嵌合动脉炎病毒构建及其病毒学特性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1996年成立的动脉炎病毒科(Arteriviridae)其成员包括:马动脉炎病毒(equine arteritis virus,EAV),猪繁殖与呼吸障碍综合征病毒(porcine reproductive and respiratory syndrome virus, PRRSV)乳酸脱氢酶升高病毒(lactate dehydrogenase-elevating virus,LDV),猴出血热病毒(simian hemorrhagic fever virus,SHFV)。动脉炎病毒感染动物后能引起从无临床症状的持续性感染到致死的急性感染不等的病征。其中PRRSV感染猪引起所谓的“猪蓝耳病”给世界养猪业带来巨大经济损失。目前涉及到动脉炎病毒复制过程的分子机制,尤其是囊膜蛋白结构与功能的关系还不清楚。在本实验室已经拥有的PRRSV和EAV全长感染性克隆的基础上,本研究利用反向遗传操作方法对动脉炎病毒的囊膜蛋白功能、基因转录调控等进行了解析,促进了对动脉炎病毒的进一步了解,为防治PRRSV及其它动脉炎病毒奠定了一定的理论基础。
     1.不同基因型PRRSV嵌合体的构建及其病毒学特性
     PRRSV分为两个基因型,基因1型与基因2型,两型之间基因相似性仅为60%左右。对本实验室拥有的1型PRRSV株vSHE与2型PRRSV株vAPRRSV进行比对发现其囊膜蛋白GP2a、E、GP3、GP4、GP5之间的相似性在53-76%之间。以2型PRRSV的全长感染性克隆pAPRRS为骨架,先将Asc I酶切位点插入ORF1b与ORF2a之间构建全长克隆pAPRRSasc。再以pAPRRSasc为骨架,将其ORF2-3、ORF2-4、ORF2-5、ORF5分别替换为vSHE的相应区域,构建了全长嵌合克隆pAPRRS-SHE23、pAPRRS-SHE234、pAPRRS-SHE2345、pAPRRS-SHE5。用如上构建的嵌合克隆和pAPRRSasc转染MARC-145细胞,除pAPRRS-SHE23以外均拯救出了相应的感染性子病毒,分别为vAPRRSasc、vAPRRS-SHE234、vAPRRS-SHE2345、vAPRRS-SHE5。间接免疫荧光(IFA)和全长序列测定结果证实了子病毒的嵌合基因组结构。将拯救病毒在体外连续传代至第8代后测序表明嵌合病毒有很好的基因稳定性。用能特异性识别1型PRRSV囊膜蛋白的抗体进行IFA分析表明1型PRRSV基因能在2型骨架PRRSV中有效表达。对拯救出的嵌合病毒进行病毒学特性研究发现:除vAPRRS-SHE5外其它嵌合病毒能在MARC-145上形成与骨架亲本病毒vAPRRS相似的空斑形态;所有嵌合病毒在MARC-145上的复制能力与亲本病毒相似。这表明1型PRRSV的相应囊膜蛋白能在2型PRRSV中发挥相同的功能。采用RT-PCR方法和特异性引物对,从病毒感染细胞的总RNA中扩增出各个亚基因组mRNA(subgenomic mRNA,sg mRNA)。序列测定发现:虽然两型PRRSV位于结构蛋白基因中的转录调控序列(body transcription regulation sequence, TRS-B)不一致,但是1型TRS-B能与2型的位于5’UTR中的转录调控序列(leader transcription regulation sequence, TRS-L)互相作用形成相应的杂合sg mRNA;由于1型TRS-B与2型TRS-L碱基之间的不精确配对导致基因组中一些TRS-B类似序列发挥作用,产生了一些比经典sg mRNA小的亚基因组RNA(sg RNA)。本研究首次获得了不同基因型PRRSV嵌合的感染性子病毒,阐明了1型PRRSV的囊膜蛋白能在2型PRRSV中发挥功能,从理论上表明两型PRRSV之间可能发生重组。这为进一步研究PRRSV囊膜蛋白结构和功能的关系、开发基因标记疫苗奠定了理论基础。
     2.不同种动脉炎病毒嵌合体的构建及其病毒学特性
     目前对动脉炎病毒细胞受体和病毒结合蛋白的认识还没有统一,大部分人认为病毒结合蛋白是多量囊膜糖蛋白GP5,而有人提出可能是少量囊膜蛋白。这些结论都是基于体外的生物化学实验得到,缺乏遗传学和病毒学上的证据。已知在体外PRRSV只能感染MARC-145细胞,而EAV能感染MARC-145、BHK-21、Vero等多种细胞。在本项研究中,以上一项研究构建的全长感染性克隆pAPRRSasc为骨架,分别将其ORF2?4、ORF5替换为EAV的相应区域构建全长嵌合克隆pAPRRS-EAV234、pAPRRS-EAV5。用构建的嵌合克隆转染MARC-145,发现克隆pAPRRS-EAV234能拯救出感染性的子病毒vAPRRS-EAV234。通过IFA和全长序列测序分析证实了vAPRRS-EAV234的嵌合基因组结构。对第8代病毒测序表明嵌合病毒在体外具有很好的基因稳定性。用特异性识别EAV GP2b的抗体对vAPRRS-EAV234感染细胞进行IFA分析表明嵌入基因能在PRRSV骨架中有效表达。病毒学特性研究发现:嵌合病毒vAPRRS-EAV234获得了供体亲本病毒EAV的细胞感染谱,除了能感染除MARC-145外还能感染BHK-21和Vero细胞,但不能感染骨架亲本病毒PRRSV的体内靶细胞—猪肺泡巨噬细胞(PAM);vAPRRS-EAV234能在MARC-145和BHK-21上实现良好的增殖,其在BHK-21上的最高病毒滴度为在MARC-145上的10倍。对vAPRRS-EAV234的sg mRNA转录谱和sg mRNA序列进行分析发现:虽然EAV和PRRSV的TRS序列差距很大,但是EAV的TRS-B可以与PRRSV的TRS-L结合;由于EAV的TRS-B与PRRSV的TRS-L之间的不精确配对导致sg mRNA2?4的转录量明显下降;产生了一系列具有潜在编码价值的新sg RNA,这些sg RNA的意义还未知。本研究不但在世界上首次成功获得了不同种动脉炎病毒之间完整ORF替换的具有感染性的嵌合病毒,更重要的是首次从遗传学和病毒学的角度阐明少量囊膜蛋白在动脉炎病毒侵入细胞过程中发挥决定性作用。该研究同时提供了一种生产高滴度PRRSV的方法,极有利于疫苗生产。
     3.插入嵌合体动脉炎病毒的构建及其病毒学特性
     上一项的研究表明EAV的ORF2-4可以在PRRSV中稳定存在并发挥功能,且已知另外一个动脉炎病毒SHFV基因组中拥有2套ORF2-4。该项研究在以上研究基础上以全长感染性克隆pAPRRSasc为骨架,将EAV的ORF2-4插入ORF1b和ORF2a之间,构建了嵌合克隆pAPRRS(EAV234)。用该克隆转染细胞拯救出了具有感染性的插入嵌合病毒vAPRRS(EAV234)。IFA和核酸序列测定结果均证实了子病毒的基因组结构特点且插入基因能有效表达。研究发现vAPRRS(EAV234)在EAV ORF2-4稳定存在的同时PRRSV自身的ORF2-4却发生大范围的缺失。同时还发现插入嵌合病毒vAPRRS(EAV234)能感染MARC-145和BHK-21细胞。本研究表明:PRRSV乃至其它动脉炎病毒可以容纳2套少量囊膜蛋白基因,但是稳定性不强;作为一种潜在外源基因载体,PRRSV可以在ORF1b和ORF2a之间插入较大的外源基因。这为进一步精确解析动脉炎病毒结合蛋白,研究囊膜蛋白之间相互作用、病毒包装,开发PRRSV载体等提供了基础。
The Arteriviridae which was established in 1996 has four members: equine arteritis virus (EAV), porcine reproductive and respiratory syndrome virus (PRRSV), lactate dehydrogenase-elevating virus (LDV), and simian hemorrhagic fever virus (SHFV). Arterivirus can cause either acute or persistent infections in respective host animals. PRRSV infection (so called porcine reproductive and respiratory syndrome, PRRS), in particular, often leads to high-mortality disease outbreaks and mass economic loss to the swine industry worldwide. Until now, the detail molecular mechanism of how the arterivirus replicate in cell, especially the relationship of structure-function of envelope proteins, is poorly understood. In this study, based on infectious full-length cDNA clones of PRRSV and EAV, the envelope protein functions and properties of transcription regulation are dissected. This will lay foundation to better understand of arterivirus and to develop efficient ways to prevent arterivirus infection.
     1. The development and characterization of intra-genotypic chimeric PRRSV
     PRRSV is classified into two genotypes, type 1 and type 2, between which share only approximate 60% genetic identity. Bioinformatics analysis showed that the envelope proteins GP2a, E, GP3, GP4, GP5 between vSHE (type 1 strain) and vAPRRS (type 2 strain) share 53?76% identities. Taking the pAPRRS, the full-length cDNA clone of type 2 PRRSV, as backbone, an Asc I restriction enzyme recognition site was introduced immediately upstream of the ORF2 start codon to construct clone pAPRRSasc. Then based on pAPRRSasc, the chimeric full-length clone pAPRRS-SHE23, pAPRRS-SHE234, pAPRRS-SHE2345, pAPRRS-SHE5 were constructed by ORF2?3, ORF2?4, ORF2?5, ORF5 respective substitution with correspond ORFs of vSHE. The viable progeny viruses vAPRRSasc, vAPRRS-SHE234, vAPRRS-SHE2345, vAPRRS-SHE5 were rescued from MARC-145 cells which were transfected with corresponding clones. IFA and complete genome sequencing analysis confirmed the chimeric genomic structures of these rescued viruses. The sequences analysis of passage 8 viruses showed that the chimeric viruses displayed robust genetic stability in vitro. Utilizing antibodies specific for type 1 envelope proteins, further IFA results indicated that these heterologous genes were expressed in type 2 PRRSV backbone. The analysis of virological characteristics showed that all the chimeric viruses displayed similar plaque morphology, except for vAPRRS-SHE5, and similar replication ability in MARC-145 with parental viruses. These results suggested that the envelope proteins of type 1 PRRSV can play full function and work in concert in type 2 virus. Utilizing RT-PCR with specific primers, the subgenomic mRNAs (sg mRNAs) were amplified from intracellular RNA pool and subjected to sequencing. The sequences analysis showed that the TRS-Bs from type 1 can join with TRS-L of type 2 PRRSV to synthesis hybrid sg mRNAs. In addition, some small sg RNAs were generated as the imprecise base paring between the type 2 TRS-L and type 1 TRS-Bs. In this study, the viable intra-genotypic chimeric PRRSVs were fistly successfully rescued in the world, and this study found that the type 1 envelope proteins can play full function in backbone of type 2. This indicated that the recombination between the two genotypic PRRSV is possible, and more importantly, this paved the way to further elucidate the structure-function relationship of PRRSV envelope proteins, and may enable the development of novel gene marker vaccines.
     2. The development and characterization of intra-species chimeric arterivirus
     The identities of arterivirus cellular receptor and viral attachment proteins are in poor understand. The most well accepted viral attachment protein is GP5, while it is being challenged by the minor envelope proteins. However, both of the two hypotheses are only supported by biochemical evidences, lacking of genetic and virological evidences. In vitro, PRRSV can only infect MARC-145 cell line while EAV display a more broaden cell tropism such as MARC-145, BHK-21, Vero and so on. In this study, taking the previously constructed pAPRRSasc as backbone, the chimeric full-length cDNA clones pAPRRS-EAV234 and pAPRRS-EAV5 were constructed through ORF2?4 and ORF5 substitutions respective with counterparties of EAV. The viable progeny virus vAPRRS-EAV234 was rescued from pAPRRS-EAV234 transfected MARC-145 cells. Trough IFA and complete genome sequencing analysis confirmed that the viable progeny virus has a chimeric genomic structure, and the chimeric virus is genetic stable in vitro. The results of IFA using antibody specific to EAV GP2b indicated that the genes from EAV were translated in PRRSV backbone. The more important was that the chimeric virus vAPRRS-EAV234 obtained the cellular tropism of donor parental virus EAV, it can infect MARC-145, BHK-21 and Vero cell lines, while lost the infectivity to the PRRSV target primary porcine alveolar macrophages (PAM). The vAPRRS-EAV234 can replicate well in MARC-145 and BHK-21, and its’peak titer in BHK-21 was 10 times higher than that in MARC-145. The analysis of transcriptional profiles of APRRS-EAV234 showed that the EAV TRS-Bs join with PRRSV TRS-L, although the base pairs did not match well between them and lead to the down-regulation of sg mRNA2?4. In addition, some novel sg RNAs were generated in chimeric virus which may be translated into unknown proteins. This study first rescued viable chimeric virus in which the intact minor envelope proteins ORFs were substituted by counterparties of EAV, and more importantly, this study provided first genetic and virological evidences to prove that the minor envelope proteins play major role in arterivirus entry into cells. This study also developed a new method to produce high titer PRRSV, and it will be of great significance to vaccine productivity.
     3. The development and characterization of chimeric PRRSV containing ORFs from EAV
     The above study has shown that the ORF2?4 of EAV can stably exist in PRRSV genome and play function in virus replication. And it is known that another arterivirus member, SHFV, has two panel of minor envelope protein ORFs in genome. In this study, taking the pAPRRSasc as backbone, the ORF2?4 of EAV were inserted between ORF1b and ORF2a of PRRSV backbone to generate chimeric clone pAPRRS(EAV234). Viable progeny virus vAPRRS(EAV234) was rescued from MARC-145 cells transfected with pAPRRS(EAV234). IFA and viral complete genome sequencing analysis showed that the progeny virus shared a chimeric genomic structure and the inserted EAV ORFs were translated in chimera infected cells. The inserted heterologious ORFs stably exist in chimeic virus vAPRRS(EAV234), however, the partial sequences of ORF2?4 of PRRSV were found to be deleted. The vAPRRS(EAV234) can infect both MARC-145 and BHK-21cells. This study indicated that PRRSV, and even other arterivirus, can contain two panel of minor envelope protein ORFs in genome, although its’genetic stability was frustrated. As one potential vector, PRRSV can deliver heterologious genes which were inserted between ORF1b and ORF2a. This paved the way to further identify the arterivirus attachment proteins, dissect the protein-protein interaction and virion assembly mechanism, and develop PRRSV vector.
引文
1. An, T.Q., Tian, Z.J., He, Y.X., et al. Porcine reproductive and respiratory syndrome virus attachment is mediated by the N-terminal domain of the sialoadhesin receptor [J]. Veterinary microbiology, 2009.
    2. An, T.Q., Tian, Z.J., Xiao, Y., et al. Origin of highly pathogenic porcine reproductive and respiratory syndrome virus, China [J]. Emerg Infect Dis, 2010, 16:365-367.
    3. Ansari, I.H., Kwon, B., Osorio, F.A., et al. Influence of N-linked glycosylation of porcine reproductive and respiratory syndrome virus GP5 on virus infectivity, antigenicity, and ability to induce neutralizing antibodies [J]. Journal of virology, 2006, 80:3994-4004.
    4. Bhattacharyya, S., Warfield, K.L., Ruthel, G., et al. Ebola virus uses clathrin-mediated endocytosis as an entry pathway [J]. Virology, 2010, 401:18-28.
    5. Bryans, J.T., Crowe, M.E., Doll, E.R., et al. Isolation of a filterable agent causing arteritis of horses and abortion by mares; its differentiation from the equine abortion (influenza) virus [J]. The Cornell veterinarian, 1957, 47:3-41.
    6. Calvert, J.G., Slade, D.E., Shields, S.L., et al. CD163 expression confers susceptibility to porcine reproductive and respiratory syndrome viruses [J]. Journal of virology, 2007, 81:7371-7379.
    7. Cavanagh, D. Nidovirales: a new order comprising Coronaviridae and Arteriviridae [J]. Archives of virology, 1997, 142:629-633.
    8. Chen, J., Wang, C., Shi, H., et al. Molecular epidemiology of porcine epidemic diarrhea virus in China [J]. Archives of virology, 2010, 155:1471-1476.
    9. Chen, N., Cao, Z., Yu, X., et al. Emergence of novel European genotype porcine reproductive and respiratory syndrome virus in mainland China [J]. The Journal of general virology, 2011, 92:880-892.
    10. Collins, J.E., Benfield, D.A., Christianson, W.T., et al. Isolation of swine infertility and respiratory syndrome virus (isolate ATCC VR-2332) in North America and experimental reproduction of the disease in gnotobiotic pigs [J]. J Vet Diagn Invest, 1992, 4:117-126.
    11. Conzelmann, K.K., Visser, N., Van Woensel, P., et al. Molecular characterization of porcine reproductive and respiratory syndrome virus, a member of the arterivirus group [J]. Virology, 1993, 193:329-339.
    12. Costers, S., Vanhee, M., Van Breedam, W., et al. GP4-specific neutralizing antibodies might be a driving force in PRRSV evolution [J]. Virus research, 2010, 154:104-113.
    13. Darwich, L., Diaz, I., Mateu, E. Certainties, doubts and hypotheses in porcine reproductive and respiratory syndrome virus immunobiology [J]. Virus research, 2010, 154:123-132.
    14. Das, P.B., Dinh, P.X., Ansari, I.H., et al. The minor envelope glycoproteins GP2a and GP4 of porcine reproductive and respiratory syndrome virus interact with the receptor CD163 [J]. Journal of virology, 2010, 84:1731-1740.
    15. Das, P.B., Vu, H.L., Dinh, P.X., et al. Glycosylation of minor envelope glycoproteins of porcine reproductive and respiratory syndrome virus in infectious virus recovery, receptor interaction,and immune response [J]. Virology, 2011, 410:385-394.
    16. de Vries, A.A., Glaser, A.L., Raamsman, M.J., et al. Genetic manipulation of equine arteritis virus using full-length cDNA clones: separation of overlapping genes and expression of a foreign epitope [J]. Virology, 2000, 270:84-97.
    17. de Vries, A.A., Glaser, A.L., Raamsman, M.J., et al. Recombinant equine arteritis virus as an expression vector [J]. Virology, 2001, 284:259-276.
    18. Delputte, P.L., Costers, S., Nauwynck, H.J. Analysis of porcine reproductive and respiratory syndrome virus attachment and internalization: distinctive roles for heparan sulphate and sialoadhesin [J]. The Journal of general virology, 2005, 86:1441-1445.
    19. Delputte, P.L., Nauwynck, H.J. Porcine arterivirus infection of alveolar macrophages is mediated by sialic acid on the virus [J]. Journal of virology, 2004, 78:8094-8101.
    20. Delputte, P.L., Van Breedam, W., Delrue, I., et al. Porcine arterivirus attachment to the macrophage-specific receptor sialoadhesin is dependent on the sialic acid-binding activity of the N-terminal immunoglobulin domain of sialoadhesin [J]. Journal of virology, 2007, 81:9546-9550.
    21. Delputte, P.L., Vanderheijden, N., Nauwynck, H.J., et al. Involvement of the matrix protein in attachment of porcine reproductive and respiratory syndrome virus to a heparinlike receptor on porcine alveolar macrophages [J]. Journal of virology, 2002, 76:4312-4320.
    22. den Boon, J.A., Kleijnen, M.F., Spaan, W.J., et al. Equine arteritis virus subgenomic mRNA synthesis: analysis of leader-body junctions and replicative-form RNAs [J]. Journal of virology, 1996, 70:4291-4298.
    23. Deng, H., Liu, R., Ellmeier, W., et al. Identification of a major co-receptor for primary isolates of HIV-1 [J]. Nature, 1996, 381:661-666.
    24. Dewey, C., Charbonneau, G., Carman, S., et al. Lelystad-like strain of porcine reproductive and respiratory syndrome virus (PRRSV) identified in Canadian swine [J]. The Canadian veterinary journal, 2000, 41:493-494.
    25. Dobbe, J.C., van der Meer, Y., Spaan, W.J., et al. Construction of chimeric arteriviruses reveals that the ectodomain of the major glycoprotein is not the main determinant of equine arteritis virus tropism in cell culture [J]. Virology, 2001, 288:283-294.
    26. Duan, X., Nauwynck, H.J., Favoreel, H., et al. Porcine reproductive and respiratory syndrome virus infection of alveolar macrophages can be blocked by monoclonal antibodies against cell surface antigens [J]. Advances in experimental medicine and biology, 1998a, 440:81-88.
    27. Duan, X., Nauwynck, H.J., Favoreel, H.W., et al. Identification of a putative receptor for porcine reproductive and respiratory syndrome virus on porcine alveolar macrophages [J]. Journal of virology, 1998b, 72:4520-4523.
    28. Duan, X., Nauwynck, H.J., Pensaert, M.B. Effects of origin and state of differentiation and activation of monocytes/macrophages on their susceptibility to porcine reproductive and respiratory syndrome virus (PRRSV) [J]. Archives of virology, 1997, 142:2483-2497.
    29. Faaberg, K.S., Even, C., Palmer, G.A., et al. Disulfide bonds between two envelope proteins of lactate dehydrogenase-elevating virus are essential for viral infectivity [J]. Journal of virology, 1995, 69:613-617.
    30. Fang, Y., Christopher-Hennings, J., Brown, E., et al. Development of genetic markers in the non-structural protein 2 region of a US type 1 porcine reproductive and respiratory syndrome virus: implications for future recombinant marker vaccine development [J]. The Journal of general virology, 2008, 89:3086-3096.
    31. Firth, A.E., Zevenhoven-Dobbe, J.C., Wills, N.M., et al. Discovery of a small arterivirus gene that overlaps the GP5 coding sequence and is important for virus production [J]. The Journal of general virology, 2011.
    32. Forsberg, R. Divergence time of porcine reproductive and respiratory syndrome virus subtypes [J]. Molecular biology and evolution, 2005, 22:2131-2134.
    33. Godeny, E.K., de Vries, A.A., Wang, X.C., et al. Identification of the leader-body junctions for the viral subgenomic mRNAs and organization of the simian hemorrhagic fever virus genome: evidence for gene duplication during arterivirus evolution [J]. Journal of virology, 1998, 72:862-867.
    34. Han, J., Liu, G., Wang, Y., et al. Identification of nonessential regions of the nsp2 replicase protein of porcine reproductive and respiratory syndrome virus strain VR-2332 for replication in cell culture [J]. Journal of virology, 2007, 81:9878-9890.
    35. Hanada, K., Suzuki, Y., Nakane, T., et al. The origin and evolution of porcine reproductive and respiratory syndrome viruses [J]. Molecular biology and evolution, 2005, 22:1024-1031.
    36. Hernaez, B., Alonso, C. Dynamin- and clathrin-dependent endocytosis in African swine fever virus entry [J]. Journal of virology, 2010, 84:2100-2109.
    37. Huang, Y.W., Dryman, B.A., Li, W., et al. Porcine DC-SIGN: molecular cloning, gene structure, tissue distribution and binding characteristics [J]. Dev Comp Immunol, 2009, 33:464-480.
    38. Huang, Y.W., Meng, X.J. Identification of a porcine DC-SIGN-related C-type lectin, porcine CLEC4G (LSECtin), and its order of intron removal during splicing: comparative genomic analyses of the cluster of genes CD23/CLEC4G/DC-SIGN among mammalian species [J]. Dev Comp Immunol, 2009, 33:747-760.
    39. Hyllseth, B. A plaque assay of equine arteritis virus in BHK-21 cells [J]. Archiv fur die gesamte Virusforschung, 1969, 28:26-33.
    40. Johnson, C.R., Griggs, T.F., Gnanandarajah, J.S., et al. Novel Structural Protein in Porcine Reproductive and Respiratory Syndrome Virus Encoded in an Alternative Open Reading Frame 5 Present in All Arteriviruses [J]. The Journal of general virology, 2011.
    41. Jusa, E.R., Inaba, Y., Kouno, M., et al. Effect of heparin on infection of cells by porcine reproductive and respiratory syndrome virus [J]. American journal of veterinary research, 1997, 58:488-491.
    42. Kim, H.S., Kwang, J., Yoon, I.J., et al. Enhanced replication of porcine reproductive andrespiratory syndrome (PRRS) virus in a homogeneous subpopulation of MA-104 cell line [J]. Archives of virology, 1993, 133:477-483.
    43. Kim, J.K., Fahad, A.M., Shanmukhappa, K., et al. Defining the cellular target(s) of porcine reproductive and respiratory syndrome virus blocking monoclonal antibody 7G10 [J]. Journal of virology, 2006, 80:689-696.
    44. Kim, W.I., Yoon, K.J. Molecular assessment of the role of envelope-associated structural proteins in cross neutralization among different PRRS viruses [J]. Virus genes, 2008, 37:380-391.
    45. Kreutz, L.C. Cellular membrane factors are the major determinants of porcine reproductive and respiratory syndrome virus tropism [J]. Virus research, 1998, 53:121-128.
    46. Kreutz, L.C., Ackermann, M.R. Porcine reproductive and respiratory syndrome virus enters cells through a low pH-dependent endocytic pathway [J]. Virus research, 1996, 42:137-147.
    47. Kroese, M.V., Zevenhoven-Dobbe, J.C., Bos-de Ruijter, J.N., et al. The nsp1alpha and nsp1 papain-like autoproteinases are essential for porcine reproductive and respiratory syndrome virus RNA synthesis [J]. The Journal of general virology, 2008, 89:494-499.
    48. Lee, C., Calvert, J.G., Welch, S.K., et al. A DNA-launched reverse genetics system for porcine reproductive and respiratory syndrome virus reveals that homodimerization of the nucleocapsid protein is essential for virus infectivity [J]. Virology, 2005, 331:47-62.
    49. Lee, C., Yoo, D. The small envelope protein of porcine reproductive and respiratory syndrome virus possesses ion channel protein-like properties [J]. Virology, 2006, 355:30-43.
    50. Li, Y., Wang, X., Bo, K., et al. Emergence of a highly pathogenic porcine reproductive and respiratory syndrome virus in the Mid-Eastern region of China [J]. Vet J, 2007, 174:577-584.
    51. Li, Y., Wang, X., Jiang, P., et al. Genetic variation analysis of porcine reproductive and respiratory syndrome virus isolated in China from 2002 to 2007 based on ORF5 [J]. Veterinary microbiology, 2009, 138:150-155.
    52. Lv, J., Zhang, J., Sun, Z., et al. An infectious cDNA clone of a highly pathogenic porcine reproductive and respiratory syndrome virus variant associated with porcine high fever syndrome [J]. The Journal of general virology, 2008, 89:2075-2079.
    53. Mardassi, H., Athanassious, R., Mounir, S., et al. Porcine reproductive and respiratory syndrome virus: morphological, biochemical and serological characteristics of Quebec isolates associated with acute and chronic outbreaks of porcine reproductive and respiratory syndrome [J]. Canadian journal of veterinary research = Revue canadienne de recherche veterinaire, 1994, 58:55-64.
    54. Meng, X.J., Paul, P.S., Morozov, I., et al. A nested set of six or seven subgenomic mRNAs is formed in cells infected with different isolates of porcine reproductive and respiratory syndrome virus [J]. The Journal of general virology, 1996, 77 ( Pt 6):1265-1270.
    55. Mercer, J., Helenius, A. Virus entry by macropinocytosis [J]. Nat Cell Biol, 2009, 11:510-520.
    56. Mercer, J., Schelhaas, M., Helenius, A. Virus entry by endocytosis [J]. Annu Rev Biochem, 2010, 79:803-833.
    57. Meulenberg, J.J. PRRSV, the virus [J]. Veterinary research, 2000, 31:11-21.
    58. Meulenberg, J.J., Bos-de Ruijter, J.N., van de Graaf, R., et al. Infectious transcripts from cloned genome-length cDNA of porcine reproductive and respiratory syndrome virus [J]. Journal of virology, 1998a, 72:380-387.
    59. Meulenberg, J.J., Bos-de Ruijter, J.N., Wensvoort, G., et al. An infectious cDNA clone of porcine reproductive and respiratory syndrome virus [J]. Advances in experimental medicine and biology, 1998b, 440:199-206.
    60. Meulenberg, J.J., de Meijer, E.J., Moormann, R.J. Subgenomic RNAs of Lelystad virus contain a conserved leader-body junction sequence [J]. The Journal of general virology, 1993, 74 ( Pt 8):1697-1701.
    61. Meulenberg, J.J., Petersen-den Besten, A., De Kluyver, E.P., et al. Characterization of proteins encoded by ORFs 2 to 7 of Lelystad virus [J]. Virology, 1995, 206:155-163.
    62. Meulenberg, J.J., van Nieuwstadt, A.P., van Essen-Zandbergen, A., et al. Posttranslational processing and identification of a neutralization domain of the GP4 protein encoded by ORF4 of Lelystad virus [J]. Journal of virology, 1997, 71:6061-6067.
    63. Molenkamp, R., Greve, S., Spaan, W.J., et al. Efficient homologous RNA recombination and requirement for an open reading frame during replication of equine arteritis virus defective interfering RNAs [J]. Journal of virology, 2000a, 74:9062-9070.
    64. Molenkamp, R., van Tol, H., Rozier, B.C., et al. The arterivirus replicase is the only viral protein required for genome replication and subgenomic mRNA transcription [J]. The Journal of general virology, 2000b, 81:2491-2496.
    65. Mor-Vaknin, N., Punturieri, A., Sitwala, K., et al. Vimentin is secreted by activated macrophages [J]. Nat Cell Biol, 2003, 5:59-63.
    66. Murtaugh, M.P., Stadejek, T., Abrahante, J.E., et al. The ever-expanding diversity of porcine reproductive and respiratory syndrome virus [J]. Virus research, 2010, 154:18-30.
    67. Music, N., Gagnon, C.A. The role of porcine reproductive and respiratory syndrome (PRRS) virus structural and non-structural proteins in virus pathogenesis [J]. Animal health research reviews / Conference of Research Workers in Animal Diseases, 2010, 11:135-163.
    68. Nauwynck, H.J., Duan, X., Favoreel, H.W., et al. Entry of porcine reproductive and respiratory syndrome virus into porcine alveolar macrophages via receptor-mediated endocytosis [J]. The Journal of general virology, 1999, 80 ( Pt 2):297-305.
    69. Nelsen, C.J., Murtaugh, M.P., Faaberg, K.S. Porcine reproductive and respiratory syndrome virus comparison: divergent evolution on two continents [J]. Journal of virology, 1999, 73:270-280.
    70. Neumann, E.J., Kliebenstein, J.B., Johnson, C.D., et al. Assessment of the economic impact of porcine reproductive and respiratory syndrome on swine production in the United States [J]. Journal of the American Veterinary Medical Association, 2005, 227:385-392.
    71. Nielsen, H.S., Liu, G., Nielsen, J., et al. Generation of an infectious clone of VR-2332, a highly virulent North American-type isolate of porcine reproductive and respiratory syndrome virus [J].Journal of virology, 2003, 77:3702-3711.
    72. Oleksiewicz, M.B., Botner, A., Toft, P., et al. Emergence of porcine reproductive and respiratory syndrome virus deletion mutants: correlation with the porcine antibody response to a hypervariable site in the ORF 3 structural glycoprotein [J]. Virology, 2000, 267:135-140.
    73. Ostrowski, M., Galeota, J.A., Jar, A.M., et al. Identification of neutralizing and nonneutralizing epitopes in the porcine reproductive and respiratory syndrome virus GP5 ectodomain [J]. Journal of virology, 2002, 76:4241-4250.
    74. Palmer, A.E., Allen, A.M., Tauraso, N.M., et al. Simian hemorrhagic fever. I. Clinical and epizootiologic aspects of an outbreak among quarantined monkeys [J]. The American journal of tropical medicine and hygiene, 1968, 17:404-412.
    75. Pasternak, A.O., Gultyaev, A.P., Spaan, W.J., et al. Genetic manipulation of arterivirus alternative mRNA leader-body junction sites reveals tight regulation of structural protein expression [J]. Journal of virology, 2000, 74:11642-11653.
    76. Pasternak, A.O., Spaan, W.J., Snijder, E.J. Nidovirus transcription: how to make sense...? [J]. The Journal of general virology, 2006, 87:1403-1421.
    77. Pasternak, A.O., van den Born, E., Spaan, W.J., et al. Sequence requirements for RNA strand transfer during nidovirus discontinuous subgenomic RNA synthesis [J]. The EMBO journal, 2001, 20:7220-7228.
    78. Patton, J.B., Rowland, R.R., Yoo, D., et al. Modulation of CD163 receptor expression and replication of porcine reproductive and respiratory syndrome virus in porcine macrophages [J]. Virus research, 2009, 140:161-171.
    79. Pei, Y., Hodgins, D.C., Wu, J., et al. Porcine reproductive and respiratory syndrome virus as a vector: immunogenicity of green fluorescent protein and porcine circovirus type 2 capsid expressed from dedicated subgenomic RNAs [J]. Virology, 2009, 389:91-99.
    80. Riley, V., Lilly, F., Huerto, E., et al. Transmissible Agent Associated with 26 Types of Experimental Mouse Neoplasms [J]. Science (New York, N.Y, 1960, 132:545-547.
    81. Rola, J., Larska, M., Rola, J.G., et al. Epizotiology and phylogeny of equine arteritis virus in hucul horses [J]. Veterinary microbiology, 2011, 148:402-407.
    82. Ropp, S.L., Wees, C.E., Fang, Y., et al. Characterization of emerging European-like porcine reproductive and respiratory syndrome virus isolates in the United States [J]. Journal of virology, 2004, 78:3684-3703.
    83. Sawicki, S.G., Sawicki, D.L., Siddell, S.G. A contemporary view of coronavirus transcription [J]. Journal of virology, 2007, 81:20-29.
    84. Shanmukhappa, K., Kim, J.K., Kapil, S. Role of CD151, A tetraspanin, in porcine reproductive and respiratory syndrome virus infection [J]. Virology journal, 2007, 4:62.
    85. Smith, S.L., Wang, X., Godeny, E.K. Sequence of the 3' end of the simian hemorrhagic fever virus genome [J]. Gene, 1997, 191:205-210.
    86. Snijder, E.J., Dobbe, J.C., Spaan, W.J. Heterodimerization of the two major envelope proteins isessential for arterivirus infectivity [J]. Journal of virology, 2003, 77:97-104.
    87. Snijder, E.J., Meulenberg, J.J. The molecular biology of arteriviruses [J]. The Journal of general virology, 1998, 79 ( Pt 5):961-979.
    88. Snijder, E.J., van Tol, H., Pedersen, K.W., et al. Identification of a novel structural protein of arteriviruses [J]. Journal of virology, 1999, 73:6335-6345.
    89. Sur, J.H., Doster, A.R., Christian, J.S., et al. Porcine reproductive and respiratory syndrome virus replicates in testicular germ cells, alters spermatogenesis, and induces germ cell death by apoptosis [J]. Journal of virology, 1997, 71:9170-9179.
    90. Teifke, J.P., Dauber, M., Fichtner, D., et al. Detection of European porcine reproductive and respiratory syndrome virus in porcine alveolar macrophages by two-colour immunofluorescence and in-situ hybridization-immunohistochemistry double labelling [J]. Journal of comparative pathology, 2001, 124:238-245.
    91. Tekes, G., Hofmann-Lehmann, R., Bank-Wolf, B., et al. Chimeric feline coronaviruses that encode type II spike protein on type I genetic background display accelerated viral growth and altered receptor usage [J]. Journal of virology, 2010, 84:1326-1333.
    92. Tian, D., Zheng, H., Zhang, R., et al. Chimeric porcine reproductive and respiratory syndrome viruses reveal full function of genotype 1 envelope proteins in the backbone of genotype 2 [J]. Virology, 2011, 412:1-8.
    93. Tian, K., Yu, X., Zhao, T., et al. Emergence of fatal PRRSV variants: unparalleled outbreaks of atypical PRRS in China and molecular dissection of the unique hallmark [J]. PloS one, 2007, 2:e526.
    94. van Aken, D., Zevenhoven-Dobbe, J., Gorbalenya, A.E., et al. Proteolytic maturation of replicase polyprotein pp1a by the nsp4 main proteinase is essential for equine arteritis virus replication and includes internal cleavage of nsp7 [J]. The Journal of general virology, 2006, 87:3473-3482.
    95. Van Breedam, W., Delputte, P.L., Van Gorp, H., et al. Porcine reproductive and respiratory syndrome virus entry into the porcine macrophage [J]. The Journal of general virology, 2010a, 91:1659-1667.
    96. Van Breedam, W., Van Gorp, H., Zhang, J.Q., et al. The M/GP(5) glycoprotein complex of porcine reproductive and respiratory syndrome virus binds the sialoadhesin receptor in a sialic acid-dependent manner [J]. PLoS pathogens, 2010b, 6:e1000730.
    97. van Dinten, L.C., den Boon, J.A., Wassenaar, A.L., et al. An infectious arterivirus cDNA clone: identification of a replicase point mutation that abolishes discontinuous mRNA transcription [J]. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94:991-996.
    98. Van Gorp, H., Van Breedam, W., Delputte, P.L., et al. Sialoadhesin and CD163 join forces during entry of the porcine reproductive and respiratory syndrome virus [J]. The Journal of general virology, 2008, 89:2943-2953.
    99. van Hemert, M.J., de Wilde, A.H., Gorbalenya, A.E., et al. The in vitro RNA synthesizing activity of the isolated arterivirus replication/transcription complex is dependent on a host factor [J]. J Biol Chem, 2008, 283:16525-16536.
    100. van Vugt, J.J., Storgaard, T., Oleksiewicz, M.B., et al. High frequency RNA recombination in porcine reproductive and respiratory syndrome virus occurs preferentially between parental sequences with high similarity [J]. The Journal of general virology, 2001, 82:2615-2620.
    101. Vanderheijden, N., Delputte, P.L., Favoreel, H.W., et al. Involvement of sialoadhesin in entry of porcine reproductive and respiratory syndrome virus into porcine alveolar macrophages [J]. Journal of virology, 2003, 77:8207-8215.
    102. Vanhee, M., Costers, S., Van Breedam, W., et al. A variable region in GP4 of European-type porcine reproductive and respiratory syndrome virus induces neutralizing antibodies against homologous but not heterologous virus strains [J]. Viral Immunol, 2010, 23:403-413.
    103. Verheije, M.H., Welting, T.J., Jansen, H.T., et al. Chimeric arteriviruses generated by swapping of the M protein ectodomain rule out a role of this domain in viral targeting [J]. Virology, 2002, 303:364-373.
    104. Wang, Y., Liang, Y., Han, J., et al. Attenuation of porcine reproductive and respiratory syndrome virus strain MN184 using chimeric construction with vaccine sequence [J]. Virology, 2008, 371:418-429.
    105. Warrens, A.N., Jones, M.D., Lechler, R.I. Splicing by overlap extension by PCR using asymmetric amplification: an improved technique for the generation of hybrid proteins of immunological interest [J]. Gene, 1997, 186:29-35.
    106. Welch, S.K., Calvert, J.G. A brief review of CD163 and its role in PRRSV infection [J]. Virus research, 2010, 154:98-103.
    107. Wensvoort, G., Terpstra, C., Pol, J.M., et al. Mystery swine disease in The Netherlands: the isolation of Lelystad virus [J]. The Veterinary quarterly, 1991, 13:121-130.
    108. Wieringa, R., de Vries, A.A., Rottier, P.J. Formation of disulfide-linked complexes between the three minor envelope glycoproteins (GP2b, GP3, and GP4) of equine arteritis virus [J]. Journal of virology, 2003, 77:6216-6226.
    109. Wieringa, R., de Vries, A.A., van der Meulen, J., et al. Structural protein requirements in equine arteritis virus assembly [J]. Journal of virology, 2004, 78:13019-13027.
    110. Wissink, E.H., Kroese, M.V., van Wijk, H.A., et al. Envelope protein requirements for the assembly of infectious virions of porcine reproductive and respiratory syndrome virus [J]. Journal of virology, 2005, 79:12495-12506.
    111. Wootton, S.K., Nelson, E.A., Yoo, D. Antigenic structure of the nucleocapsid protein of porcine reproductive and respiratory syndrome virus [J]. Clinical and diagnostic laboratory immunology, 1998, 5:773-779.
    112. Wu, W.H., Fang, Y., Farwell, R., et al. A 10-kDa structural protein of porcine reproductive and respiratory syndrome virus encoded by ORF2b [J]. Virology, 2001, 287:183-191.
    113. Yu, D., Lv, J., Sun, Z., et al. Reverse genetic manipulation of the overlapping coding regions for structural proteins of the type II porcine reproductive and respiratory syndrome virus [J]. Virology, 2009, 383:22-31.
    114. Yuan, S., Murtaugh, M.P., Faaberg, K.S. Heteroclite subgenomic RNAs are produced in porcine reproductive and respiratory syndrome virus infection [J]. Virology, 2000, 275:158-169.
    115. Yuan, S., Nelsen, C.J., Murtaugh, M.P., et al. Recombination between North American strains of porcine reproductive and respiratory syndrome virus [J]. Virus research, 1999, 61:87-98.
    116. Yuan, S., Wei, Z. Construction of infectious cDNA clones of PRRSV: separation of coding regions for nonstructural and structural proteins [J]. Science in China, 2008, 51:271-279.
    117. Zevenhoven-Dobbe, J.C., Greve, S., van Tol, H., et al. Rescue of disabled infectious single-cycle (DISC) equine arteritis virus by using complementing cell lines that express minor structural glycoproteins [J]. The Journal of general virology, 2004, 85:3709-3714.
    118. Zheng, H., Sun, Z., Zhu, X.Q., et al. Recombinant PRRSV expressing porcine circovirus sequence reveals novel aspect of transcriptional control of porcine arterivirus [J]. Virus research, 2010, 148:8-16.
    119. Zhou, L., Yang, H. Porcine reproductive and respiratory syndrome in China [J]. Virus research, 2010, 154:31-37.
    120. Zhou, Y.J., An, T.Q., He, Y.X., et al. Antigenic structure analysis of glycosylated protein 3 of porcine reproductive and respiratory syndrome virus [J]. Virus research, 2006, 118:98-104.
    121. Zhou, Y.J., Hao, X.F., Tian, Z.J., et al. Highly virulent porcine reproductive and respiratory syndrome virus emerged in China [J]. Transboundary and emerging diseases, 2008, 55:152-164.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700