猪源大肠杆菌和沙门氏菌耐药表型与基因型的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近十几年来,为防治疾病及促进生长,大量抗菌药物应用于集约化养猪生产中。抗菌药物长期、广泛和不合理使用以及抗菌药物的选择压力等原因使大肠杆菌和沙门氏菌耐药菌株不断增多、耐药谱不断扩大,有的菌株甚至对尚未用于临床的新型抗菌药物也表现出了耐药性。因此,积极开展猪源大肠杆菌和沙门氏菌耐药性监测,阐明耐药表型与基因型特征,将有利于遏制大肠杆菌和沙门氏菌耐药性发生发展,优化抗菌药物的合理应用。
     本文采集浙江省规模化猪场患病猪只的病料,经细菌分离纯化、致病性试验、生化试验和PCR鉴定等,共获得79株病原性大肠杆菌和35株沙门氏菌。通过WHO推荐的Kirby-Bauer (K-B)法测定其对21种抗菌药物的耐药性。结果表明,大肠杆菌仅对头孢噻肟/克拉维酸、头孢噻肟和多粘菌素B敏感性较高,而对大部分抗菌药物表现出较高的耐药性,其中对苯唑西林、利福平、复方新诺明、强力霉素、羧苄西林、氨苄西林、阿莫西林、链霉素及氯霉素的耐药率均超过90%,其次是对庆大霉素、环丙沙星、新霉素、恩诺沙星、诺氟沙星、阿莫西林/克拉维酸及氟苯尼考的耐药率均超过50%。进一步的耐药谱分析表明,79株大肠杆菌分离株全部为耐药菌,其中以对16~18种抗菌药物多重耐药最为突出(60.8%,48/79);相对于大肠杆菌,沙门氏菌除了对苯唑西林和利福平耐药率为100%外,对其余抗菌药物的耐药率均低于50%。其中对头孢噻肟/克拉维酸、头孢噻肟、阿米卡星、诺氟沙星及多黏菌素B的敏感率均为100%,对庆大霉素、环丙沙星、阿莫西林/克拉维酸、壮观霉素、氟苯尼考、氨苄西林、新霉素和复方新诺明的敏感率超过80%,对恩诺沙星和氯霉素的敏感率超过60%。35株沙门氏菌虽然同样对1种或多种抗生素耐药,但多重耐药频数显著低于大肠杆菌,主要表现为对2~4种抗菌药物多重耐药。
     Touch-down PCR扩增随机挑选的26株病原性大肠杆菌和35株沙门氏菌分离株,检测超广谱β-内酰胺酶基因(extended-spectrum beta-lactamases, ESBLs) (TEM, SHV, OXA)、氨基糖苷类药物耐药基因(aadA1、aadA2、aadB、aadD、aph(3')-Ⅱa、aacC2、aacC4、aac(3)-Ⅰa、aac(3)-Ⅱa、磺胺类耐药基因(sulⅠ、sulⅡ、sulⅢ)、氯霉素类耐药基因(Cat1、Cat2、CmlA、CmlB、Flor)、四环素类耐药基因(tetA、tetB、tetC、tetD、tetE、tetG),结果表明,26株大肠杆菌中耐药基因sulⅡ、TEM、aph(3')-Ⅱa、aacC2、Cat1、Cat2、aac(3)-Ⅱa、tetB、tetE、aadA2和sul I较为普遍,检出率率分别为96.2%、88.5%、80.8%、69.2%、69.2%、69.2%、65.4%、65.4%、61.5%、57.7%和50%,耐药基因Flor、CmlA、aadA1、tetA、sulⅢ和aadB的检出率分别为34.6%、26.9%、19.2%、19.2%、11.5%和3.9%。未能检测到SHV、OXA、aadD、aacC4、aac(3)-Ⅰa、tetC、tetD、tetG和CmlB基因。沙门氏菌含有的耐药基因类型没有大肠杆菌多,且耐药基因的检出率较低,tetA、TEM、sulⅡ、aacC2、Cat1、Cat2、tetB、aph(3')-Ⅱa、sulⅠ、aadA2、aac(3)-Ⅱa和tetG的检出率分别为28.6%、20%、20%、17.1%、17.1%、17.1%、11.4%、8.6%、8.6%、2.9%、2.9%和2.9%。未能检测到SHV、OXA、aadA1、aadB、aadD、aacC4、aac(3)-Ⅰa、sulⅢ、tetC、tetD、tetE、CmlA、CmlB、Flor基因。
     分别采用微量肉汤稀释法和琼脂二倍稀释法测定恩诺沙星和盐酸环丙沙星对由K-B法筛选出的猪源沙门氏菌敏感株的最低抑菌浓度(minimum inhibitory concentration,MIC)和防突变浓度(mutant prevention concentration,MPC),并计算耐药选择指数(selection index, SI=MPC/MIC)。试验结果表明,恩诺沙星和盐酸环丙沙星对沙门氏菌的MIC分别为0.031~0.5μg/mL和0.031~0.13μg/mL,敏感率均为100%,与K-B法试验结果一致。恩诺沙星和盐酸环丙沙星对敏感菌的MPC分别分布于1~4μg/mL和0 .25~1μg/mL,盐酸环丙沙星对沙门氏菌的SI值(8~16)低于恩诺沙星(16~32),因此认为盐酸环丙沙星不仅抗菌活性较高,其防耐药突变能力也强于恩诺沙星。
     本研究表明,浙江省规模化猪场猪源病原性大肠杆菌的耐药性已相当严重,耐药基因种类多、检出率高;而猪源沙门氏菌的耐药程度相对较低,对很多抗菌药物的敏感性高,耐药基因种类较少,检出率低。恩诺沙星和盐酸环丙沙星对猪源沙门氏菌的防突变能力有一定差异,因此,为减少和控制耐药性的发生发展,在临床使用抗菌药物时不仅要参考抗菌药物对病原菌的MIC,还要重视菌株的MPC及突变选择窗(mutant selection window, MSW),以防止耐药突变菌选择及优势生长。
Since recent decade ago,many antimicrobials have been extensively used in pig production to prevent infectious diseases and improve growth. The wide and irrational application of the antimicrobials resulted in heavy antibiotic selection pressure, and increasingly severe bacterial resistance and multi-resistance to pathogenic Escherichia coli and Salmonella. Some clinical isolates could survive even in several new drugs which even not yet introduced in clinic.Therefore,it's wise and favorable to monitor the drug resistance, characterize antimicrobial resistance both phenotype and genotype, so that better contain the development and dissemination of pathogenic E. coli and Salmonella, and more rationally administer regimens of antimicrobial agents.
     Samples from sick piglets in intensive pig farms of Zhejiang Province were collected for isolates of pathogenic E. coli and Salmonella. Through biochemical tests, PCR and virulence tests in mice, total of 79 pathogenic E. coli isolates and 35 Salmonella isolates were identified. The susceptibility testing was carried out by Kirby-Bauer(K-B) method according to CLSI(Clinical and Laboratory Standards Institute) against 21 commonly used antimicrobials, respectively. The results indicated that, apart from great sensitivity to cefotaxime/clavulanate, cefotaxime and polymyxin B,the E. coli isolates exhibited severe resistance to the majority of antimicrobials.The resistance frequencies of oxacillin, rifampicin, sulphamethoxazole and trimethoprim, doxycycline, carbenicillin, ampicillin, amoxicillin, streptomycin and chloromycetin were all above 90%, and the resistance frequencies of gentamycin, ciprofloxacin, neomycin, enrofloxacin, norfloxacin, amoxicillin/clavulanate and florfenicol were also over 50%.The resistance patterns analysis demonstrated that all the E. coli isolates were resistant to 1 and more antimicrobials, and the majority of the isolates are resistant to 16-18 antimicrobials(60.8%,48/79).Compared with E. coli, the Salmonella isolates are sensitive to most antimicrobials except for oxacillin and rifampicin. They showed totally sensitive to cefotaxime/clavulanate, cefotaxime, amikacin, norfloxacin and polymyxin B.The sensitivity frequencies of gentamycin, ciprofloxacin, amoxicillin/clavulanate, spectinomycin, florfenicol,ampicillin, neomycin and sulphamethoxazole and trimethoprim were over 80%,and the sensitivity frequencies of enrofloxacin and chloromycetin were also over 60%.Though the 35 Salmonella isolates were also resistant to 1 and more antimicrobials, the multidrug resistance was less severe than E. coli isolates, and the majority of the isolates were resistant to 2-4 antimicrobials.
     The ESBLs(extended-spectrum beta-lactamases) genes(TEM, SHV, OXA), aminoglycoside-resistant genes(aadA1,aadA2, aadB, aadD, aph(3')-Ⅱa, aacC2, aacC4, aac(3)-Ⅰa, aac(3)-Ⅱa), sulfonamide-resistant genes (sulⅠ, sulⅡ, sulⅢ), chloramphenicol-resistant genes(Cat1, Cat2, CmlA, CmlB, Flor), tetracycline-resistant genes(tetA, tetB, tetC, tetD, tetE, tetG) were amplified by Touch-down PCR and detected by agarose gel electrophoresis, respectively. The results showed that the following antimicrobial resistance genes were more prevalent among the 26 E. coli isolates randomly selected:sulⅡ(96.2%), TEM(88.5%), aph(3')-Ⅱa(80.8%), aacC2(69.2%), Cat1(69.2%), Cat2(69.2%), aac(3)-Ⅱa(65.4%), tetB(65.4%), tetE(61.5%), aadA2(57.1%), sulⅠ(50%). The positive rate of the gene Flor, CmlA, aadA1, tetA, sulⅢand aadB was 34.6%,26.9%,19.2%,19.2%,11.5% and 3.9%, respectively. However, SHV, OXA, aadD, aacC4, aac(3)-Ⅰa, tetC, tetD, tetG and CmlB genes were not detected. There were not so many resistance genes in the 35 Salmonella isolates. The positive rate of the gene was lower than that of E. coli isolates:tetA(28.6%), TEM(20%), sulⅡ(20%), aacC2(17.1%), Car1(17.1%), Cat2(17.1%), tetB(11.4%), aph(3')-Ⅱa(8.6%), sulⅠ(8.6%), aadA2(2.9%), aac(3)-Ⅱa(2.9%), tetG(2.9%). However, SHV, OXA, aadA1, aadB, aadD, aacC4, aac(3)-Ⅰa, sulⅢ, tetC, tetD, tetE, CmlA, CmlB and Flor genes were not detected.
     The minimum inhibitory concentration (MIC) and mutant prevention concentration (MPC) of enrofloxacin and ciprofloxacin hydrochloride against sensitive Salmonella isolates from piglets, which were confirmed by K-B method, were determined by microdilution and agar dilution methods,respectively.The MICs of enrofloxacin and ciprofloxacin hydrochlorid were 0.031-0.5μg/mL and 0.031-0.13μg/mL, and the sensitivity rates were both 100%, which were consistent with the sensitivity testing by K-B method. The MPCs of enrofloxacin and ciprofloxacin hydrochlorid to the sensitive isolates were 1-4μg/mL and 0.25-1μg/mL, and the selection index (SI) values of ciprofloxacin hydrochlorid (8-16) were lower than those of enrofloxacin (16-32). Therefore, the efficacy of ciprofloxacin hydrochlorid for containing the selection of Salmonella resistant mutants was greater than that of enrofloxacin.
     The results in the study indicated that the pathogenic E. coli isolates from piglet in Zhejiang province had severe resistance to antimicrobials, and they harbored more varieties of the resistance genes with high positive rates. However, the Salmonella isolates were sensitive to the majority of antimicrobials tested. Enrofloxacin and ciprofloxacin hydrochlorid presented different capacity to restrict the selection of strains resistant mutants. In order to control the development of antimicrobial resistance, so not only the MIC should be considered in clinical application, but the MPC and MSW (mutant selection window, MSW) values of isolates should also be taken into account to contain the development and dissemination of bacterial resistance.
引文
[1]Thorsteinsdottir TR, Haraldsson G, Fridriksdottir V, et al.Prevalence and Genetic Relatedness of Antimicrobial-Resistant Escherichia coli Isolated From Animals,Foods and Humans in Iceland[J].Zoonoses and Public Health,2009,57(3):189-196.
    [2]Foley SL, Lynne AM.Food animal-associated Salmonella challenges:Pathogenicity and antimicrobial resistance[J].Journal of Animal Science,2008,86(14):173-187.
    [3]Diane GN,Marion K, Linda V, et al.Food-borne diseases:The challenges of 20 years ago still persist while new ones continue to emerge[J].International Journal of Food Microbiology,2010, 59(5):1-13.
    [4]Varga C, Rajic A, McFall ME, et al.Comparison of antimicrobial resistance in generic Escherichia coli and Salmonella spp. cultured from identical fecal samples in finishing swine[J].Canadian Journal of Veterinary Research-Revue Canadienne de Recherche Veterinaire, 2008,72(2):181-187.
    [5]Gibson JS, Cobbold RN,Trott DJ.Characterization of multidrug-resistant Escherichia coli isolated from extraintestinal clinical infections in animals[J].Journal of Medical Microbiology, 2010,59(5):592-598.
    [6]马孟根,王红宁,余勇等.猪源致病性沙门氏菌耐药基因的分析[J].畜牧兽医学报,2006,37(1):65-70.
    [7]魏述永,舒娅,李蕊艳等.重庆市动物源大肠杆菌、沙门氏菌耐药性调查[J].黑龙江畜牧兽医,2009,4:93-94.
    [8]安迥凤.猪大肠杆菌地方菌株的分离与耐药性检测[J].当代畜牧,2004,11:5-6.
    [9]姜中其,陈晓红,方维焕等.规模化猪场仔猪断奶腹泻大肠杆菌耐药性监测[J].浙江大学学报(农业与生命科学版),2004,30(5):567-571.
    [10]俞道进,黄一帆,邓文华等.猪场大肠杆菌耐药性的流行病学调查[J].福建农林大学学报(自然科学版),2005,34(3):357-360.
    [11]张铁,王春光,王谦等.猪源大肠杆菌的分离、鉴定及耐药性监测[J].中国农学通报,2005,21(12):23-25,30.
    [12]刘梦元,吴斌,刘建杰等.规模化猪场大肠杆菌的耐药性监测及血清流行病学调查[J].中国兽医学报,2004,24(1):16-18.
    [13]黎满香,宁玲忠,董伟.湖南猪致病性大肠杆菌的分离及药物敏感性监测[J].畜牧兽医杂志,2005,24(1):6-8.
    [14]杨柳,王思芦,罗音久等.对规模化猪场大肠杆菌耐药性的调查[J].四川畜牧兽医,2006,5:26-27.
    [15]张广群,王春光,张国磊等.55株猪源大肠杆菌的耐药性监测[J].中国动物检疫,2006,23(2):34-35.
    [16]陈希文,王雄清,代敏等.绵阳地区猪源致病性大肠杆菌的耐药性监测[J].江苏农业 科学,2007,1:131-134.
    [17]沈宪文,吴斌.132株临床分离仔猪大肠杆菌的耐药性分析[J].吉林农业科技学院学报,2007,16(4):1-3,15.
    [18]田国宝,王红宁,黄勇等.规模化猪场大肠杆菌耐药性和血清型变化趋势[J].中国兽医杂志,2007,43(10):31-33.
    [19]秦四海,段晓玲.规模化养猪场仔猪黄痢病原菌血清型检测及其药敏试验[J].西北农林科技大学学报(自然科学版),2008,36(10),43-47.
    [20]汤景元,王红宁,张鹏举等.95个猪场大肠杆菌耐药表型及氨基糖苷类药物耐药基因型调查[J].畜牧兽医学报,2008,39(4):472-477.
    [21]肖国生,况守龙,胡廷章等.三峡库区猪致病性大肠杆菌分离鉴定及药敏试验[J].安徽农业科学,2008,36(1):207-208,290.
    [22]金国星.余姚地区仔猪黄白痢病原菌的分离鉴定及药敏试验[J].浙江农业科学,2009,4:819-822.
    [23]金凌艳,顾欣,蔡金华等.2008年上海市动物源大肠杆菌耐药性监测[J].上海畜牧兽医通讯,2009,3:31-32.
    [24]王思芦,杨柳.仔猪黄痢病原地方株分离鉴定和耐药性检测[J].上海畜牧兽医通讯,2009,3:21.
    [25]张珍珍,吴俊伟.大肠杆菌对β-内酰胺类抗生素耐药性的水平传播机制研究[J].黑龙江畜牧兽医,2009,10:75-77.
    [26]Livermore DM, Brown DF.Detection of β-lactamase mediated resistance[J].J Antimicrob Chemother,2001,35:281-294.
    [27]肖云贵,王敏,张援平.超广谱β内酰胺酶的分类及检测[J].临床军医杂志,2001,29(3).
    [28]孙秀梅.AmpC β内酰胺酶的检测[J].中华医学研究杂志,2005,5(4):329-330.
    [29]Bush K, Jacoby GA.Updated Functional Classification of beta-Lactamases[J].Antimicrobial Agents and Chemotherapy,2010,54(3):969-976.
    [30]Coudron PE, Moland ES, Thomson KS.Occurrence and detection of AmpC beta-lactamase among Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis isolates at a veterans med-ical center[J].J Clin Microbiol,2000,38:1791-1796.
    [31]苑丽,刘建华,胡功政等.30株鸡大肠杆菌ESBLs基因型检测及耐药性分析[J].中国预防兽医学报,2009,31(6).
    [32]党晓林,李英伦,马小林等.三株临床分离菌对抗菌药的药敏试验及其超广谱β-内酰胺酶的检测[J].中国兽药杂志,2007,41(6):22-25.
    [33]Nabin R, Sang GK, Deog YL, et al.Characterization of TEM-, SHV-and AmpC-type β--lact-amases from cephalosporin-resistant Enterobacteriaceae isolated from swine[J].International Jou-rnal of Food Microbiology,2008,124(2):183-187.
    [34]Tian GB, Wang HN, Zou, LK, et al.Detection of CTX-M-15,CTX-M-22,and SHV-2 Extended-Spectrum beta-Lactamases (ESBLs) in Escherichia coli Fecal-Sample Isolates from Pig Farms in China[J].Foodborne Pathogens and Disease,2009,6(3):297-304.
    [35]刘维红.猪沙门氏菌耐药基因检测方法的建立及其应用[D].华中农业大学,动物医学院,2006.
    [36]Llano-Sotelo B,Azucena EF Jr, Kotra LP, et al.Aminoglycosides modified by resistance enzymes display diminished binding to the bacterial ribosomal aminoacyl-tRNA site[J].Chem Biol,2002,9(4):455-463.
    [37]Yokoyama K, Doi Y, Yamane K, et al.Acquisition of 16S rRNA methylase gene in Pseudo-monas aeruginosa [J].Lancet,2003,362(12):1888-1893.
    [38]焦显芹,肖方,刘河冰.氨基糖苷类药物高水平耐药16S rRNA甲基化酶的研究进展[J].中国畜牧兽医,2009,36(6):128-130.
    [39]李玉红.氨基糖苷类钝化酶耐药机制的研究进展[J].国外医学药学分册,2005,32(3):199-203.
    [40]陈琳,刘健华,张俊丰等.猪肠道菌氨基糖苷类药物耐药基因分析[J].畜牧兽医学报,2009,40(7):1088-1096.
    [41]Rao S, Maddox CW, Hoien-Dalen P, et al.Diagnostic accuracy of class 1 integron PCR method in detection of antibiotic resistance in Salmonella isolates from swine production systems[J]. Journal of Clinical Microbiology,2006,46(3):916-920.
    [42]Jensen VF, Jakobsen L, Emborg HD, et al.Correlation between apramycin and gentamicin use in pigs and an increasing reservoir of gentamicin-resistant Escherichia coli[J].Journal of Antimicrobial Chemotherapy,2006,58(1):101-107.
    [43]Ma, MG; Wang, HN;Yu, Y, et al.Detection of antimicrobial resistance genes of pathogenic Salmonella from swine with DNA microarray[J].Journal of Veterinary Diagnostic Invetigation, 2007,19(2):161-167.
    [44]Kadlec K, Schwarz S.Analysis and distribution of class 1 and class 2 integrons and associated gene cassettes among Escherichia coli isolates from swine, horses, cats and dogs collected in the Bft-Germvet monitoring study[J].Journal of Antimicrobial Chemotherapy,2008, 62(3):469-473.
    [45]Chuanchuen, R; Padungtod, P.Antimicrobial Resistance Genes in Salmonella enterica Isolates from Poultry and Swine in Thailand[J].Journal of Veterinary Medical Science,2009, 71(10):1349-1355.
    [46]Futagawa-Saito K, Okatani AT, Sakurai-Komada N, et al. Epidemiological Characteristics of Salmonella enterica Serovar Typhimurium from Healthy Pigs in Japan[J].Journal of Veterinary Medical Science,2010,72(1):61-66.
    [47]冯新,韩文瑜,雷连成.细菌对四环素类抗生素的耐药机制研究进展[J].中国兽药杂志,2004,38(2):38-42.
    [48]史为民.大肠杆菌耐四环素基因的检测[J].中国预防兽医学报,1999,21(6):460-461.
    [49]翟晶.浙江省仔猪黄白痢大肠杆菌耐药表型和基因型分析[D].浙江大学,动物科学学院,2008.
    [50]代敏,王红宁,吴琦.PCR和核酸探针检测猪源沙门氏菌四环素耐药基因tetC的研究[J].畜牧兽医学报,2005,36(5):482-485.
    [51]Zhang YF, LeJeune JT.Transduction of bla(CMY-2),tet(A), and tet(B) from Salmonella enterica subspecies enterica serovar Heidelberg to S.Typhimurium[J].Veterinary Microbiology, 2008,129(3-4):418-425.
    [52]Neela FA, Nonaka L, Rahman MH, et al.Transfer of the chromosomally encoded tetracycline resistance gene tet(M) from marine bacteria to Escherichia coli and Enterococcus faecalis[J].World Journal of Microbiology & Bicotechnology,2009,25(6):1095-1101.
    [53]Cecile VB,Marie-Claude LD, Jean-Louis M, et al.CATⅢ chloramphenicol resistance in Pasteurella haemolytica and Pasteurella multocida isolated from calves[J]. J of Anti Chem, 1996,38:205-213.
    [54]杜向党,阎若潜,沈建忠.氯霉素类药物耐药机制的研究进展[J].动物医学进展,2004,25(2):27-29.
    [55]George AM,Hall RM.Efflux of chloramphenicol by the CmlAl protein[J].FEMS Microb Lett,2002,209:209-213.
    [56]Sams RA.Chemisty and metabolism of a novel-broad-spectrum antibiotic[J].Tieraeritliche Umschau,1995,50(10):703-707.
    [57]羊云飞.多重PCR检测沙门氏菌、大肠杆菌对磺胺类、氯霉素类药物耐药基因的研究[D].四川农业大学,动物科技学院,2004.
    [58]Kenneth MB,David GW, Patrick FM, et al.Characterization of Chloramphenicol Resistance in Beta-Hemolytic Escherichia coli Associated with Diarrhea in Neonatal Swine[J].Journal of Clinical Microbiology,2002,40(2):389-394.
    [59]Bischoff, KM; White, DG;Hume, ME, et al.The chloramphenicol resistance gene CmlA is disseminated on transferable plasmids that confer multiple-drug resistance in swine Escherichia coli[J].Ferns Microbiology Letters,2005,243(1):285-291.
    [60]Kuo HC, Wei HW, Chang CD, et al.Molecular Detection of Florfenicol and Chloramphenicol Resistance among Escherichia coli Isolates from Healthy Pigs During 2003 to 2007[J].Journal of Food and Drug Analysis,2009,17(3):217-224.
    [61]Roland S, Morrison RW.The characteristics and significance of sulfonamides as substrates for Escherichia coli dihydropteroate synthase[J].J Biol Chem,1979,254:10337-10345.
    [62]周万蓉,王红宁,张安云等.猪和野生动物源大肠杆菌及沙门菌中磺胺类药物耐药基因的检测[J].中国兽医科学,2007,37(4):287-290.
    [63]Hammerum AM, Sandvag D, Andersen SR, et al.Detection of sul1, sul2 and sul3 in sulphon- amide resistant Escherichia coli isolates obtained from healthy humans, pork and pigs in Denmark [J].International Journal of Food Microbiology,2006,106(2):235-237.
    [64]Patnicia A, Jorge M, Luisa P.Dissemination of sul3-Containing Elements Linked to Class 1 Integrons with an Unusual 3'Conserved Sequence Region among Salmonella Isolates [J].Anti-microbial Agents and Chemotherapy,2007,51(4):1545-1548.
    [65]Kozak GK, Pearl DL, Parkman J, et al.Distribution of Sulfonamide Resistance Genes in Escherichia coli and Salmonella Isolates from Swine and Chickens at Abattoirs in Ontario and Quebec, Canada[J].Applied and Environmental Microbiology,2009,75(18):5999-6001.
    [66]Hopkins KL, Davies RH, Threlfall EJ.Mechanisms of quinolone resistance in Escherichia coli and Salmonella:Recent developments[J].International Journal of Antimicrobial Agents,2005, 25(5):358-373.
    [67]邓均华,徐涤平,伍锐等.动物源耐氟喹诺酮类药物致病性大肠杆菌gyrA基因的突变研究[J].畜牧与兽医,2009,7:74-76.
    [68]邓均华,徐涤平,伍锐等.动物沙门氏菌对氟喹诺酮类药物的耐药性及GyrA基因的突变研究[J].湖北农业科学,2009,48(7):1554-1557.
    [69]Mammeri H, Van de Loo M, Poirel L, et al.Emergence of Plasmid-Mediated Quinolone Resistance in Escherichia coli in Europe[J].Antimicrobial Agents and Chemotherapy,2005,49 (1):71-76.
    [70]Cavaco LM, Aarestrup FM.Evaluation of Quinolones for Use in Detection of Determinants of Acquired Quinolone Resistance, Including the New Transmissible Resistance Mechanisms qnrA,qnrB, qnrS, and aac(6')Ib-cr, in Escherichia coli and Salmonella enterica and Determinations of Wild-Type Distributions[J].Journal of Clinical Microbiology,2009,47(9): 2751-2758.
    [71]Kuo HC,Chou CC.Tu C, et al.Characterization of plasmid-mediated quinolone resistance by the qnrS gene in Escherichia coli isolated from healthy chickens and pigs[J].Veterinarni Medicina,2009,54(10):473-482.
    [1]苏晓洲,谭剑.GMP前的最后疯狂——“注水兽药”逼出“人药兽用”[J].畜牧市场,2004,9:28-29.
    [2]杨柳,王思芦,罗音久等.对规模化猪场大肠杆菌耐药性的调查[J].四川畜牧兽医,2006,5:26-27.
    [3]韩伟,张铁,王春光等.大肠埃希菌耐药机制研究进展[J].动物医学进展,2006,27(1):51-53.
    [4]Raymond D P, Pelletier S J, Crabt ree T D, et al.Impact of rotating empiric antibiotic schedule on infectious mortality in an intensive care unit[J].Crit Care Med,2001,29:1101-1108.
    [5]陈希文,王雄清,代敏等.绵阳地区猪源致病性大肠杆菌的耐药性监测[J].江苏农业科学,2007,1:131-134.
    [6]周黎明,王正荣,王浴生.大肠杆菌主动外排泵与抗生素多重耐药性研究进展[J].四川生理科学杂志,2003,25(4):163-165.
    [7]刘又宁.应重视时间与浓度依赖性抗生素的合理应用[J].中华医学杂志,2001,81(1):5.
    [8]Michael SN.Principles of appropriate antibiotic use[J].International Journal of Antimicrobial Agents,2005,26(3):170-175.
    [9]Drlica K.A strategy for fighting antibiotic resistance[J].ASM News.2001,67:27-33.
    [10]Zhao X, Drlica K.Restricting the selection of antibiotic-resistant mutants:a general strategy derived from fluoroquinolones studies[J].Clin Infect Dis,2001,33(1):S147-S156.
    [11]Spivey J M.The postantibiotic effect [J].Clin Pharm,1992,11:865-871.
    [12]Drlica, K. (2003)..The mutant selection window and antimicrobial resistance[J].Journal of Antimicrobial Chemotherapy,2003,52(1):11-17.
    [13]Linde HJ, Lehn N.Mutant prevention concentration of nalidixic acid, ciprofloxacin, clinafloxacin, levofloxacin, norfloxacin, ofloxacin, sparfloxacin or trovafloxacin for Escherichia coli under different growth conditions[J].Journal of Antimicrobial Chemotherapy,2004,53(2): 252-257.
    [14]Olofsson SK, Marcusson LL, Lindgren PK, et al.Selection of ciprofloxacin resistance in Escherichia coli in an in vitro kinetic model:relation between drug exposure and mutant prevention concentration[J].Journal of Antimicrobial Chemotherapy,2006,57:1116-1121.
    [15]Frederique P, Gerardo M.Mutant prevention concentration of ciprofloxacin and enrofloxacin against Escherichia coli, Salmonella Typhimurium and Pseudomonas aeruginosaa[J].Veterinary Microbiology,2007,119:304-310.
    [16]Noguera O, Rodriguez JC, Lopez JM, et al.Resistant mutant prevention concentration of fluoroquinolones in clinical isolates of extended spectrum beta-lactamase (ESBL) producing and non-producing strains of Escherichia coli[J].Revista Espanola de Quimioterapia,2009,22(1): 30-33.
    [17]廖晓萍,刘文字,周艳等.氟喹诺酮类药物对大肠杆菌防突变浓度的测定[J].中国兽医杂志,2007,43(7):30-31.
    [18]翟晶,姜中其,陈俭.三种抗菌药物对仔猪黄白痢大肠杆菌的MPC测定[J].中国兽药杂志,2008,42(5):29-32.
    [19]杨大伟,陈杖榴,丁焕中等.头孢喹肟对大肠杆菌防突变浓度的测定[J].中国兽医科学,2008,38(2):165-168.
    [20]Randall LP, Cooles SW, Piddock LJV, et al. Mutant prevention concentrations of ciprofloxacin and enrofloxacin for Salmonella enterica[J]. Journal of Antimicrobial Chemotherapy, 2004,54(3):688-691.
    [21]Ling JM, Jin Y. Evaluation of six fluoroquinolones for their capabilities in restricting the selection of resistant salmonellae[J]. Journal of Antimicrobial Chemotherapy,2006,57(2):364-365.
    [22]李国涛,鲁猛厚.氟喹诺酮类药物对伤寒沙门菌的防突变浓度测定[J].中华传染病杂志,2007,25(5):276-278.
    [23]Tomoyuki Homma, Toshihiko Hori, Giichi Sugimori, et al. Pharmacodynamic Assessment Based on Mutant Prevention Concentrations of Fluoroquinolones To Prevent the Emergence of Resistant Mutants of Streptococcus pneumoniae[J]. Antimicrobial Agents and Chemotherapy, 2007,51(11):3810-3815.
    [24]黄学桂.抗菌药物后效应与临床合理用药[J].中国药事,2006,20(8):508-510.
    [25]Jeffrey M L. Postantibiotic Effect in Escherichia coli Determined with Real-Time Metabolic Monitoring[J]. Antimicrobial Agents and Chemotherapy,1998,42(1):78-82.
    [26]Glenn A P, Michael R J, Peter C A. Postantibiotic Effect and Postantibiotic Sub-MIC Effect of Quinupristin-Dalfopristin against Gram-Positive and-Negative Organisms[J]. Antimicrobial Agents and Chemotherapy,1998,42(11):3028-3031.
    [27]Susan L P, Mariela D L, Kevin W G, et al. Bactericidal Activity and Postantibiotic Effect of Levofloxacin against Anaerobes [J]. Antimicrobial Agents and Chemotherapy,1999,43(8): 1914-1918.
    [28]Maria C, Maria G P, Marisa M, et al.Activity and postantibiotic effect of marbofloxaci n, enrofloxacin, difloxacin and ciprofloxacin against feline Bordetella bronchiseptica isolates[J].Veterinary Microbiology,2001,81(1):79-84.
    [29]Athamna A,Athamnal M, Medlej B,et al.In vitro post-antibiotic effect of fluoroquinolones, macrolides, β-lactams, tetracyclines, vancomycin, clindamycin, linezolid, chloramphenicol, quinupristin/dalfopristin and rifampicin on Bacillus anthracis[J].Journal of Antimicrobial Chemotherapy,2004,53(4):609-615.
    [30]Pankuch G A, Appelbaum P C.Postantibiotic Effect of Ceftaroline against Gram-Positive Organisms[J].Antimicrobial Agents and Chemotherapy,2009,53(10):4537-4539.
    [31]Pankuch G A, Appelbaum P C. Postantibiotic Effect of Tigecycline against 14 Gram-Positive Organisms[J].Antimicrobial Agents and Chemotherapy,2009,53(2):782-784.
    [32]John P C, Carole A B, Joseph G H, et al. Minimum Inhibitory Concentration and Postantibiotic Effect of Amikacin for Equine Isolates of Methicillin-Resistant Staphylococcus aureus In Vitro[J]. Veterinary Surgery,2009,38(1):664-669.
    [33]William S, Julieanne B, Eileen I, et al. Deletion of the Multiple-Drug Efflux Pump AcrAB in Escherichia coli Prolongs the Postantibiotic Effect[J]. Antimicrobial Agents and Chemotherapy, 2005,49(3):1206-1208.
    [34]Patricia G. Modeling the mechanism of postantibiotic effect and determining implications for dosing regimens[J]. Journal of Mathematical Biology,2009,59(5):717-728.
    [35]伍金娥,李德学,王大菊等.7种抗菌药物对金黄色葡萄球菌及大肠杆菌体外抗生素后效应的研究[J].中国兽药杂志,2003,37(10):30-32.
    [36]王志强,陈杖榴.兽用氟喹诺酮类的抗菌后效应、抗菌后亚抑制浓度效应、亚抑制浓度效应[J].中国兽药杂志,2001,35(5):13-17.
    [37]刘远飞,佟恒敏,韩建春.单诺沙星和恩诺沙星对大肠杆菌和金葡球菌的抗菌后效应[J].中国兽医杂志,2003,39(7):19-20.
    [38]王付民,胡功政.头孢噻呋等药物对4种标准菌株体外抗菌后效应[J].中国兽医杂志,2008,44(3):64-66.
    [39]焦阳,刘明春,陈晓慧等.头孢噻呋的体外抗菌后效应研究[J].中国兽医杂志,2008,44(2):90-91.
    [40]张世新.氟苯尼考对大肠杆菌K 99体外抗菌后效应研究[J].中国兽医杂志,2006,42(8):52-53.
    [41]苑丽,胡功政,刘智明等.氟苯尼考与多西环素联合对鸡大肠杆菌病的治疗效果[J].河南农业大学学报,2005,39(1):93-97.
    [42]江善祥,陈绍峰.硫酸粘杆菌素(Col istin sulfate)对大肠杆菌的抗生素后效应[J].中国兽医学报,2003,23(6):604-606.
    [43]王浴生.抗生素后效应及其临床意义[J].中国抗生素杂志,1999,21(4):306-316.
    [44]Aarestrup F M. Monitoring of Antimicrobial Resistance Among Food Animals:Principles and Limitations[J]. Journal of Veterinary Medicine, Series B,2004,51(8/9):380-388.
    [45]Flemming Bager. DANMAP:Monitoring Antimicrobial Resistance in Denmark [J]. International Journal of Antimicrobial Agents,2000,14(4):271-274.
    [46]Gilbert Jefrey M, White David G, McDermott Patrick F. The US National Antimicmbial Resistance Monitoring System[J]. Future Microbiology,2007,2(5):493-500.
    [47]Hammerum A M, Heuer O E, Emborg H D, et al. Danish Integrated Antimicrobial Resistance Monitoring an d Research Program[J]. Emerging Infectious Diseases,2007,13(11):1632-1639.
    [48]肖永红.卫生部全国细菌耐药监测网(Mohnarin)介绍[J].中国抗生素杂志,2008,33(10):577-578.
    [49]顾欣,金凌艳,蔡金华等.国家动物源细菌耐药性监测工作的探讨和建议[J].中国兽药杂志,2009,43(7):45-50.
    [1]成大荣,高小攀,钱金梅等.仔猪腹泻源大肠杆菌的PCR快速检测[J].中国预防兽医学报,2009,31(7):536-539.
    [2]金国星.余姚地区仔猪黄白痢病原菌的分离鉴定及药敏试验[J].浙江农业科学,2009,4:819-822.
    [3]满晓营,吴斌,张璇等.猪源肠出血性大肠杆菌的分离、鉴定及特性研究[J].中国人兽共患病学报,2009,25(10):984-987.
    [4]王英,汤承,于学辉等.多重PCR方法检测鸭源产志贺氏毒素大肠杆菌[J].中国预防兽医学报,2009,31(10):780-784.
    [5]孙彬,徐益斌,徐连均.雏鸡沙门氏菌的分离、鉴定以及药敏试验[J].北京农业,2008,10.32-34.
    [6]董国栋,张文东,黄文忠等.猪鼠伤寒沙门氏菌的分离和鉴定[J].现代畜牧兽医,2009,10:51-52.
    [7]许一平,成炜,邵彦春等.沙门菌、大肠杆菌和金黄色葡萄球菌的多重PCR检测[J].微生物学通报,2006,33(6):89-94.
    [8]任可,刘月焕,王凤龙等.奶牛乳腺炎大肠杆菌PCR的检测[J].内蒙古农业大学学报,2006,27(4):58-61.
    [9]杜欣军,周文杰,吴懿娜等.牛奶中大肠杆菌和无乳链球菌的快速检测[J].食品研究与开发,2009,30(10):96-99.
    [10]周微,张伟钦,付宇等.荧光定量PCR方法快速检测原料乳中的大肠杆菌[J].中国乳品工业,2009,11:39-42.
    [11]Riffon R, Sayasith K, Khalil H, et al. Development of a rapid and sensitive test for identification of major pathogens in bovine mastitis by PCR[J]. J Clin Microbiol,2001,39(7): 2584-2589.
    [12]Seurinck S, Verstraete W, Siciliano SD.Use of 16S-23S rRNA intergenic spacer region PCR and repetitive extragenic palindromic PCR analyses of Escherichia coli isolates to identify nonpoint fecal sources[J]. Applied and Enviromental Microbiology,2003,69(8):4942-4950.
    [13]Frahm E, Obst U.Application of the fluorogenic probe technique (TaqMan PCR) to the detection of Enterococcus spp. and Escherichia coli in water samples[J].Journal of Microbiological Methods,2003,52(1):123-131.
    [14]Spano G, Beneducel L, Terzi V, et al.Real-time PCR for the detection of Escherichia coli O157:H7 in dairy and cattle wastewater[J].Letters in Applied Microbiology,2005,40:164-171.
    [15]Khar UH,Gannon V, Kent R, et al.Development of a Rapid Quantitative PCR Assay for Direct Detection and Quantification of Culturable and Non-culturable Escherichia coli from Agriculture watersheds[J].Journal of Microbiological Methods,2007,69:480-488.
    [16]Koskinen MT, Holopainen J, Pyorala S,et al.Analytical specificity and sensitivity of a real-time polymerase chain reaction assay for identification of bovine mastitis pathogens[J].Journal of Dairy Science,2009,92(3):952-959.
    [17]Kumar PA.Evaluation of PCR test for detecting major pathogens of bubaline mastitis directly from mastitic milk samples of buffaloes[J].Trop Anim Health Prod,2009,41:1643-1651.
    [18]Maheux AF, Picard FJ, Boissinot M, et al. Analytical comparison of nine PCR primer sets designed to detect the presence of Escherichia coli/Shigella in water samples[J].Water Research, 2009,43(12):3019-3028.
    [19]Takahashi H,Kimura B, Tanaka Y, et al.Real-time PCR and enrichment culture for sensitive detection and enumeration of Escherichia coli[J].Journal of Microbiological Methods,2009, 79(1):124-127.
    [20]Omar KB,Barnard TG.The occurrence of pathogenic Escherichia coli in South African wastewater treatment plants as detected by multiplex PCR[J].Southern African Young Water Professionals Conference,2010,36(2):172-176.
    [21]卢强,陈贵连,林万明.PCR扩增invA基因特异性检测沙门氏菌[J].中国兽医学报,1994,14(3):251-256.
    [22]陈金顶,索青利,廖明等.沙门氏菌的invA基因序列分析与分子检测[J].中国人兽共患病杂志,2004,20(10):868-871.
    [23]陈弟诗,郭万柱,徐志文等.猪霍乱沙门氏菌的分离与鉴定以及PCR检测方法的建立[J].安徽农业科学,2007,35(20):6020-6023.
    [24]徐引弟,郭爱珍,贾爱卿等.猪霍乱沙门氏菌的快速分离鉴定[J].畜牧与兽医,2007,39(2):8-11.
    [25]马素霞,李小丽,郑晓燕等.PCR法与细菌培养法在急性腹泻患者沙门氏菌检测中的应用比较[J].中国病原生物学杂志,2008,3(10):735-737.
    [26]向雪菲,刘斌,张利达等.食品中沙门氏菌分子检测靶点的筛选与评价[J].微生物学报,2008,48(7):941-946.
    [27]杨小鹃,吴清平,张菊梅等.畜禽肉沙门氏菌和大肠杆菌0157多重PCR检测研究[J].微生物学通报,2008,35(3):470-474.
    [28]杨永恒,樊明涛,李瑜等.猪肉中沙门氏菌的PCR检测[J].食品研究与开发,2009,30(5):128-131.
    [29]Pathmanathan S, Cardona N, Sanchez J, et al. Simple and rapid detection of Salmonella strains by direct PCR amplification of the hilA gene[J].Journal of Medical Microbiology,2003, 52(9):773-776.
    [30]Singer RS, Cooke CL, Maddox CW, et al.Use of pooled samples for the detection of Salmonella in feces by polymerase chain reaction[J].J Vet Diagn Invest,2006,18(4):319-325.
    [31]Yang YG, Song MK, Park SJ, et al.Direct detection of Shigella flexneri and Salmonella typhimurium in human feces by real-time PCR[J].Journal Microbiol Biotechnol,2007,17(10): 1616-1621.
    [32]Tamuiy S, Saxena MK, Ambwani T, et al.Rapid Detection of Salmonella from poultry faecal sample using PCR targeting invA gene[J].Indian Veterinary,2008,85(9):919-920.
    [33]Mainar-Jaime RC, Atashparvar N, Chirino-Trejo M.Estimation of the diagnostic accuracy of the invA-genebased PCR technique and a bacteriological culture for the detection of Salmonella spp. in caecal content from slaughtered pigs using Bayesian analysis[J].Zoonoses and Public Health,2008,55(2):112-118.
    [34]D'Souza DH, Critzer FJ, Golde DA.Real-time reverse-transcriptase polymerase chain reaction for the rapid detection of Salmonella using invA primers[J].Foodborne Pathog Dis,2009, 6(9):1097-1106.
    [35]Shanmugasundaram M, Radhika M, Murali HS, et al.Detection of Salmonella enterica serovar Typhimurium by selective amplification of fliC, fljB, iroB, invA, rfbJ, STM2755, STM4497 genes by polymerase chain reaction in a monoplex and multiplex format[J].World Journal of Microbiology and Biotechnology,2009,25(8):1385-1394.
    [36]Gonzalez-Escalona N, Hammack TS, Russell M, et al.Detection of Live Salmonella sp Cells in Produce by a TaqMan-Based Quantitative Reverse Transcriptase Real-Time PCR Targeting invA Mrna[J].Applied and Environmental Microbiology,2009,75(11):3714-3720.
    [37]叶应妩,王毓三,申子瑜主编.全国临床检验操作规程(第三版)[M].北京:东南大学出版社,2006:801-802.
    [38]傅君芬,卢美萍,尚世强等.16S-23S rRNA基因区间细菌鉴定实验研究[J].浙江大学学报(医学版),2002,31(6):448-452.
    [39]李鹏,马艳娇,赵云.16S rRNA、 23S rRNA及16S~23S rRNA基因在细菌分离与鉴定中的应用[J].现代畜牧兽医,2008,7:49-52.
    [1]Aarestrup F M. Monitoring of Antimicrobial Resistance Among Food Animals:Principles and Limitations[J].Journal of Veterinary Medicine, Series B,2004,51(8/9):380-388.
    [2]Flemming Bager.DANMAP:Monitoring Antimicrobial Resistance in Denmark[J]. Internati-onal Journal of Antimicrobial Agents,2000,14(4):271-274.
    [3]Gilbert Jefrey M, White David G, McDermott Patrick F. The US National Antimicmbial Resistance Monitoring System[J].Future Microbiology,2007,2(5):493-500.
    [4]Hammerum A M,Heuer O E, Emborg H D,et al.Danish Integrated Antimicrobial Resistance Monitoring an d Research Program[J].Emerging Infectious Diseases,2007,13(11):1632-1639.
    [5]肖永红.卫生部全国细菌耐药监测网(Mohnarin)介绍[J].中国抗生素杂志,2008,33(10):577-578.
    [6]顾欣,金凌艳,蔡金华等.国家动物源细菌耐药性监测工作的探讨和建议[J].中国兽药杂志,2009,43(7):45-50.
    [7]NCCLS.Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animal[M].Second Edition.NCCLS document M31-A2[ISBN 1-56238-461-9].NCCLS,940 West Valley Road, Suite 1400, Wayne, Pennsylvania 19087-1898 USA,2002:21-31.
    [8]秦四海,段晓玲.规模化养猪场仔猪黄痢病原菌血清型检测及其药敏试验[J].西北农林科技大学学报(自然科学版),2008,36(10),43-47.
    [9]汤景元,王红宁,张鹏举等.95个猪场大肠杆菌耐药表型及氨基糖苷类药物耐药基因型调查[J].畜牧兽医学报,2008,39(4):472-477.
    [10]肖国生,况守龙,胡廷章等.三峡库区猪致病性大肠杆菌分离鉴定及药敏试验[J].安徽农业科学,2008,36(1):207-208,290.
    [11]金凌艳,顾欣,蔡金华等.2008年上海市动物源大肠杆菌耐药性监测[J].上海畜牧兽医通讯,2009,3:31-32.
    [12]金国星.余姚地区仔猪黄白痢病原菌的分离鉴定及药敏试验[J].浙江农业科学,2009,4:819-822.
    [13]王思芦,杨柳.仔猪黄痢病原地方株分离鉴定和耐药性检测[J].上海畜牧兽医通讯,2009,3:21.
    [14]魏述永,舒娅,李蕊艳等.重庆市动物源大肠杆菌、沙门氏菌耐药性调查[J].黑龙江畜牧兽医,2009,4:93-94.
    [15]Walter D, Geoff S,Clifford C,et al.Phage-Based Typing Scheme for Salmonella enterica Serovar Heidelberg, a Causative Agent of Food Poisonings in Canada[J].Journal of Clinical Microbiology,2003,41(9):4279-4284.
    [16]Hammerum AM, Heuer OE,et al. Human Health Hazards from Antimicrobial Resistant Escherichia coli of Animal Origin[J].Clinical Infectious Diseases,2009,48(7):916-921.
    [17]Foley SL, Lynne AM.Food animal-associated Salmonella challenges:Pathogenicity and antimicrobial resistance[J].Journal of Animal Science,2008,86(14):173-187.
    [18]Ogasawara N, Tran TP, Ly TLK, et al.Antimicrobial Susceptibilities of Salmonella from Domestic Animals, Food and Human in the Mekong Delta, Vietnam[J].Journal of Veterinary Medical Science,2008,70(11):1159-1164.
    [19]Varga C, Rajic A,McFall ME, et al.Comparison of antimicrobial resistance in generic Escherichia coli and Salmonella spp. cultured from identical fecal samples in finishing swine[J].Canadian Journal of Veterinary Research-Revue Canadienne de Recherche Veterinaire, 2008,72(2):181-187.
    [20]Gibson JS, Cobbold RN, Trott DJ.Characterization of multidrug-resistant Escherichia coli isolated from extraintestinal clinical infections in animals[J].Journal of Medical Microbiology, 2010,59(5):592-598.
    [21]Anna GP, Maria RC,Assunta E, et al.Characterization of antimicrobial resistant Salmonella enterica serovars Enteritidis and Typhimurium isolates from animal and food in Southern Italy[J].Veterinary Research Communications,2010,35(7):1-13.
    [1]刘作华主编.猪规模化健康养殖关键技术[M].北京:中国农业出版社,2009:246-247.
    [2]Bush K, Jacoby GA.Updated Functional Classification of beta-Lactamases[J].Antimicrobial Agents and Chemotherapy,2010,54(3):969-976.
    [3]李玉红.氨基糖苷类钝化酶耐药机制的研究进展[J].国外医学药学分册,2005,32(3):199-203.
    [4]焦显芹,肖方,刘河冰等.氨基糖苷类药物高水平耐药16S rRNA甲基化酶的研究进展[J].中国畜牧兽医,2009,36(6):128-130.
    [5]冯新,韩文瑜,雷连成.细菌对四环素类抗生素的耐药机制研究进展[J].中国兽药杂志,2004,38(2):38-42.
    [6]Long KS, Poehlsgaard J, Kehrenberg C,et al.The Cfr rRNA methyltransferase confers resistance to phenicols, lincosamides, oxazolidinones, pleuromutilins, and streptograrnin A antibiotics[J].Antimicrobial Agents and Chemotherapy,2006,50 (7):2500-2505.
    [7]Skold O.Resistance to trimethoprim and sulfonamides[J].Veterinary Research,2001,32 (3-4): 261-273.
    [8]Hopkins KL, Davies RH, Threlfall EJ.Mechanisms of quinolone resistance in Escherichia coli and Salmonella:Recent developments[J].International Journal of Antimicrobial Agents,2005, 25(5):358-373.
    [9]Jacoby GA, Walsh KE, Mills DM, et al.qnrB, another plasmid-mediated gene for quinolone resistance[J].Antimicrobial Agents and Chemotherapy,2006,50(4):1178-1182.
    [10]Kuo HC, Chou CC, Tu C, et al. Characterization of plasmid-mediated quinolone resistance by the qnrS gene in Escherichia coli isolated from healthy chickens and pigs[J].Veterinary Medicine,2009,54(10):473-482.
    [11]Cavaco LM, Hasman H, Xia S, et al.qnrD, a Novel Gene Conferring Transferable Quinolone Resistance in Salmonella enterica Serovar Kentucky and Bovismorbificans Strains of Human Origin[J].Antimicrobial Agents and Chemotherapy,2009,53(2):603-608.
    [12]翟晶.浙江省仔猪黄白痢大肠杆菌耐药表型和基因型分析[D].浙江大学,动物科学学院,2008.
    [13]马孟根,王红宁,余勇等.猪源致病性沙门氏菌耐药基因的分析[J].畜牧兽医学报,2006,37(1):65-70.
    [14]张珍珍,吴俊伟,魏述永等.动物源大肠杆菌超广谱β-内酰胺酶与头孢菌素酶基因型分析[J].畜牧兽医学报,2009,40(6):898-903.
    [15]Nabin R, Sang GK, Deog YL, et al.Characterization of TEM-,SHV-and AmpC-type β-lact-amases from cephalosporin-resistant Enterobacteriaceae isolated from swine[J].International Jou-rnal of Food Microbiology,2008,124(2):183-187.
    [16]Tian GB,Wang HN,Zou, LK, et al.Detection of CTX-M-15, CTX-M-22, and SHV-2 Extended-Spectrum beta-Lactamases (ESBLs) in Escherichia coli Fecal-Sample Isolates from Pig Farms in China[J].Foodborne Pathogens and Disease,2009,6(3):297-304.
    [17]刘维红.猪沙门氏菌耐药基因检测方法的建立及其应用[D].华中农业大学,动物医学院,2006.
    [18]赵静,杨汉春,李华等.用聚合酶链式反应检测猪源大肠杆菌卡那霉素耐药基因[J].农业生物技术学报,2000,8(3):237-239.
    [19]汤景元,王红宁,张鹏举等.95个猪场大肠杆菌耐药表型及氨基糖苷类药物耐药基因型调查[J].畜牧兽医学报,2008,39(4):472-477.
    [20]陈琳,刘健华,张俊丰等.猪肠道菌氨基糖苷类药物耐药基因分析[J].畜牧兽医学报,2009,40(7):1088-1096.
    [21]Rao S, Maddox CW,Hoien-Dalen P, et al.Diagnostic accuracy of class 1 integron PCR method in detection of antibiotic resistance in Salmonella isolates from swine production sys TEMs[J].Journal of Clinical Microbiology,2006,46(3):916:920.
    [22]Jensen VF, Jakobsen L, Emborg HD, et al.Correlation between apramycin and gentamicin use in pigs and an increasing reservoir of gentamicin-resistant Escherichia coli[J].Journal of Antimicrobial Chemotherapy,2006,58 (1):101-107.
    [23]Ma, MG;Wang, HN; Yu, Y, et al.Detection of antimicrobial resistance genes of pathogenic Salmonella from swine with DNA microarray[J]. Journal of Veterinary Diagnostic Invetigation, 2007,19(2):161-167.
    [24]Kadlec K, Schwarz S.Analysis and distribution of class 1 and class 2 integrons and associated gene cassettes among Escherichia coli isolates from swine, horses, Cats and dogs collected in the BfT-GermVet monitoring study[J].Journal of Antimicrobial Chemotherapy,2008, 62(3):469-473.
    [25]Chuanchuen, R; Padungtod, P.Antimicrobial Resistance Genes in Salmonella enterica Isolates from Poultry and Swine in Thailand[J].Journal of Veterinary Medical Science,2009, 71(10):1349-1355.
    [26]Futagawa-Saito K, Okatani AT, Sakurai-Komada N, et al.Epidemiological Characteristics of Salmonella enterica Serovar Typhimurium from Healthy Pigs in Japan[J].Journal of Veterinary Medical Science,2010,72(1):61-66.
    [27]羊云飞.多重PCR检测沙门氏菌、大肠杆菌对磺胺类、氯霉素类药物耐药基因的研究[D].四川农业大学,动物科技学院,2004.
    [28]周万蓉,王红宁,张安云等.猪和野生动物源大肠杆菌及沙门菌中磺胺类药物耐药基因的检测[J].中国兽医科学,2007,37(4):287-290.
    [29]Hammerum AM, Sandvag D, Andersen SR, et al.Detection of sul1, sul2 and sul3 in sulphon-amide resistant Escherichia coli isolates obtained from healthy humans, pork and pigs in Denmark [J].International Journal of Food Microbiology,2006,106(2):235-237.
    [30]Kozak GK, Pearl DL, Parkman J,et al.Distribution of Sulfonamide Resistance Genes in Escherichia coli and Salmonella Isolates from Swine and Chickens at Abattoirs in Ontario and Quebec, Canada[J].Applied and Environmental Microbiology,2009,75(18):5999-6001.
    [31]Kenneth MB, David GW, Patrick FM, et al.Characterization of Chloramphenicol Resistance in Beta-Hemolytic Escherichia coli Associated with Diarrhea in Neonatal Swine[J].Journal of Clinical Microbiology,2002,40(2):389-394.
    [32]Bischoff, KM; White, DG;Hume, ME, et al.The chloramphenicol resistance gene CmlA is disseminated on transferable plasmids that confer multiple-drug resistance in swine Escherichia coli[J].Ferns Microbiology Letters,2005,243(1):285-291.
    [33]Sams R A.Chemisty and metabolism of a novel-broad-spectrum antibiotic[J].Tieraeritliche Umschau,1995,50(10):703-707.
    [34]杜向党,阎若潜,沈建忠.氯霉素类药物耐药机制的研究进展[J].动物医学进展,2004,25(2):27-29.
    [35]Neela FA, Nonaka L, Rahman MH, et al.Transfer of the chromosomally encoded tetracycline resistance gene tet(M) from marine bacteria to Escherichia coli and Enterococcus faecalis[J].World Journal of Microbiology & Bicotechnology,2009,25(6):1095-1101.
    [36]张永标,张扣兴,唐英春等.产质粒介导AmpC酶和ESBLs细菌的耐药性及β-内酰胺酶基因型研究[J].中华微生物学和免疫学杂志,2004,24(7):577-582.
    [37]程训民,李敏,徐元宏等.产超广谱β-2内酰胺酶大肠杆菌耐药性及基因型检测[J].第三军医大学学报,28(16):1685-1687.
    [1]Drlica K. A strategy for fighting antibiotic resistance[J].ASM News.2001,67:27-33.
    [2]Low DE.Antimicrobial drug use and resistance among respiratory pathogens in the community[J].Clin Infect Dis,2001,33(3):206-213.
    [3]George P. Allen, Glenn W. Kaatz, Michael J.Rybak. In vitro activities of mutant prevention concentration-targeted concentrations of fluoroquinolones against Staphylococcus aureus in a pharmacodynamic model[J].International Journal of Antimicrobial Agents,2004,24:150-160.
    [4]崔俊昌,刘又宁,王睿等.氟喹诺酮药物对金黄色葡萄球菌同源耐药突变株的耐药突变选择窗研究[J].中国抗生素杂志,2006,31(4):212-216.
    [5]廖晓萍,刘文字,周艳等.氟喹诺酮类药物对大肠杆菌防突变浓度的测定[J].中国兽医杂志,2007,43(7):30-31.
    [6]梁蓓蓓,王睿,崔俊昌等.5种氟喹诺酮类药物对大肠埃希菌防耐药变异选择浓度测定[J].中华医院感染学杂志,2004,14(12):1325-1328.
    [7]翟晶,姜中其,陈俭.三种抗菌药物对仔猪黄白痢大肠杆菌的MPC测定[J].中国兽药杂志,2008,42(5):29-32.
    [8]Marcusson LL, Olofsson SK, Lindgren PK, et al.Mutant prevention concentrations of ciprofloxacin for urinary tract infection isolates of Escherichia coli[J]. Journal of Antimicrobial Chemotherapy,2005,55(6):938-943.
    [9]Sara KO, Linda LM, Patricia KL, et al.Selection of ciprofloxacin resistance in Escherichia coli in an in vitro kinetic model:relation between drug exposure and mutant prevention concentration[J].Journal of Antimicrobial Chemotherapy,2006,57:1116-1121.
    [10]Beraud R, Huneault L, Bernier D, et al. Comparison of the selection of antimicrobial resistance in fecal Escherichia coli during enrofloxacin administration with a local drug delivery system or with intramuscular injections in a swine model[J].Canadian Journal of Veterinary Research-Revue Canadienne de Recherche Veterinaire,2008,72(4):311-319.
    [11]Randall LP, Cooles SW, Piddock LJV, et al.Mutant prevention concentrations of ciprofloxacin and enrofloxacin for Salmonella enterica[J].Journal of Antimicrobial Chemotherapy, 2004,54(3):688-691.
    [12]Ling JM, Jin Y.Evaluation of six fluoroquinolones for their capabilities in restricting the selection of resistant salmonellae[J].Journal of Antimicrobial Chemotherapy,2006,57(2):364-365.
    [13]李国涛,鲁猛厚.氟喹诺酮类药物对伤寒沙门菌的防突变浓度测定[J].中华传染病杂志,2007,25(5):276-278.
    [14]Frederique P, Gerardo M.Mutant prevention concentration of ciprofloxacin and enrofloxacin against Escherichia coli, Salmonella Typhimurium and Pseudomonas aeruginosa[J].Veterinary Microbiology,2007,119:304-310.
    [15]NCCLS. Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animal[M].Second Edition.NCCLS document M31-A2 [ISBN 1-56238-461-9].NCCLS,940 West Valley Road, Suite 1400,Wayne, Pennsylvania 19087-1898 USA,2002,21-31.
    [16]Zhao X, Drlica K. Restricting the selection of antibiotic-resistant mutant bacterial: measurement and potential use of the mutant selection window[J].J Inf Dis,2002,185:561-565.
    [17]Zhao X, Eisner W, Perl-Rosenthal N,et al.Mutant prevention concentration of garenoxacin (BMS-284756) for ciprofloxacin susceptible and ciprofloxacin-resistant Staphylococcus aureus [J].Antimicrob Agents Chemother,2003,47 (3):1023-1027.
    [18]翟晶.浙江省仔猪黄白痢大肠杆菌耐药表型及耐药基因型分析[D].浙江大学,动物科学学院,2008.
    [19]Drlica, K.The mutant selection window and antimicrobial resistance[J].Journal of Antimicrobial Chemotherapy,2003,52(1):11-17.
    [20]陈杖榴主编.兽医药理学(第二版)[M].北京:中国农业出版社,2002,234-237.
    [21]Hien TT, Bethell DB,Hoa NTT, et al.Short courses of ofloxacin for treatment of multidrug-resistant typhoid[J].Clinical Infectious Diseases,1995,20(4):917-923.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700