9-甲氧基喜树碱(MCPT)抗肿瘤作用及其机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
喜树碱(Camptothecin, CPT)由于高效、广谱的抗肿瘤活性而位居癌症治疗前列,但明显的毒副作用限制了它在临床上的使用,因而开发抗肿瘤活性强、毒副作用小的衍生物成为了国内外研究热点。9-甲氧基喜树碱(9-Methoxycamptothecin, MCPT),一种喜树碱衍生物,体内外试验均证实有明显的抗多种肿瘤活性,但对其有关细胞和分子方面的机制研究极少。本课题首先体外评价了9-甲氧基喜树碱的抗肿瘤细胞活性,并从9-甲氧基喜树碱诱导肿瘤细胞凋亡、影响DNA拓扑异构酶活性及其与DNA分子相互作用等三个方面进行了作用机制的研究。
     1.评价9-甲氧基喜树碱体外抗肿瘤活性。结果表明,9-甲氧基喜树碱抑制7种肿瘤细胞系,呈剂量依赖性。其中,人卵巢癌细胞A2780和人宫颈癌细胞Hela对9-甲氧基喜树碱最为敏感,其IC50值分别为79±21nM和151±61nM,明显低于阳性对照药物10-羟基喜树碱(Hydroxycamptothecin,HCPT)。选取这两种细胞系开展后续作用机制研究。
     2.研究了9-甲氧基喜树碱诱导细胞凋亡作用及其机制。结果表明:(1)9-甲氧基喜树碱处理A2780和Hela细胞后,荧光显微镜下观察到诱导的凋亡细胞,流式细胞仪检测到明显的早期和晚期凋亡细胞。9-甲氧基喜树碱诱导A2780细胞的早期凋亡和总凋亡率增加具有时间-剂量依赖性;(2)9-甲氧基喜树碱处理A2780和Hela细胞24h后即表现出强的G2/M期阻滞。1×IC50浓度的9-甲氧基喜树碱处理A2780细胞24h后对G2/M期阻滞最明显,达到81.93%;(3)9-甲氧基喜树碱能使A2780和Hela细胞中产生活性氧(ROS)明显增多。A2780细胞中ROS产生量最高达到对照组的5.22倍,Hela细胞中最高为2.65倍;(4)9-甲氧基喜树碱能不同程度激活caspase-3,-8和-9。在A2780细胞中对caspase-9酶激活程度最强,是对照组细胞的15倍。Hela细胞中caspase-3的酶活性被显著提高,约为对照组细胞的8倍;(5)实时定量PCR检测到9-甲氧基喜树碱调节了17个内、外源性细胞凋亡通路及细胞周期相关基因。其中对细胞周期调控基因p21,p27和cyclinE上调较显著;且明显上调参与外源性细胞凋亡通路的TNFα、Fas和FasL;同时还调节了主要参与内源性细胞凋亡通路的bcl-2家族有关基因表达水平;(6)Westernblot检测到TNFα, Fas, P53和P27的蛋白表达水平上调,与其基因水平调节一致。综上所述,9-甲氧基喜树碱可通过调节细胞周期调控蛋白使细胞周期阻滞于G2/M期,并增加ROS的产生、调节bcl-2家族相关基因激活caspase-9,从而启动内源性细胞凋亡通路;同时激活了caspase-8启动以TNFα和Fas/FasL为主的外源性细胞凋亡通路。以上两条通路共同激活caspase-3,最终导致A2780和Hela细胞凋亡。
     3.研究了9-甲氧基喜树碱对DNA拓扑异构酶Ⅰ和Ⅱ活性的影响。结果显示,100μM的9-甲氧基喜树碱表现出对拓扑异构酶Ⅰ明显的抑制作用,与阳性对照药物喜树碱一样,可使超螺旋DNA产生明显的缺刻型DNA条带。不同浓度的9-甲氧基喜树碱均未表现出对拓扑异构酶Ⅱ的抑制作用(与阳性对照药物依托泊苷相比)。值得注意的是,100μM的9-甲氧基喜树碱能单独作用于超螺旋DNA并产生明显的缺刻型DNA产物,表明9-甲氧基喜树碱在没有拓扑异构酶Ⅰ存在的情况下也能作用于DNA。提示,9-甲氧基喜树碱的这种直接结合DNA的能力很有可能是其抗肿瘤活性强的一种重要机制。
     4.采用光谱法研究了9-甲氧基喜树碱与DNA分子相互作用。结果表明,(1)紫外-可见吸收光谱显示,随着不断滴加CT-DNA,9-甲氧基喜树碱最大吸收峰出现了增色效应,谱带未发生偏移,表明其与DNA的作用属于外部键合模式(沟槽作用和/或静电作用)。9-甲氧基喜树碱处理CT-DNA前后体系的解链温度(melting temperature,Tm)值升高不明显,也支持外部键合模式;(2)荧光光谱显示,随着CT-DNA浓度不断增加,9-甲氧基喜树碱荧光强度不断增强,没有发生明显光谱偏移现象,支持外部键合模式;(3)9-甲氧基喜树碱与CT-DNA相互作用的圆二色谱显示,9-甲氧基喜树碱加入后,体系的正峰有小的提升,而其负峰有较明显的回落并伴有轻微的吸收峰红移现象。由于负峰变化程度大于正峰,表明两者结合以沟槽模式为主。综上可知,9-甲氧基喜树碱与CT-DNA的结合方式以沟槽模式为主。
     综合以上研究结果表明,9-甲氧基喜树碱具有明显的抗多种肿瘤细胞活性,其作用机制主要是通过与拓扑异构酶Ⅰ-DNA形成三元复合物“路障”阻止DNA复制、以沟槽方式结合DNA并对其进行剪切、诱导肿瘤细胞凋亡而起到抗肿瘤作用。
Camptothecin(CPT)was a prominent drug due to its high efficient and broad-spectrumanti-tumor activity in cancer treatment, but its clinical application was limited by its obviousside effects. Therefore, an increasing camptothecinoids (CPTs) were developed.9-Methoxycamptothecin (MCPT), one of CPTs, shows strong antitumor activities againstdifferent cancer cells. However, the cellular and molecular mechanisms of MCPT have notbeen well understood. MTT assay was adopted to examine the inhibitory effect of MCPT ondifferent cell lines firstly, then, the mechanisms of MCPT including apoptosis induced, theeffect of MCPT on topoisomeraseⅠand Ⅱ, the interaction with CT-DNA were studied.
     1. MTT assay was employed to evaluate the anti-tumour activity of MCPT in vitro. Theresults showed that MCPT could inhibit the growth of seven cancer cell lines in adose-dependent manner. Among those cancer cell lines, A2780and Hela cell lines weremore sensitive to MCPT than other cell lines, with the IC50values being79±21nM and151±61nM respectively, lower than that of hydroxycamptothecin(HCPT, the positive control)evidently. So, both A2780and HeLa cell lines were selected for further analysis.
     2. Apoptosis induced by MCPT and its mechanisms of action were studied. The resultswere listed as follows.(1) Cells including early and late apoptosis cells induced by MCPT inboth A2780and HeLa cells were detected both through fluorescence microscope and flowcytometry. MCPT induced early and total apoptosis of A2780cells in a dose-time dependentmanner.(2) Both A2780and HeLa cells were arrested at the G2/M phase after MCPTtreatment for24h. MCPT at1×IC50caused an accumulation in the G2/M phase with themaximum percentage of81.93%for A2780.(3) MCPT increased significantly ROSgeneration in both A2780and HeLa cells. After treatment with MCPT, the the maximumintracellular level of ROS reached5.22-fold of control cells in A2780cells and2.65-fold inHeLa cells.(4) MCPT could activate caspase-3,-8and-9in different degrees, with thestrongest activation of caspase-9in A2780cells, about15folds relative to control, andcaspase-3in HeLa cells about8folds.(5) MCPT regulated expression of seventeen genesinvolved in extrinsic and intrinsic apoptotic pathway and regulating cell-cycle in A2780and HeLa cells. Among those genes, MCPT up-regulated significantly cell-cycle regulatorygenes-p21,p27and cyclinE, and increased apparently TNFα,Fas and FasL involved inextrinsic apoptotic pathway, meanwhile regulated bcl-2family genes-the key participant inintrinsic apoptotic pathway.(6) Western blot verified that changes of TNFα, Fas, P53andP27protein level were consistent with their gene expression changes. In short, MCPTinduced apoptosis in A2780and HeLa cells through arresting cell cycle at G2/M viaregulating cell-cycle proteins, elevating the ROS level and regulating genes of the bcl-2family, activating caspase-9and thus initiating the intrinsic apoptotic pathway, activatingcaspase-8and initiating the extrinsic apoptotic pathways with the key TNFα and Fas/FasLpathway.Both the intrinsic and extrinsic pathways activated caspase-3and resulted inapoptosis in both cells in the end.
     3. The effects of MCPT on the catalytic activity of topoisomerase I and Ⅱwere studied.The results showed that100μM MCPT exhibits obvious topoisomerase I poison effects aswell as CPT (the positive control) at the same concentration based on generating nickedforms from supercoiled circular DNA. Gradual increasing concentration of MCPT didn’texhibit topoisomeraseⅡpoison effects based on the lack of generated nicked forms or linearforms from supercoiled circular DNA. It is interesting that MCPT at100μM alone cancleavethe supercoiled DNA. It seems that MCPT can directly bind to DNA without topoisomerase.The ability of MCPT’s direct binding to DNA may be its important mechanism of stronganticancer activity.
     4. The interaction of MCPT with DNA was studied via spectroscopies.The results wereas follows:(1) UV-vis absorption spectroscopy showed that upon addition CT-DNA toMCPT of fixed concentration, there was an increase in the absorption intensity of MCPTindicative of hyperchromism with no band shift. Moreover, no significant difference in Tmvalues between the MCPT-CT-DNA complexes and CT-DNA alone, indicating MCPTbinding to the CT-DNA with external bonding mode.(2) Fluorescence spectroscopy showedthat upon addition of CT-DNA, the notable emission intensity enhancement without bandshift is observed, indicating that MCPT binding to CT-DNA via external bonding mode notclassical intercalative interaction.(3) Circular dichroism (CD) absorption spectra showedthat MCPT induces a significant decrease in intensity of negative absorption of CT-DNA with slight red-shift in the wavelength, along with a slight enhancement on positiveabsorption intensity. Therefore, groove binding between MCPT with CT-DNA should exist.To sum up, MCPT binds primarily to the CT-DNA with groove bonding mode.
     In conclusion, MCPT showed strong antitumor activities against different cancer cellsthrough blocking DNA duplicate via Ternary compounds along with TopoisomeraseⅠ-DNA,binding to DNA with groove bonding mode and shearing DNA and inducing cancer cellsapoptosis.
引文
[1]周晶琳,陆迪,祝慧慧.喜树碱治疗肿瘤的进展[J].牡丹江医学院学报,2012(3):59-60.
    [2] Ulukan H, Swaan P W. Camptothecins: a review of their chemotherapeutic potential[J].Drugs,2002,62(14):2039-2057.
    [3]高华.抗癌药物喜树碱及其衍生物的研究概况[J].河北医药,2008(11):1786-1788.
    [4] Wall M, Wani M, Cook C, et al. Plant antitumor agents. Ⅰ. The isolation and structureof camptothecin, a novel alkaloidal leukemia and tumor inhibitor from Camptothecaacuminate[J]. J. Am. Chem. Soc.,1966,88(16):3888-3890.
    [5]刘观赛.喜树碱类生物碱的高效全合成[D].中国科学技术大学,2010.
    [6]耿海波,安丽平,陈力,等.抗癌药物喜树碱及其衍生物的研究进展[J].河北化工,2007(3):13-15.
    [7]赵亮,潘显道,刘红岩,等.取代喜树碱20S-羟基酯衍生物的合成和抗肿瘤活性[J].安徽医药,2006(6):405-409.
    [8]李明宗.喜树碱衍生物的合成及其抗肿瘤活性的研究[D].中国科学技术大学,2009.
    [9] Burke T G, Mi Z. The structural basis of camptothecin interactions with human serumalbumin: impact on drug stability[J]. J Med Chem,1994,37(1):40-46.
    [10]魏永锋,阎宏涛,李晓花.喜树碱异构体形态分布的研究[J].西北大学学报(自然科学版),2000(4):307-309.
    [11]冯建灿,张玉洁,谭运德,等.喜树与喜树碱开发利用研究[J].林业科学,2000(5).
    [12]赵斌,葛金芳,李俊.喜树碱抗肿瘤作用机制研究进展[J].安徽医药,2006(1):2-5.
    [13] Puri S C, Handa G, Bhat B A, et al. Separation of9-methoxycamptothecin andcamptothecin from Nothapodytes foetida by semipreparative HPLC[J]. J ChromatogrSci,2005,43(7):348-350.
    [14]代鲁平,宋春霞,邵先祥,等.抗癌药物喜树碱类衍生物的研究进展[J].中国药学杂志,2010(23):1813-1815.
    [15]刘玉琼.拓扑替康对HeLa细胞增殖与凋亡的影响[J].细胞与分子免疫学杂志,2011(4):465-466.
    [16]王芳.拓扑替康对HL-60细胞的增殖抑制及诱导凋亡的作用[D].郑州大学,2005.
    [17]田开熙,蒲淑萍,张军.拓扑替康体外对肝癌细胞HepG2增殖和凋亡的影响[J].重庆医学,2003(11):1517-1519.
    [18]姜涛,刘锟.拓扑替康对肺癌细胞生长周期的影响及诱导凋亡的作用机制[J].中国药理学通报,2002,18(6):642-645.
    [19]易晓芳.拓扑替康腹腔化疗治疗浆液性卵巢癌的实验研究[D].复旦大学,2004.
    [20]何芬,范海虹,邹俊涛,等.拓扑替康对鼻咽癌体外放射后拓扑异构酶Ⅰ基因mRNA表达水平的变化[J].中山大学学报(医学科学版),2006(S1):51-53.
    [21]唐丽萍,徐向英,娄阁,等.开普拓对人宫颈癌荷瘤裸鼠放射增敏作用的实验研究[J].中国现代医学杂志,2006(22):3368-3370.
    [22]颜玉蓉. HCPT诱导肝癌细胞凋亡前后线粒体/核蛋白质组变化的定量分析[D].重庆医科大学,2008.
    [23]付玉荣. HCPT诱导肝癌细胞线粒体凋亡的比较蛋白质组分析与AIF功能研究[D].重庆医科大学,2007.
    [24]邬喻.羟基喜树碱联合靶向Smac基因对前列腺癌细胞凋亡的影响[D].华中科技大学,2008.
    [25]袁哲锋.羟基喜树碱治疗神经母细胞瘤的研究[D].浙江大学,2009.
    [26]王莹,刘春英,郭源秩,等.羟基喜树碱对A549人肺腺癌细胞增殖的影响[J].中国中医药信息杂志,2007(11):35-36.
    [27]涂水平,江石湖,谭继宏,等.羟基喜树碱诱导胃癌细胞凋亡的作用机制初步研究[J].中华消化杂志,2001(05).
    [28]黄敏.新脂溶性喜树碱衍生物吉咪替康抗肿瘤作用及分子机制研究[D].中国科学院上海药物研究所中国科学院上海生命科学研究院上海药物研究所中国科学院上海生命科学研究院,2007.
    [29]谭慧心.拓扑异构酶Ⅰ抑制剂研究进展[J].中国药理学通报,2009(4):436-441.
    [30]许明录,汤波. DNA拓扑异构酶Ⅰ和Ⅱ的结构特性及抑制剂的研究进展[J].河南科技学院学报,2009(2):32-38.
    [31] Marchand C, Pourquier P, Laco G S, et al. Interaction of human nuclear topoisomerase Iwith guanosine quartet-forming and guanosine-rich single-stranded DNA and RNAoligonucleotides[J]. J Biol Chem,2002,277(11):8906-8911.
    [32]丁力.喜树碱诱导SMMC-7721肝癌细胞的蛋白质组学研究[D].第二军医大学,2008.
    [33] Kuo C C, Liu J F, Chang J Y. DNA repair enzyme, O6-methylguanine DNAmethyltransferase, modulates cytotoxicity of camptothecin-derived topoisomerase Iinhibitors [J]. J Pharmacol Exp Ther,2006,316(2):946-954.
    [34] Laco G S, Collins J R, Luke B T, et al. Human topoisomerase I inhibition: dockingcamptothecin and derivatives into a structure-based active site model[J]. Biochemistry,2002,41(5):1428-1435.
    [35]高燕,林莉萍,丁健.细胞周期调控的研究进展[J].生命科学,2005(4):318-322.
    [36]杨连君.细胞周期蛋白及其与肿瘤等疾病的关系[J].中国肿瘤生物治疗杂志,2003(3):223-225.
    [37] Agarwal M L, Taylor W R, Chernov M V. The p53Network[J]. J BiolChem,1998,273:1-4.
    [38] Gottlieb T M, Leal J F, Seger R, et al. Cross-talk between Akt, p53and Mdm2: possibleimplications for the regulation of apoptosis[J]. Oncogene,2002,21(8):1299-1303.
    [39] Gottlieb T M, Oren M. p53and apoptosis[J]. Semin Cancer Biol,1998,8:359-368.
    [40] Siliciano J D, Canman C E, Taya Y, et al. DNA damage induces phosphorylation of theamino terminus of p53[J]. Genes Dev,1997,11(24):3471-3481.
    [41] Lim D S, Kim S T, Xu B, et al. ATM phosphorylates p95/nbs1in an S-phase checkpointpathway[J]. Nature,2000,404(6778):613-617.
    [42]林景荣,刘晓明,包永明,等.喜树碱抑制HaCaT细胞增殖、诱导凋亡及对端粒酶活性的影响[J].中国皮肤性病学杂志,2006(10):586-588.
    [43]刘晓明.喜树异碱抗肿瘤和银屑病的活性及机制研究[D].大连理工大学,2006.
    [44] Li G, Bush J A, Ho V C. p53-dependent apoptosis in melanoma cells after treatmentwith camptothecin[J]. J Invest Dermatol,2000,114(3):514-519.
    [45] Stark G R, Taylor W R. Analyzing the G2/M checkpoint[J]. Methods MolBiol,2004,280:51-82.
    [46] Yin Y, Chen W, Tang C Y. NF-κ B, JNK and p53pathways are involved intubeimoside-1-induced apoptosis in HepG2cells with oxidative stress and G2/M cell cyclearrest[J]. Food and Chemical Toxicology,2011,49:3046-3054.
    [47] Ping Y H, Lee H C, Lee J Y, et al. Anticancer effects of low-dose10-hydroxycamptothecin in human colon cancer[J]. Oncol Rep,2006,15(5):1273-1279.
    [48] Abu B M, Mohamad M, Rahmat A, et al. Cytotoxicity, cell cycle arrest, and apoptosisin breast cancer cell lines exposed to an extract of the seed kernel of Mangifera pajang(bambangan)[J]. Food Chem Toxicol,2010,48(6):1688-1697.
    [49] Sen N, Das B B, Ganguly A, et al. Camptothecin induced mitochondrial dysfunctionleading to programmed cell death in unicellular hemoflagellate Leishmania donovani[J]. CellDeath Differ,2004,11(8):924-936.
    [50] Takemura H, Rao V A, Sordet O, et al. Defective Mre11-dependent activation of Chk2by ataxia telangiectasia mutated in colorectal carcinoma cells in response toreplication-dependent DNA double strand breaks[J]. J BiolChem,2006,281(41):30814-30823.
    [51] Zuco V, Benedetti V, Zunino F. ATM-and ATR-mediated response to DNA damageinduced by a novel camptothecin, ST1968[J]. Cancer Lett,2010,292(2):186-196.
    [52] Guchelaar H J, Vermes A, Vermes I, et al. Apoptosis: molecular mechanisms andimplications for cancer chemotherapy.[J]. Pharmacy world\&science: PWS,1997,19(3):119.
    [53]廖娜.黄花石蒜及臭马比木中诱导癌细胞凋亡成分及其机制分析[D].华中科技大学,2012.
    [54] Kim R, Tanabe K, Uchida Y, et al. Current status of the molecular mechanisms ofanticancer drug-induced apoptosis. The contribution of molecular-level analysis to cancerchemotherapy[J]. Cancer Chemother Pharmacol,2002,50(5):343-352.
    [55]朱秀敏.细胞凋亡的形态特征与分子机制研究进展[J].中国老年学杂志,2011,31(13):2595-2597.
    [56] Green D R. Apoptotic pathways: paper wraps stone blunts scissors[J].Cell,2000,102(1):1-4.
    [57] Thorburn A. Death receptor-induced cell killing[J]. Cellularsignalling,2004,16(2):139-144.
    [58] Johnstone R W, Ruefli A A, Lowe S W, et al. Apoptosis-A Link between CancerGenetics and Chemotherapy[J]. Cell,2002,108(2):153-164.
    [59] Chandra J, Samali A, Orrenius S. Triggering and modulation of apoptosis by oxidativestress[J]. Free radical biology and medicine,2000,29(3-4):323-333.
    [60] Szatrowski T P, Nathan C F. Production of large amounts of hydrogen peroxide byhuman tumor cells[J]. Cancer research,1991,51(3):794.
    [61] Suzuki Y, Imai Y, Nakayama H, et al. A serine protease, HtrA2, is released from themitochondria and interacts with XIAP, inducing cell death[J]. Mol Cell,2001,8(3):613-621.
    [62] Wang X. The expanding role of mitochondria in apoptosis[J]. GenesDev,2001,15(22):2922-2933.
    [63]陈兆聪,刘文励.癌症的基因治疗[M].武汉市:湖北科学技术出版社,2004.276.
    [64]陆华中. TNF-α与TNF受体超家族介导的信号传导[J].国外医学(分子生物学分册),1997(3):105-109.
    [65] Aggarwal B B. Signalling pathways of the TNF superfamily: a double-edged sword[J].Nat Rev Immunol,2003,3(9):745-756.
    [66] Chang H Y, Yang X. Proteases for cell suicide: functions and regulation of caspases[J].Microbiol Mol Biol Rev,2000,64(4):821-846.
    [67] Costa-Pereira A P, Mckenna S L, Cotter T G. Activation of SAPK/JNK bycamptothecin sensitizes androgen-independent prostate cancer cells to Fas-inducedapoptosis[J]. Br J Cancer,2000,82(11):1827-1834.
    [68] Liu J, Lin A. Role of JNK activation in apoptosis: a double-edged sword[J]. CellRes,2005,15(1):36-42.
    [69] Weston C R, Davis R J. The JNK signal transduction pathway[J]. Current Opinion inGenetics&Development,2002,12(1):14-21.
    [70] El B H, Morjani H, Greffe Y, et al. Role of JNK/ATF-2pathway in inhibition ofthrombospondin-1(TSP-1) expression and apoptosis mediated by doxorubicin andcamptothecin in FTC-133cells[J]. Biochim Biophys Acta,2011,1813(5):695-703.
    [71] Lee S, Lee H S, Baek M, et al. MAPK signaling is involved in camptothecin-inducedcell death[J]. Mol Cells,2002,14(3):348-354.
    [72] Zhou A, Scoggin S, Gaynor R B, et al. Identification of NF-kappa B-regulated genesinduced by TNFalpha utilizing expression profiling and RNA interference[J].Oncogene,2003,22(13):2054-2064.
    [73] Huang T T, Wuerzberger-Davis S M, Seufzer B J, et al. NF-kappaB activation bycamptothecin. A linkage between nuclear DNA damage and cytoplasmic signaling events[J].J Biol Chem,2000,275(13):9501-9509.
    [74] Aoki Y, Kurata H, Watanabe M, et al. Combination chemotherapy with irinotecanhydrochloride (CPT-11) and mitomycin C in platinum-refractory ovarian cancer[J]. Am JClin Oncol,2004,27(5):461-464.
    [75] Takada Y, Fang X, Jamaluddin M S, et al. Genetic deletion of glycogen synthasekinase-3beta abrogates activation of IkappaBalpha kinase, JNK, Akt, and p44/p42MAPKbut potentiates apoptosis induced by tumor necrosis factor[J]. J BiolChem,2004,279(38):39541-39554.
    [76] Thornberry N A, Lazebnik Y. Caspases: enemies within[J].Science,1998,281(5381):1312-1316.
    [77]陈旭明,祝美姣,等. Fas凋亡途径与肿瘤的免疫逃避[J].河北医学,2001,7(7):669-672.
    [78]胡文晋,胡巍,方芸.喜树碱类药物抗肿瘤机制研究进展[J].中国药房,2012,23(27):2581-2584.
    [79] Shao R G, Cao C X, Nieves-Neira W, et al. Activation of the Fas pathwayindependently of Fas ligand during apoptosis induced by camptothecin in p53mutant humancolon carcinoma cells[J]. Oncogene,2001,20(15):1852-1859.
    [80]王小平曹立明.遗传算法-理论、应用及软件实现[M].西安西安交通大学出版社,2002.
    [81]雷英杰等. MATLAB遗传算法工具箱及应用[M].西安市:西安电子科技大学出版社,2005.261.
    [82]范开,罗岚,刘洪洪.肿瘤坏死因子诱导凋亡配体TRAIL研究进展[J].重庆理工大学学报(自然科学版),2011(2):47-52.
    [83]高显峰. TRAIL联合喜树碱诱导胰腺癌细胞凋亡的研究[D].吉林大学,2010.
    [84]黄涛. PTEN、Fas、TRAIL介导的骨肉瘤细胞凋亡的实验研究[D].中国医科大学,2005.
    [85]李娜,刁路明,邹祖玉. TRAIL与羟基喜树碱联用协同杀伤人肺腺癌A549细胞[J].肿瘤防治杂志,2005(13):10-13.
    [86]林高通,王晨明,莫菊彩,等.伊立替康联合TRAIL对胃癌细胞SGC7901凋亡的影响[J].海峡药学,2012(10).
    [87]吕国悦. TRAIL联合化疗药物诱导肝癌细胞凋亡的实验研究[D].吉林大学,2007.
    [88] Chai J, Du C, Wu J W, et al. Structural and biochemical basis of apoptotic activation bySmac/DIABLO[J]. Nature,2000,406(6798):855-862.
    [89] Sanchez-Alcazar J A, Ault J G, Khodjakov A, et al. Increased mitochondrialcytochrome c levels and mitochondrial hyperpolarization precede camptothecin-inducedapoptosis in Jurkat cells[J]. Cell Death Differ,2000,7(11):1090-1100.
    [90] Wang L M, Li Q Y, Zu Y G, et al. Anti-proliferative and pro-apoptotic effect of CPT13,a novel camptothecin analog, on human colon cancer HCT8cell line[J]. Chem BiolInteract,2008,176(2-3):165-172.
    [91] Kokoszka J E, Waymire K G, Levy S E, et al. The ADP/ATP translocator is notessential for the mitochondrial permeability transition pore[J]. Nature,2004,427:461-465.
    [92] Hu Z, Guo X, Yu Q, et al. Down-regulation of adenine nucleotide translocase3and itsrole in camptothecin-induced apoptosis in human hepatoma QGY7703cells[J]. FEBSLett,2009,583(2):383-388.
    [93]席小莉.生物小分子与DNA相互作用的光谱及二维核磁的研究[D].山西大学,2008.
    [94]陈晓英.喜树碱与生物大分子相互作用的光谱研究[D].郑州大学,2010.
    [95]邢卫卫.蒽环类药物与DNA相互作用研究[D].河南师范大学,2011.
    [96]陈仪娜. DNA与生物小分子相互作用的研究[D].西北师范大学,2007.
    [97]鲁慧丽.稀土及过渡金属药物配合物与核酸作用机理的研究[D].兰州大学,2007.
    [98]杨源源.新型苊并杂环类化合物—与DNA的作用模式和抗癌活性的关系[D].大连理工大学,2007.
    [99]陈建忠,陈凯先,蒋华良,等. AT-1840类似物与寡聚双螺旋核苷酸相互作用的理论研究[J].自然科学进展,1997(2):68-75.
    [100] Sarkar D, Das P, Basak S, et al. Binding interaction of cationic phenazinium dyes withcalf thymus DNA: a comparative study[J]. J Phys Chem B,2008,112(30):9243-9249.
    [101] Rauf S, Gooding J J, Akhtar K, et al. Electrochemical approach of anticancerdrugs--DNA interaction[J]. J Pharm Biomed Anal,2005,37(2):205-217.
    [102] Zhou Y, Li Y. Studies of the interaction between poly(diallyldimethyl ammoniumchloride) and DNA by spectroscopic methods[J]. Colloids and Surfaces A: Physicochemicaland Engineering Aspects,2004,233(1–3):129-135.
    [103] Moore M H, Hunter W N, D'Estaintot B L, et al. DNA-drug interactions. The crystalstructure of d(CGATCG) complexed with daunomycin[J]. J Mol Biol,1989,206(4):693-705.
    [104] Czarny A, Boykin D W, Wood A A, et al. Analysis of van der Waals and ElectrostaticContributions in the Interactions of Minor Groove Binding Benzimidazoles with DNA[J]. J.Am. Chem. Soc,1995,117(16):4716-4717.
    [105]于岚岚,杨冉,白希希,等.喜树碱与DNA相互作用的光谱学研究[J].发光学报,2011(11):1197-1203.
    [106] Strel'Tsov S A, Mikheikin A L, Grokhovskii S L, et al.[Interaction of topotecan, DNAtopoisomerase I inhibitor, with double-stranded polydeoxyribonucleotides. III. Binding at theminor groove][J]. Mol Biol (Mosk),2002,36(3):511-524.
    [107] Kumar C V, Asuncion E H. DNA binding studies and site selective fluorescencesensitization of an anthryl probe[J]. J. Am. Chem. Soc,1993,115(19):8547-8553.
    [108] Facompre M, Carrasco C, Colson P, et al. DNA binding and topoisomerase I poisoningactivities of novel disaccharide indolocarbazoles[J]. Mol Pharmacol,2002,62(5):1215-1227.
    [109]李志良,陈建华,章开诚,等. Schiff碱非铂抗癌络合物初步筛选的荧光法研究[J].中国科学(B辑化学生命科学地学),1991(11):1193-1200.
    [110]林辉祥,李志良,戴桂林,等.14种钯抗癌络合物初步筛选的荧光法研究[J].中国科学(B辑化学生命科学地学),1992(7):730-735.
    [111]郭东方,何疆,曾正志.肉桂酸-邻菲罗啉-稀土三元配合物对DNA作用的光谱研究[J].中国稀土学报,2004(1):55-60.
    [112]赵亮亮.纳米粒子与生物大分子相互作用的研究及其分析应用[D].山东大学,2008.
    [113] Zhang Z, Huang W, Tang J, et al. Conformational transition of DNA induced bycationic lipid vesicle in acidic solution: spectroscopy investigation[J]. BiophysChem,2002,97(1):7-16.
    [114] Zhou Y, Li Y. Studies of interaction between poly(allylamine hydrochloride) anddouble helix DNA by spectral methods[J]. Biophys Chem,2004,107(3):273-281.
    [115] Norden B, Kurucsev T. Analysing DNA complexes by circular and linear dichroism[J].J Mol Recognit,1994,7(2):141-155.
    [116]刘振佳,司伊康,陈晓光.圆二色谱测定技术在小分子化合物与DNA相互作用研究中的应用[J].药学学报,2010(12):1478-1483.
    [117] Garbett N C, Ragazzon P A, Chaires J B. Circular dichroism to determine bindingmode and affinity of ligand-DNA interactions[J]. Nat Protoc,2007,2(12):3166-3172.
    [118] Bomgaars L, Berg S L, Blaney S M. The development of camptothecin analogs inchildhood cancers[J]. Oncologist,2001,6(6):506-516.
    [119] Wu S F, Hsieh P W, Wu C C, et al. Camptothecinoids from the seeds of TaiwaneseNothapodytes foetida[J]. Molecules,2008,13(6):1361-1371.
    [120] Zhou B N, Hoch J M, Johnson R K, et al. Use of COMPARE analysis to discover newnatural product drugs: isolation of camptothecin and9-methoxycamptothecin from a newsource[J]. J Nat Prod,2000,63(9):1273-1276.
    [121] Liao N, Zhang P, Ao M, et al.9-methoxycamptothecin from Nothapodytes foetidainduces apoptosis in murine sarcoma S180cells[J]. Z Naturforsch C,2011,66(9-10):471-476.
    [122] Shweta S, Zuehlke S, Ramesha B T, et al. Endophytic fungal strains of Fusariumsolani, from Apodytes dimidiata E. Mey. ex Arn (Icacinaceae) produce camptothecin,10-hydroxycamptothecin and9-methoxycamptothecin[J].Phytochemistry,2010,71(1):117-122.
    [123]赵卫红等.细胞凋亡[M].郑州市:河南医科大学出版社,1997.275.
    [124]王顺祥.肿瘤酶学研究[M].北京市:中国科学技术出版社,1996.393.
    [125]司徒镇强,吴军正.细胞培养[M].1.北京:世界图书出版公司,2007.186.
    [126] Wu T S, Leu Y L, Hsu H C, et al. Constituents and cytotoxic principles ofNothapodytes foetida[J]. Phytochemistry,1995,39(2):383-385.
    [127]贾月改,楼江燕.喜树碱类衍生物在卵巢癌治疗中的进展[J].华西医学,2012(4):144-148.
    [128]王薇,马丁.拓扑替康在卵巢癌治疗中的新进展[J].国外医学.妇幼保健分册,2003(6):408-410.
    [129] Coleman R L. Emerging role of topotecan in front-line treatment of carcinoma of theovary[J]. Oncologist,2002,7Suppl5:46-55.
    [130] Vecchione F, Fruscio R, Dell'Anna T, et al. A phase II clinical trial of topotecan andcarboplatin in patients with newly diagnosed advanced epithelial ovarian cancer[J]. Int JGynecol Cancer,2007,17(2):367-372.
    [131] Morris R, Munkarah A. Alternate dosing schedules for topotecan in the treatment ofrecurrent ovarian cancer[J]. Oncologist,2002,7Suppl5:29-35.
    [132] Sugiyama T, Yakushiji M, Ochiai K, et al. Japanese ovarian trials: focus onirinotecan[J]. Oncology (Williston Park),2003,17(5Suppl5):29-33.
    [133]于荣,柳庆玲.羟基喜树碱腹腔灌注治疗卵巢癌腹水24例[J].菏泽医学专科学校学报,2006(1):13.
    [134]宋颖秋,伍钢,李贵玲,等.伊立替康增敏对宫颈癌放疗中细胞凋亡和增殖及VEGF表达的影响[J].中国肿瘤临床与康复,2008,15(5):401-404.
    [135]唐丽萍,徐向英,娄阁,等.拓扑替康对宫颈癌细胞系HeLa放射增敏作用的研究[J].现代妇产科进展,2006,15(5):332-335.
    [136] Sugiyama T, Nishida T, Kumagai S, et al. Combination therapy with irinotecan andcisplatin as neoadjuvant chemotherapy in locally advanced cervical cancer[J]. Br JCancer,1999,81(1):95-98.
    [137]王常玉,马丁,朱涛,等.盐酸伊立替康联合顺铂方案治疗宫颈癌的临床研究[J].中华医学杂志,2005(30):2104-2108.
    [138] Tian Z, An N, Zhou B, et al. Cytotoxic diarylheptanoid induces cell cycle arrest andapoptosis via increasing ATF3and stabilizing p53in SH-SY5Y cells[J]. CancerChemother Pharmacol,2009,63(6):1131-1139.
    [139] Lapillonne H, Konopleva M, Tsao T, et al. Activation of peroxisomeproliferator-activated receptor γ by a novel synthetic triterpenoid2-cyano-3,12-dioxooleana-1,9-dien-28-oic acid induces growth arrest and apoptosis in breast cancercells_x000A_[J]. Cancer research,2003,63(18):5926.
    [140] Monti P, Leone B E, Marchesi F, et al. The CC Chemokine MCP-1/CCL2inPancreatic Cancer Progression:Regulation of Expression and Potential Mechanisms o fAntimalignant Activity[J]. Cancer research,2003,63(21):7451.
    [141] Kikuno N, Shiina H, Urakami S, et al. Genistein mediated histone acetylation anddemethylation activates tumor suppressor genes in prostate cancer cells[J]. InternationalJournal of Cancer,2008,123(3):552-560.
    [142] Itoh M, Murata T, Suzuki T, et al. Requirement of STAT3activation for maximalcollagenase-1(MMP-1) induction by epidermal growth factor and malignant characteristicsin T24bladder cancer cells[J]. Oncogene,2006,25(8):1195-1204.
    [143] Jiang N, Zhou L Q, Zhang X Y. Downregulation of the nucleosome-binding protein1(NSBP1) gene can inhibit the in vitro and in vivo proliferation of prostate cancer cells[J].Asian J Androl,2010,12(5):709-717.
    [144] Zangemeister-Wittke U, Leech S H, Olie R A, et al. A novel bispecific antisenseoligonucleotide inhibiting both bcl-2and bcl-xL expression efficiently induces apoptosis intumor cells[J]. Clin Cancer Res,2000,6(6):2547-2555.
    [145] Gonzalez M S, De Brasi C D, Bianchini M, et al. BAX/BCL-XL gene expression ratioinversely correlates with disease progression in chronic myeloid leukemia[J]. Blood CellsMol Dis,2010,45(3):192-196.
    [146] Ahr A, Holtrich U, Solbach C, et al. Molecular classification of breast cancer patientsby gene expression profiling[J]. The Journal of pathology,2001,195(3):312-320.
    [147] Das H, Koizumi T, Sugimoto T, et al. Quantitation of Fas and Fas ligand geneexpression in human ovarian, cervical and endometrial carcinomas using real-timequantitative RT-PCR[J]. Br J Cancer,2000,82(10):1682-1688.
    [148] Stordeur P, Poulin L F, Craciun L, et al. Cytokine mRNA quantification by real-timePCR[J]. Journal of Immunological Methods,2002,259(1):55-64.
    [149] Jean S, Bideau C, Bellon L, et al. The expression of genes induced in me lanocytes byexposure to365-nm UVA: study by cDNA arrays and real-time quantitative RT-PCR[J].Biochim Biophys Acta,2001,1522(2):89-96.
    [150] van Engeland M, Nieland L J, Ramaekers F C, et al. Annexin V-affinity assay: areview on an apoptosis detection system based on phosphatidylserine exposure[J].Cytometry,1998,31(1):1-9.
    [151]徐芝勇.细胞内活性氧与肿瘤[J].生物学通报,2004(9):24-25.
    [152] Ping Y H, Lee H C, Lee J Y, et al. Anticancer effects of low-dose10-hydroxycamptothecin in human colon cancer[J]. Oncol Rep,2006,15(5):1273-1279.
    [153] Harada K, Ogden R G. An overview of the cell cycle arrest protein, p21WAF1[J]. OralOncology,2000,36:3-7.
    [154] Sorby L A, Andersen S N, Bukholm I R, et al. Evaluation of suitable reference genesfor normalization of real-time reverse transcription PCR analysis in colon cancer[J]. J ExpClin Cancer Res,2010,29:144.
    [155]何泽锋.三氧化二砷诱导人肺癌细胞株A-549凋亡和胀亡的实验研究[D].华中科技大学,2007.
    [156]翟顺生,赵贵先,张志会,等.活性氧(ROS)在三氧化二砷诱导人肝癌细胞株HepG2凋亡中的作用[J].农垦医学,2009,31(5):385-389.
    [157]章尧,高绪锋,陈昌杰,等.三氧化二砷诱导HL-60细胞凋亡过程中ROS、NF-kB和C-IAP2的变化[J].癌变·畸变·突变,2008,20(5):371-375.
    [158]王玉,孙黎光,夏春辉. Caspase介导的Fas凋亡途径[J].世界华人消化杂志,2006(36):3439-3442.
    [159]张勤丽,牛侨.细胞凋亡机制概述[J].环境与职业医学,2007,24(1):102-107.
    [160] Zhang Y, Fujita N, Tsuruo T. Caspase-mediated cleavage of p21Waf1/Cip1convertscancer cells from growth arrest to undergoing apoptosis[J]. Oncogene,1999,18(5):1131-1138.
    [161] Li H, Zhu H, Xu C J, et al. Cleavage of BID by caspase8mediates the mitochondrialdamage in the Fas pathway of apoptosis[J]. Cell,1998,94(4):491-501.
    [162] Vogelstein B, Lane D, Levine A J. Surfing the p53network[J]. Nature,2000,408(6810):307-310.
    [163] Zegura B, Gajski G, Straser A, et al. Cylindrospermopsin induced DNA damage andalteration in the expression of genes involved in the response to DNA damage, apoptosis andoxidative stress[J]. Toxicon,2011,58(6-7):471-479.
    [164] Certo M, Del G M V, Nishino M, et al. Mitochondria primed by death signalsdetermine cellular addiction to antiapoptotic BCL-2family members[J]. CancerCell,2006,9(5):351-365.
    [165]杨林. Bcl-xl阻断肿瘤坏死因子α诱导的caspase8活化及细胞凋亡[J].中华肝脏病杂志,2005(4):58-61.
    [166] Moon D O, Kim M O, Kang S H, et al. Sulforaphane suppresses TNF-alpha-mediatedactivation of NF-kappaB and induces apoptosis through activation of reactive oxygenspecies-dependent caspase-3[J]. Cancer Lett,2009,274(1):132-142.
    [167] Huang Y, Fan W. IkappaB kinase activation is involved in regulation ofpaclitaxel-induced apoptosis in human tumor cell lines[J]. Mol Pharmacol,2002,61(1):105-113.
    [168] Habraken Y, Piret B, Piette J. S phase dependence and involvement of NF-kappaBactivating kinase to NF-kappaB activation by camptothecin[J]. BiochemPharmacol,2001,62(5):603-616.
    [169] Papachristou D J, Batistatou A, Sykiotis G P, et al. Activation of the JNK-AP-1signaltransduction pathway is associated with pathogenesis and progression of humanosteosarcomas[J]. Bone,2003,32(4):364-371.
    [170] Deng T, Karin M. c-Fos transcriptional activity stimulated by H-Ras-activated proteinkinase distinct from JNK and ERK[J]. Nature,1994,371(6493):171-175.
    [171] Nagata S, Golstein P. The Fas death factor[J]. Science,1995,267(5203):1449-1456.
    [172] Makin G, Hickman J A. Apoptosis and cancer chemotherapy[J]. Cell and tissueresearch,2000,301(1):143-152.
    [173] Micheau O, Solary E, Hammann A, et al. Sensitization of cancer cells treated withcytotoxic drugs to fas-mediated cytotoxicity[J]. J Natl Cancer Inst,1997,89(11):783-789.
    [174] Tillman D M, Petak I, Houghton J A. A Fas-dependent component in5-fluorouracil/leucovorin-induced cytotoxicity in colon carcinoma cells[J]. Clin Cancer Res,1999,5(2):425-430.
    [175] Xiao F, Gao W, Wang X, et al. Amplification activation loop between caspase-8and-9dominates artemisinin-induced apoptosis of ASTC-a-1cells[J]. Apoptosis,2012,17(6):600-611.
    [176] Shi Y Q, Wang Y P, Song Y, et al. p,p'-DDE induces testicular apoptosis inprepubertal rats via the Fas/FasL pathway[J]. Toxicol Lett,2010,193(1):79-85.
    [177] Lin C F, Hsieh P C, Lu W D, et al. A series of enediynes as novel inhibitors oftopoisomerase I[J]. Bioorg Med Chem,2001,9(7):1707-1711.
    [178] Kase S, Osaki M, Honjo S, et al. A selective cyclooxygenase-2inhibitor, NS398,inhibits cell growth and induces cell cycle arrest in the G2/M phase in human esophagealsquamous cell carcinoma cells[J]. Journal of Experimental and Clinical CancerResearch,2004,23:301-308.
    [179] Liu Y C, Chen Z F, Liu L M, et al. Divalent later transition metal complexes of thetraditional chinese medicine (TCM) liriodenine: coordination chemistry, cytotoxicity andDNA binding studies[J]. Dalton Trans,2009(48):10813-10823.
    [180] Serbetci T, Genes C, Depauw S, et al. Synthesis and biological evaluation ofdialkylaminoalkylamino benzo[c][1,7] and [1,8]phenanthrolines as antiproliferative agents[J].Eur J Med Chem,2010,45(6):2547-2558.
    [181] Riva E, Comi D, Borrelli S, et al. Synthesis and biological evaluation of newcamptothecin derivatives obtained by modification of position20[J]. Bioorg MedChem,2010,18(24):8660-8668.
    [182]刘潇,王汝冰,符伟,等.拓扑异构酶I抑制剂研究进展[J].药学进展,2009(7):311-320.
    [183] Kjeldsen E, Mollerup S, Thomsen B, et al. Sequence-dependent effect of camptothecinon human topoisomerase I DNA cleavage[J]. J Mol Biol,1988,202(2):333-342.
    [184] Hertzberg R P, Busby R W, Caranfa M J, et al. Irreversible trapping of theDNA-topoisomerase I covalent complex[J]. The Journal of Biological Chemistry,1990,265(31):19287-19295.
    [185] Hertzberg R P, Caranfa M J, Hecht S M. On the mechanism of topoisomerase Iinhibition by camptothecin: evidence for binding to an enzyme-DNA complex[J].Biochemistry,1989,28(11):4629-4638.
    [186] Thomsen B, Mollerup S, Bonven B J, et al. Seque nce specificity of DNAtopoisomerase I in the presence and absence of camptothecin[J]. EMBOJ,1987,6(6):1817-1823.
    [187] Yao S, Murali D, Seetharamulu P, et al. Topotecan lactone selectively binds to double-and single-stranded DNA in the absence of topoisomerase I[J]. CancerRes,1998,58(17):3782-3786.
    [188] Leteurtre F, Fesen M, Kohlhagen G, et al. Specific interaction of camptothecin, atopoisomerase I inhibitor, with guanine residues of DNA detected by photoactivation at365nm[J]. Biochemistry,1993,32(34):8955-8962.
    [189]王汝冰,刘潇. DNA拓扑异构酶Ⅱ抑制剂研究进展[J].海峡药学,2009(4):1-5.
    [190] Vijayalakshmi R, Kanthimathi M, Subramanian V, et al. Interaction of DNA with[Cr(Schiff base)(H2O)2]ClO4[J]. Biochimica et Biophysica Acta (BBA)-General Subjects,2000,1475(2):157-162.
    [191]霍瑞娜.药物活性小分子与DNA相互作用的研究[D].河南师范大学,2012.
    [192] Tabassum S, Al-Asbahy W M, Afzal M, et al. Molecular drug design, synthesis andstructure elucidation of a new specific target peptide based metallo drug for cancerchemotherapy as topoisomerase I inhibitor[J]. Dalton Trans,2012,41(16):4955-4964.
    [193] Long E C, Barton J K. On demonstrating DNA intercalation[J]. Acc. Chem. Res,1990,23(9):271-273.
    [194] Han G, Yang P. Synthesis and characterization of water-insoluble and water-solubledibutyltin(IV) porphinate complexes based on the tris(pyridinyl)porphyrin moiety, theiranti-tumor activity in vitro and interaction with DNA[J]. J Inorg Biochem,2002,91(1):230-236.
    [195] Barton J K, Danishefsky A T, Goldberg J M. Tris(phenanthroline)ruthenium(II)stereoselectivity in binding to DNA[J]. J.Am.Chem.Soc,1984,106:2172-2176.
    [196] Tysoe S A, Morgan R J, Baker A, et al. Spectroscopic investigation of differentialbinding modes of Δ-and Λ-Ru(bpy)2(ppz)2+with calf thymus DNA[J]. J.Phys.Chem,1993,97(8):1707-1711.
    [197] Wang Y, Yang Z Y, Chen Z N. Synthesis, characterization and DNA-bindingproperties of four Zn(II) complexes with bis(pyrrol-2-yl-methyleneamine) ligands[J]. BioorgMed Chem Lett,2008,18(1):298-303.
    [198]王峰,黄薇,唐波.姜黄素-La~(3+)-CTMAB-核酸体系的荧光增强效应及其应用[J].分析化学,2012(1):18-23.
    [199] Song Y M, Zhang X R, Wu Q. The interactions between berberine and ethidiumbromide with DNA[J]. Journal of Northwest Normal University(Natural Science),2006,42(5):63-67.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700