fujiwara T. Arabidopsis boron transporter for xylem loading. Nature, 2002, 420:337-340
    
    158. Takano J, Wada M, Ludewig U, Schaaf G, von Wiren N, Fujiwara T. The Arabidopsis major intrinsic protein NIP5;1 is essential for efficient boron uptake and plant development under boron limitation. Plant Cell, 2006, 18:1498-1509
    
    159. Tanksley S D, Nelson J C. Advanced backcross QTL analysis: A method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines. Theor Appl Genet, 1996, 92:191-203
    
    160. Tondelli A, Francia E, Barabaschi D, Aprile A, Skinner J S, Stockinger E J, Stanca A M and Pecchioni N. Mapping regulatory genes as candidates for cold and drought stress tolerance in barley. Theor Appl Genet, 2006, 112:445-454
    
    161. Varshney A, Mohapatra T and Sharma R P. Development and validation of CAPS and AFLP markers for white rust resistance gene in Brassica juncea. Theor Appl Genet, 2004, 109:153-159
    
    162. Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Homes M, Freijters A, Pot J, Peleman J, Kuiper M, Zabeau M. AFLP: a new technique for DNA fingerprinting. Nucl Acid Res, 1995,23:4407-4414
    
    163. Vreugdenhil D, Aarts M G M, Koornneef M, Nelissen H, Ernst W H O. Natural variation and QTL analysis for cationic mineral content in seeds of Arabidopsis thaliana. Plant Cell Environ, 2004, 27:828-839
    
    164. Wang D L, Zhu J, Li Z K, Paterson A H. Mapping QTLs with epistatic effects and QTLxenvironment interactions by mixed linear model approaches. Theor Appl Genet, 1999, 99:1255-1264
    
    165. Wang S C, Bastern J, Zeng Z B (2006) Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh, NC. (http://statgen.ncsu.edu/qtlcart/WOTLCart.htm)
    
    166. Warington K. The effect of boric acid and borax on the broad bean and certain other plants. Ann Bot, 1923, 37:629-672
    
    167. Waters B M, Grusak M A. Quantitative trait locus mapping for seed mineral concentrations in two Arabidopsis thaliana recombinant inbred populations. New Phytol, 2008, 179:1033-1047
    
    168. White P J. The pathways of calcium movement to the xylem. J Exp Bot, 2001, 52:891-899
    
    169. Wu J, Yuan Y X, Zhang X W, Zhao J J, Song X F, Li Y, Li X N, Sun R F, Koornneef M, Aarts M G M, Wang X W. Mapping QTLs for mineral accumulation and shoot dry biomass under different Zn nutritional conditions in Chinese cabbage (Brassica rapa L. ssp pekinensis). Plant Soil, 2008, 310:25-40
    
    170. Xu F S, Wang YH, Meng J. Mapping boron efficiency gene(s) in Brassica napus using RFLP and AFLP markers. Plant Breed, 2001, 120:319-324
    171. Xu Y, Crouch J H. Marker-assisted selection in plant breeding: from publications to practice. Crop Sci, 2008,48:391-407
    
    172. Yamauchi T, Hara T, Sonoda Y. Effects of boron deficiency and calcium supply on the calcium metabolism in tomato plant. Plant Soil, 1986, 93:223-230
    
    173. Yang J, Bai G H, Shaner G E. Novel quantitative trait loci (QTL) for Fusarium head blight resistance in wheat cultivar Chokwang. Theor Appl Genet, 2005, 111:1571-1579
    
    174. Yi K, Wu Z, Zhou J, Du L, Guo L, Wu Y, Wu P. OsPTFl, a novel transcription factor involved in tolerance to phosphate starvation in rice. Plant Physiol, 2005, 138:2087-2096
    
    175. Yu G H, Ma H X, Bai G H, Tang K X. Single-strand conformational polymorphism markers associated with a major QTL for fusarium head blight resistance in wheat. Mol Biol, 2008, 42:504-513
    
    176. Yu J W, Yu S X, Lu C R, Wang W, Fan S L, Song M Z, Lin Z X, Zhang X L, Zhang J F. High-density linkage map of cultivated allotetraploid cotton based on SSR, TRAP, SRAP and AFLP markers. Journal of Integrative Plant Biol, 2007,49:716-724
    
    177. Zebeau M, Vos P. Selective restriction fragment amplification: A general method for DNA fingerprinting. Paris: European Patent Office, European Patent Application Number: 94202629. 7. 1993
    
    178. Zeng C Y, Xu F S, Wang Y H, Hu C X, Meng J L. Physiological basis of QTLs for boron efficiency in Arabidopsis thaliana. Plant Soil, 2007, 296:187-196
    
    179. Zeng F Q, Yi B, Tu J X, Fu T D. Identification of AFLP and SCAR markers linked to the male fertility restorer gene of pol CMS (Brassica napus L.). Euphytica, 2009, 165:363-369
    
    180. Zhao H, Shi L, Duan X L, Xu F S, Wang Y H, Meng J L, Mapping and validation of chromosome regions conferring a new boron-efficient locus in Brassica napus. Mol Breed, 2008, 22:495-506
    
    181.Zhong D B, Menge D M, Temu E A, Chen H, Yan G Y. Amplified fragment length polymorphism mapping of quantitative trait loci for malaria parasite susceptibility in the yellow fever mosquito Aedes aegypti. Genetics, 2006, 173:1337-1345
    
    182. Zeng C Y, Xu F S, Wang Y H, Hu C X, Meng J L. Physiological basis of QTLs for boron efficiency in Arabidopsis thaliana. Plant Soil, 2007, 296:187-196
    
    183. Zeng Z B. Precision mapping of quatitative trait loci. Genetics, 1994, 136:1457-1468

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700