金属纳米结构的Fano共振及Spaser特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着纳米加工技术的迅速发展,金属纳米结构的尺寸可以达到纳米量级。金属纳米结构的表面等离激元共振有很强的局域电场增强特性,对金属结构参数和环境的变化特别敏感,使其在化学生物传感器件、表面增强拉曼散射、二次谐波产生等方面有着广泛的应用。本论文主要研究金属纳米结构的表面等离激元特性。首先设计了棒-同心矩形环盘结构,对其所支持的Fano共振及基于Fano共振的表面等离激元受激辐射放大(Spaser)进行了研究;再次,研究了飞秒激光诱导不锈钢表面周期纳米条纹的机制,主要讨论了表面等离激元所起的作用。主要研究结果如下:
     (1) Fano共振是减小共振线宽和增强光谱灵敏度的重要方法之一,实现窄线宽和高对比度的Fano共振是一个重要的研究目标。我们用Comsol软件设计了一个棒-同心矩形环盘金属纳米结构,实现了四极Fano共振现象。通过调节矩形环盘中环盘的间隙,或者是棒与环的间隙来操控Fano共振的线宽和对比度。当环盘间隙为5nm,棒环间隙为20nm时,四极Fano共振的线宽只有0.025eV,对比度能高达80%,此时的探测灵敏度FOM也能达到15。这种金属纳米结构在生物化学传感中有广泛的应用前景。
     (2)我们提出了基于棒-同心环盘结构Fano共振的等离激元激射,它是利用Fano共振中对同心矩形环盘结构的暗态四极共振的激发,并通过增益介质所提供的能量对其进行损耗补偿和放大来实现的。基于此暗态等离激元放大的激射具有很高的Purcell因子3.24×107,很高的信噪比(SNR)为4.4×106和较低的阂值0.02086。这些良好的光学特性都归因于暗态四极共振模式的局域电场增强和被抑制的辐射损耗。在以后的发展中,如何减小金属的损耗是表面等离激元激光器的一个研究热点和重点,而暗态模式的表面等离激元的激发为此提供了一个新思路。
     (3)飞秒激光在金属材料表面诱导周期纳米条纹结构时,表面等离激元起着非常重要的作用。我们研究了800nm飞秒激光在不锈钢表面诱导形成的周期纳米条纹结构和其形成的物理过程。在不锈钢表面发现了LSFRs(A>0.45λ)、 MSFRs (0.2AWith the development of science and technology, the metallic structures can be reduced to the scale of nanometers. The surface plasmon of the metallic nanostructures supports a very high electric field and extraordinary sensitive to surface conditions and the the nanostructure. This properties lead the surface plasmon to be used in chemical and biological sensors, surface enhanced Raman scattering, second harmonic generation (SHG), etc. In the project, we focused on the studies of the characteristics of surface plasmon resonances. We propose plasmonic nanostructure consisting of a rod and concentric square ring-disk (RCSRD) structure, and study the quadrupolar Fano resonance of the RCSRD structure. We also study the spaser based on Fano resonance of the RCSRD. In the last, we introduce the periodic ripples induced by the femtosecond laser and the role of surface plasmon in formation of the ripples. The innovative results are as follow:
     (1) We propose a plasmonic nanostructure consisting of a rod and concentric square ring-disk (RCSRD) structure, which can support a Fano resonance. Fano interference is an important way to decrease the resonance line-width and enhance the spectral detection resolution, but realizing a Fano line-shape with both a narrow line-width and high spectral contrast-ratio is still a challenge. Fano line-width and spectral contrast-ratio of the RCSRD structure can be actively manipulated by adjusting the gap between the nanorod and CSRD, and by adjusting the gap between the ring and disk in CSRD. When the gap size in CSRD is reduced to5nm, the quadrupolar Fano line-width is of0.025eV, with a contrast ratio of80%, and the figure of merit reaches15. So the RCSRD structure has a very extensive application in the biological chemical sensing.
     (2) We reports a spaser based on Fano resonance of a plasmonic nanostructure consisting of a rod and concentric square ring-disk (RCSRD) structure coated with a layer of gain media. The amplification of the dark quadrupolar mode at the Fano resonance wavelength causes the spaser with a high Purcell factor of3.24×107, a high signal to noise ratio (SNR) of4.4×106and a lower threshold of0.02086. These significant optical properties are attributed to the greatly enhanced spontaneous emission and depressed radiation loss supported by the strong localized dark mode at the Fano resonance wavelength. Reducing the loss of the metal is an important focus in the study of the Spaser. The amplification of the dark mode provide a new way to reduce the loss of the Spaser.
     (3) Surface plasmon play an important role in the formation of the ripples induced by the femtosecond laser. Three kind of periodic ripples formed in the ablation spots in sequence:LSFRs (A>0.45λ), MSFRs (0.2A
引文
[1]. R. H. Ritchie, Phys. Rev.106,874 (1957).
    [2]. C. F. Bohren, D. R. Huffman, "Absorption and scattering of light by small particles", John-Wiley and Sons,1983.
    [3]. W. L. Barnes, A. Dereux, T. W. Ebbesen, Nature 424,824 (2003).
    [4]. C. Genet, T. W. Ebbesen, Nature 445,39 (2007).
    [5].李志远,李家方,科学通报56,2631(2011).
    [6]. K. Kneipp, M. Moskovits, H. Kneipp, "Surface enhanced Raman scattering: physics and applications" Springer, Germany (2006).
    [7]. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, R. P. Van Duyne, Nature Mater.7,442 (2008).
    [8]. T. Matsui, A. Agrawal, A. Nahata, Z. V. Vardeny, Nature 446,517 (2007).
    [9]. Z. Ruan, M. Qiu, Phys. Rev. Lett.96,233901(2006).
    [10]. Y. J. Bao, R.W. Peng, D. J. Shu, M. Wang, X. Lu, J. Shao, W. Lu, N. B. Ming, Phys. Rev. Lett.101,087401 (2008).
    [11].S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, S. W. Kim, Nature 453,757 (2008).
    [12].F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, P. Nordlander, Acs Nano 2,707 (2008).
    [13]. W. J. Padilla, D. N. Basov, D. R. Smith, Mater. Today.9,28 (2006).
    [14].J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G Bartal, X. Zhang, Nature 455,376 (2008).
    [15]. W. A. Murray, W. L. Barnes, Adv. Mater.19,3771 (2007).
    [16].U. Kreibig, M. Vollmer, "Optical Properties of Metal Clusters," Vol.25, Springer, Berlin 1995.
    [17].R. W. Wood, Phi Mag 4,396 (1902).
    [18].邱国斌,蔡定平,物理双月刊,26,472(2006).
    [19].A. Otto, Z. Physik 216,398 (1968).
    [20].E. Kretschmann, H. Raether, Z. Naturforsch. A 23,2135 (1968)
    [21].L. Salomon, G. Bassou, J. P. Dufour, F. de Fornel, A.V. Zayats, Phys. Rev. B 65, 125409 (2002).
    [22].B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, D.W. Pohl, Phys. Rev. Lett.77, 1889(1996).
    [23].A. V. Zayatsa, I. I. Smolyaninov, A. A. Maradudin, Physics Reports 408,131 (2005).
    [24].M. Rycenga, C. M. Cobley, J. Zeng, W. Y. Li, C. H. Moran, Q. Zhang, D. Qin, Y. Xia, Chem. Rev. 111,3669 (2011).
    [25].A. W. Sanders, D. A. Routenberg, B. J. Wiley, Y. Xia, E. R. Dufresne, M. A. Reed, Nano Lett.6,1822 (2006).
    [26].S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, T. W. Ebbesen, Nature 440,508(2006)
    [27].童廉明,徐红星,超构材料的研究和应用专题,41,582(2012).
    [28].S. Link, and M. A. El-Sayed, J. Phys. Chem. B 103,4212 (1999).
    [29].V. Myroshnychenko, E. C. Argibay, I. P. Santos, J. P. Juste, L. M. L. Marzan, F. J. Garcia de Abajo, Adv. Mater.20,4288 (2008).
    [30].T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, Nature 391,667 (1998).
    [31].Q. Wang, J. Li, C. Huang, C. Zhang, and Y Zhu, Appl. Phys. Lett.87,091105 (2005).
    [32]. Y. Lu, G Liu, J. Kim, Y Mejia, L. Lee, Nano Lett.5,119 (2005).
    [33].S. Nie, S. R. Emory, Science.275,1102 (1997).
    [34]. A. J. Otto, Raman Spectrosc.36,497(2005).
    [35].S. M. Nie, S. R. Emery, Science,275,1102 (1997).
    [36].H. Wei, F. Hao, Y. Huang, W. Wang, P. Nordlander, H. Xu, Nano Lett.8,2497 (2008).
    [37].F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. Halas, J. Aizpurua, P. Nordlander, Acs Nano 2,707 (2008).
    [38].S. Kim, J. Jin, Y. Kim, I. Park, Y. Kim, S. W. Kim, Nature 453,757 (2008).
    [39].D. Marinica, A. K. Kazansky, P. Nordlandel, J. Aizpurua, A. Borisov, Nano Lett. 12,1333 (2012).
    [40].R. Esteban, A. Borisov, P. Nordlander, J. Aizpurua, Nat.Commun.3,825 (2012).
    [41].B. Liedberg, C. Nylander, I. Lunstrom, Sensors and Actuators 4,299 (1983).
    [42]. A. McFarland, R. P. V. Duyne, Nano Lett.3,1057 (2003).
    [43].D. Pacifici, H. Lezec, H. A. Atwater, Nat.Photonics 1,402 (2007).
    [44].K. MacDonald., Z. L. Samson, M. I. Stockman, N. Zheludev, Nat. Photonics 3, 55 (2009).
    [45].H. Wei, Z. Wang, X. Tian, M. Kail, H. Xu, Nat.Commun.2,387 (2011).
    [46].D. J. Bergman, M. I. Stockman, Phys. Rev. Lett.90,027402 (2003).
    [47].M. A. Noginov, G Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, U. Wiesner. Nature 460,1110 (2009).
    [48].R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, X. Zhang, Nature 461,629 (2009).
    [1].朱允伦,丁培柱.计算物理学.上海:复旦大学出版社.1987.
    [2]. K. M. Ho, C. T. Chan, C. M. Soukoulis, Phys. Rev. Lett.65,3152 (1990).
    [3]. N. Troullier, and J. L. Martins. Phys. Rev. B.43,1993 (1991).
    [4]. Y. Cao, Z. Hou, and Y. Liu, Phys. Lett. A.327,247 (2004).
    [5]. P. M. Bell, J. B. Pendry, L. M. Moreno, et al. Comput. Phys. Commun.85, 306-322 (1995).
    [6]. J. B. Pendry, A. Mackinnon, Phys. Rev. Lett.69,2772 (1992).
    [7]. M. Suzuki, Physics Review B.31,2957 (1985).
    [8]. J. V. Roey, J. Van der Donk, P. E. Lagasse, et al. J. Opt. Soc. Am.71,803 (1983).
    [9]. O. C. Zienkiewics, R. L.Taylor, Opt. Quant. Electron.15,433 (1983).
    [10]. Y. Chung, N. Dagli, Quantum Electrics, IEEE. Joumal of 26,1335 (1990).
    [11].L. F. Li J. Opt. Soc. Am. A 14,2758 (1997).
    [12].M. G. Moharam, and T. K. Gaylord, JOS A.71,811 (1981)
    [13].L. Philippe and G M. Morris, JOSA A.13,779 (1996).
    [14].R. F.Harrington, "Compution by Moment Methods", New York, First Printing the Macmilla Company,1968.
    [15].K. A. Winick, Applied Optics.31,757 (1992).
    [16].K. Kawano, T. Kitoh, "Introduction to Optical Waveguide Analysis:Solving Maxwell's Equation and the Schrodinger Equation," Wiley-Interscience,2004.
    [17].王长清,祝西里,电磁场计算中的时域有限差分法,北京大学出版社.1994.
    [18].F. Zhen, Z. Chen, J. Zhang, Microwave Theory and Techniques.48,1550 (2000).
    [19].O. C. Zienkiewicz, R L. Taylor, "The finite element method", Vol.1, the basis. Butterworth-Heinemaim,2000.
    [20].张榴晨,徐松,有限元法在电磁计算中的应用,中国铁道出版社.1996.
    [21].董正高,“金属基元的电磁材料中负折射现象的数值研究,”南京大学博士论文(2006).
    [22]. K. S. Yee, Transactions on Antennas and Propagation,14,302 (1966).
    [23]. J. Kim, G. Liu, Y. Lu, L. Lee, Optics Express 13,8332 (2005).
    [24].B. Ross, L. Lee, Nanotechnology 19,275201 (2008).
    [25].B. Ross, L. Lee, Optics Express 17,6860 (2009).
    [1]. W. L. Barnes, A. Dereux, T. W. Ebbesen, Nature 424,824 (2003).
    [2]. S. Lal, S. Link, N. J. Halas, Nat. Photon.1,641 (2007).
    [3]. S. J. Lee, Z. Guan, H. X. Xu, M. J. Moskovits, Phys. Chem. C 111,17985 (2007).
    [4]. F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, P. Nordlander, ACS Nano 2,707 (2008).
    [5]. B. Luk'yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, C. T. Chong, Nature Mater.9,707 (2010)
    [6]. U. Fano, Nuovo Cimento 12,154 (1935).
    [7]. U. Fano, Phys. Rev.124,1866 (1961).
    [8]. A. E. Miroshnichenko, S. Flach, Y. S. Kivshar, Rev. Mod. Phys.82,2257 (2010).
    [9]. R. Franco, M. S. Figueira, E.V. Anda, Phys. Rev. B 67,155301 (2003).
    [10].N. Yasumaru, K. Miyazaki, J. Kiuchi, Appl. Phys. A:Materials and Processing 76,983 (2003).
    [11].A. C. Johnson, C. M. Marcus, M. P. Hanson, A. C. Gossard, Phys. Rev. B 71, 115333 (2005).
    [12].K. Kobayashi, H. Aikawa, A. Sano, S. Katsumoto, Y. Iye, Phys. Rev. B 70, 035319(2004).
    [13].Y. Alhassid, Y. V. Fyodorov, T. Gorin, W. Ihra, B. Mehlig, Phys. Rev. A 73, 042711 (2006).
    [14].T. H. Hoffmann, M. Allan, K. Franz, M.W. Ruf, H. Hotop, G Sauter, W. Meyer, J. Phys. B-At. Mol. Opt.42,211001 (2009).
    [15], S. Mukhopadhyay, R. Biswas, C. Sinha, J. Appl. Phys.110,014306 (2011).
    [16].S. Mukhopadhyay, R. Biswas, C. Sinha, Phys. Lett. A 375,2921 (2011).
    [17].H. G. Luo, T. Xiang, X. Q. Wang, Z. B. Su, L. Yu, Phys. Rev. Lett.92,256602 (2004).
    [18].M.V. Rybin, A. B. Khanikaev, M. Inoue, A. K. Samusev, M. J. Steel, G Yushin, M. F. Limonov, Photon. Nanostruct.8,86 (2010).
    [19].J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Kall, G W. Bryant, F. J. Garcia de Abajo, Phys. Rev. Lett.90,057401 (2003).
    [20].S. Zhang, D. A. Genov, Y. Wang, M. Liu, X. Zhang, Phys. Rev. Lett.101,047401 (2008).
    [21].B. Luk'yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, Nature Mater.9,707 (2010).
    [22].Z. J. Yang, Z. S. Zhang, L. H. Zhang, Q. Q. Li, Z. H. Hao, Q. Q. Wang, Opt. Lett. 36,1542 (2011).
    [23].J. A.Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G Shvets, F. Capasso, Science 328,1135 (2010).
    [24].F. Hao, Y. Sonnefraud, P. V. Dorpe, S. A. Maier, N. J. Halas, P. Nordlander, Nano Lett.8,3983 (2008).
    [25].J. A. Fan, K. Bao, C.i Wu, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, G Shvets, P. Nordlander, F. Capasso, Nano Lett.10,4680 (2010).
    [26]. J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, N. J. Halas, Nano Lett.10,3184 (2010).
    [27].F. Hao, P. Nordlander, Y. Sonnefraud, P. V. Dorpe, S. A. Maier, ACS Nano 3,643 (2009).
    [28].Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. E. Vandenbosch, V. V. Moshchalkov, P. V. Dorpe, P. Nordlander, S. A. Maier, ACS Nano 4,1664 (2010).
    [29].J. Ye, F. F. Wen, H. Sobhani, J. B. Lassiter, P. V. Dorpe, P. Nordlander, N. J. Halas, Nano Lett.12,1660 (2012).
    [30].C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. Ali Yanik, H. Altug, G Shvets, Nature Mater.11,69 (2012).
    [31].N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, H. Giessen, Science,332,1407 (2011).
    [32].M. I. Stockman, Nature 467,541 (2010).
    [33].P. B. Johnson, R. W. Christy, Phys. Rev. B 6,4370 (1972).
    [34].Z. Y. Fang, Z. Liu, Y. M. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, Nano Lett.12,3808 (2012).
    [35].M. I. Stockman, Nature 467,541 (2010).
    [36].F. Tam, C. Moran, N. Halas, J. Phys. Chem. B 108,17290 (2004).
    [1]. V. M. Shalaev and M. I. Stockman, Zh. Eksp. Teor. Fiz.92,509 (1987) [Sov. Phys. JETP 65,287 (1987)]; A.V. Butenko, V.M. Shalaev, and M. I. Stockman, Zh. Eksp. Teor. Fiz.94,107 (1988) [Sov. Phys. JETP 67,60 (1988)].
    [2]. M. I. Stockman et al., Phys. Rev. B 46,2821 (1992).
    [3]. M. I. Stockman et al., Phys. Rev. Lett.72,2486 (1994).
    [4]. M. I. Stockman, L. N. Pandey, T. F. George, Phys. Rev. B 53,2183 (1996).
    [5]. S. Gre'sillon et al., Phys. Rev. Lett.82,4520 (1999).
    [6]. K. Kneipp et al., Phys. Rev. Lett.78,1667 (1997).
    [7]. S. Nie, S. R. Emory, Science 275,1102 (1997).
    [8]. E. J. Sa'nchez, L. Novotny, X. S. Xie, Phys. Rev. Lett.82,4014 (1999).
    [9]. L. Novotny, R. X. Bian, X. S. Xie, Phys. Rev. Lett.79,645 (1997).
    [10].M. I. Stockman, Autometria 3,30 (1989) [Optoelectron. Instrum. Data Process.3, 27 (1989)].
    [11].M. I. Stockman, S.V. Faleev, D. J. Bergman, Phys. Rev. Lett.87,167401 (2001).
    [12].D. J. Bergman, M. I. Stockman, Phys. Rev. Lett.90,027402 (2003).
    [13].M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. C. Zhu, M. H. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y. S. Oei, R. Notzel, C. Z. Ning, M. K. Smit, Opt. Express 17,11107 (2009).
    [14].M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, U. Wiesner. Nature 460,1110 (2009).
    [15].R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G Bartall, X. Zhang, Nature 461,629 (2009).
    [16].M. I. Stockman, Nat. Photonics 2,327 (2008).
    [17].G. W. Ford, W. H. Weder, Phys. Reports 113,195 (1984)
    [18].B. Liedberg, C. Nylander, I. Lunstrom, Sensors and Actuators 4,299 (1983)
    [19]. A. H Atwater, Sei. Am.296,56 (2007).
    [20]. W. L. Barnes, A. Dereux, T. W. S. Ebbesen, Nature 424,824 (2003).
    [21].S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Laluet, T. W. Ebbesen, Nature 440, 508 (2006).
    [22].B. Liedberg, C. Nylander, I. Lunstrom, Nature 450,402 (2007).
    [23].B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, B. D. Terris, Nat. Photonics 4,484 (2010).
    [24].L. Pan, Y. Park, Y. Xiong, E. Ulin-Avila, Y. Wang, L. Zeng, S. Xiong, J. Rho, C. Sun, D. B. Bogy, X. Zhang, Scientific Reports 1,175 (2011).
    [25].S. Y. Liu, J. F. Li, F. zhou, L. Gan, Z. Y. Li, Opt. Lett.36,1296 (2011).
    [26].X. Meng, A. V. Kildishev, K. Fujita, K. Tanaka, V. M. Shalaev, Nano Lett.13, 4106 (2013).
    [27].X. Meng, U. Guler, A. V. Kildishev, K. Fujita, K. Tanaka, V. M. Shalaev, Sci. Rep.3,1241(2013).
    [28].M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. C. Zhu, T. D. Vries, P. J. Van Veldhoven, F. W. M. Van Often, T. J. Eijkemans, J. P. Turkiewcz, H. D. Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, M. K. Smit, Nat. Photonics 1,589 (2007).
    [29].M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, Y. Fainman, Nat. Photonics 4,395 (2010).
    [30].M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, Y. Fainman, Nature 482,204 (2012).
    [31].R. M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, X. Zhang, Nat. Mater.10,110 (2011).
    [32].陈泳屹,佟存柱,秦莉,王立军,张金龙,中国光学5,453(2012).
    [33].P. Berini, I. De Leon, Nat. Photonics 6,16 (2012).
    [34].I. De Leon, P. Berini, Nat. Photonics 4,382 (2010).
    [35]. Y. J. Lu, J. Kim, H. Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C. Y. Wang, M. Y Lu, B. H. Li, X. G Qiu, W. H. Chang, L. J. Chen, G. Shvets, C. K. Shih, S. Gwo, Science 337,450 (2012).
    [36].Z. H. Zhu, H. Liu, S. M. Wang, T. Li, J. X. Cao, W. M. Ye, X. D. Yuan, S. N. Zhu, Appl. Phys. Lett.94,103106 (2009).
    [37].A. E. Miroshnichenko, S. Flach, Y. S. Kivshar, Rev. Mod. Phys.82,2257 (2010).
    [38]. S. Zhang, D. A. Genov, Y. Wang, M. Liu, X. Zhang, Phys. Rev. Lett.101,047401 (2008).
    [39].B. Luk'yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, C. T. Chong, Nature Mater.9,707 (2010).
    [40].Z. J. Yang, Z. S. Zhang, L. H. Zhang, Q. Q. Li, Z. H. Hao, Q. Q. Wang, Opt. Lett. 36,1542(2011).
    [41].J. A.Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, F. Capasso, Science 328,1135 (2010).
    [42].F. Hao, Y. Sonnefraud, P. V. Dorpe, S. A. Maier, N. J. Halas, P. Nordlander, Nano Lett.8,3983 (2008).
    [43]. Y. Zhang, T. Q. Jia, H. M. Zhang, Z. Z. Xu, Opt. Lett.37,4919 (2012).
    [44].M. I. Stockman, Nature 467,541 (2010).
    [45].P. B. Johnson, and R. W. Christy, Phys. Rev. B 6,4370 (1972).
    [46].V. Giannini, A. I. Fernandez-Dominguez, S. C. Heck, S. A. Maier, Chem. Rev. 111,3888(2011).
    [47].M. Decker, I. Staude, I. I. Shishkin, K. B. Samusev, P. Parkinson, V. K. A. Sreenivasan, A. Minovich, A. E. Miroshnichenko, A. Zvyagin, C. Jagadish, D. N. Neshev, Y. S. Kivshar, Nat. Commun.4,2949 (2013).
    [1]. M. Birnbaum, J. Appl. Phys.36,3688 (1965).
    [2]. D. C. Emmony, R. P. Howson, L. J. Willis, Appl. Phys. Lett.23,598 (1973).
    [3]. J. F. Young, J. S. Preston, H. M. van Driel, J. E. Sipe, Phys. Rev. B 27,1155 (1983).
    [4]. D. Dufft, A. Rosenfeld, S. K. Das, R. Grunwald, J. Bonse, J. Appl. Phys.105, 034908 (2009).
    [5]. F. Costache, M. Henyk, J. Reif, Appl. Surf. Sci.186,352 (2002).
    [6]. V. I. Emel'yanov, Laser Phys.18,682 (2008).
    [7]. J. M. Li, J. T. Xu, Laser Phys.19,121 (2009).
    [8]. Y. Shimotsuma, P. G. Kazansky, J. R. Qiu, K. Hirao, Phys. Rev. Lett.91,247405 (2003).
    [9]. V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, P. B. Corkum, Phys. Rev. Lett.96,057404 (2006).
    [10].N. Yasumaru, K. Miyazaki, and J. Kiuchi, Appl. Phys. A:Materials and Processing 76,983 (2003).
    [11].M. Huang, F. L. Zhao, Y. Cheng, N.S. Xu, Z.Z. Xu, Phys. Rev. B 79,125436 (2009).
    [12]. S. Juodkazis, K. Nishimura, H. Misawa, Appl. Surf. Sci.253,6539 (2007).
    [13].G. Miyaji, K. Miyazaki, Appl. Phys. Lett.89,191902 (2006).
    [14].T. Q. Jia, H. X. Chen, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, H. Kuroda, Phys. Rev. B 72,125429 (2005).
    [15].X. Jia, T. Q. Jia, Y. Zhang, P. X. Xiong, D. H. Feng, Z. R. Sun, J. R. Qiu, Z. Z. Xu, Opt. Lett.35,1248 (2010).
    [16].A. Borowiec, H. K. Haugen, Appl. Phys. Lett.82,4462 (2003).
    [17].F. Liang, R. Vallee, S. L. Chin, Appl. Phys. Lett.100,251105 (2012).
    [18]. Y. Yang, J. J. Yang, L. Xue, Y. Guo, Appl. Phys. Lett.97,141101 (2010).
    [19]. A. Y. Vorobyev, V. S. Makin, C. L. Guo, J. Appl. Phys.101,034903 (2007).
    [20].J. C. Wang, C. L. Guo, Appl. Phys. Lett.87,251914 (2005).
    [21].M. Huang, F. L. Zhao, Y. Cheng, N. S. Xu, Z. Z. Xu, ACS Nano.3,4062 (2009).
    [22].S. Sakabe, M. Hashida, S. Tokita, S. Namba, K. Okamuro, Phys. Rev. B 79, 033409 (2009).
    [23].M. Hashida, A. F. Semerok, O. Gobert, Y. Izawa, J. F. Wagner, Appl. Surf. Sci. 197,862 (2002).
    [24].M. Hashida, S. Namba, K. Okamuro, S. Tokita, S. Sakabe, Phys. Rev. B 81, 115442(2010).
    [25].L. T. Qi, K. Nishii, Y. Namba, Opt. Lett.34,1846 (2009).
    [26]. J. W. Yao, C. Y. Zhang, H. Y. Liu, Q. F. Dai, L. J. Wu, S. Lan, A. V. Gopal, V. A. Trofimov, T. M. Lysak, Opt. Express 20,905 (2012).
    [27].M. Y. Shen, J. E. Carey, C. H. Crouch, M. Kandyla, H. A. Stone, E. Mazur, Nano. Lett.8,2087 (2008).
    [28].R. L. Harzic, D. Dorr, D. Sauer, M. Neumeier, M. Epple, H. Zimmermann, F. Stracke, Opt. Lett.36,229 (2011).
    [29].R. L. Harzic, D. Dorr, D. Sauer, F. Stracke, H. Zimmermann, Appl. Phys. Lett.98, 211905(2011).
    [30]. Y. W. Li, V. A. Stoica, L. Endicott, G Y. Wang, H. R. Sun, K. P. Pipe, C. Uher, R. Clarke, Appl. Phys. Lett.99,121903 (2011).
    [31].M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, Jr., C. A. Ward, Appl. Opt.22,1099 (1983).
    [32]. W. J. Wang, X. S. Mei, G D. Jiang, S. T. Lei, C. J. Yang, Appl. Surf. Sci.255, 2303 (2008).
    [33].E. M. Hsu, T. H. R. Crawford, C. Maunders, G A. Botton, and H. K. Haugen, Appl. Phys. Lett.92,221112 (2008).
    [34].S. S. Hou, Y. Y. Huo, P. X. Xiong, Y. Zhang, S. A. Zhang, T. Q. Jia, Z. R. Sun, J. R. Qiu, Z. Z. Xu, J. Phys. D.44,505401 (2011).
    [35].T. Lopez-Rios, D. Mendiza, F. J. Garcia-Vidal, J. Sanchez-Dehesa, B. Pannetier, Phys. Rev. Lett.81,665 (1998).
    [36].M. Huang, Y. Cheng, F. L. Zhao, Z. Z. Xu, Ann. Phys. (Berlin),1-13 (2012).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700