JAK-STAT6信号传导通路抑制剂的高通量筛选及作用机理的初步探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     构建可用于高通量筛选JAK-STAT6信号传导通路抑制剂的工程细胞株,建立稳定可靠的筛选方法。在此基础上对1600种结构多样性的小分子化合物进行了筛选,并对筛选得到的可有效抑制JAK-STAT6通路的2种化合物进行了相关抑制机理的初步探讨,为最终获得针对性治疗哮喘等过敏性疾病的新药研发奠定基础。
     方法
     1.利用脂质体法将带有STAT6特异性识别启动子IgE基因序列(其后连有虫荧光素酶报告基因)的质粒IgE-luc和表达潮红霉素B的质粒共转染至HeLa细胞,经潮红霉素B抗性筛选及报告基因检测,得到稳定表达虫荧光素酶的工程细胞株。
     2.通过优化溶剂DMSO浓度, IL-4作用浓度及孵育时间等筛选条件,建立可靠的筛选方法,并在此基础上对1600种化合物进行了筛选。
     3.应用MTT法和流式细胞检测技术,观察高通量筛选得到的抑制效果较理想两种化合物NC000383, NC000438(化合物A,B)在不同剂量和不同作用间隔时间下对HeLa细胞代谢活力,增值及细胞周期的影响;观察化合物对IL-4诱导的BJAB细胞CD23分子表达的影响;利用磷酸钙瞬时转染技术,建立在IFN-Υ或IL-4刺激后可表达虫荧光素酶的细胞。通过报告基因的检测,探讨化合物对JAK-STAT6通路作用的特异性。
     结果
     1.通过对构建的多个细胞克隆的荧光素酶活性的检测,我们获得了依赖于STAT6活性的稳定表达细胞株,该细胞株可作为后期高通量筛选的细胞模型。
     2.通过对筛选条件的优化,结合操作的可行性,确定了高通量筛选时IL-4作用时间为8小时,终浓度为20ng/ml;化合物溶剂DMSO浓度体积百分比低于1。在此条件下,系统Z’因子达到0.64。通过对1600种化合物进行筛选,得到3种抑制效果较理想的化合物,选中率为1.85%o,其IC50值分别为:12.1μmol/L,16.5μmol/L,7.5μmol/L。
     3.MTT检测结果显示,在一定的剂量下,两种化合物对HeLa细胞代谢活力和增殖均有一定抑制作用,这种抑制作用具有剂量依赖性和时间依赖性,并与细胞接种密度相关。其中化合物A剂量为1.0ug/ml时,对细胞代谢活力抑制率高于50%,化合物B则在25%以内。流式细胞仪检测结果显示两种化合物均可引起HeLa细胞周期的延迟,表现为G2-M期阻滞及S期蓄积(P<0.05),各剂量组之间变化也具有显著性(P<0.05)。同时能降低由IL-4介导的BJAB细胞CD23分子的表达。在所测试的三个剂量组中(A:0.25μg/ml,0.5μg/ml,1.0μg/ml; B:1.0μg/ml,1.5μg/ml,2.0μg/ml),随着化合物剂量的增加,CD23分子的表达水平逐渐降低。细胞瞬时转染结果显示两种化合物均能降低相应细胞因子刺激引起的分别依赖于STAT1和STAT6信号传导通路活性的荧光素酶的表达,统计学分析无显著差异,显示两种化合物对STAT6通路的抑制不具有特异性。
     结论
     1、建立了基于JAK-STAT6信号传导通路的工程细胞株和稳定可靠的高通量筛选系统,并利用该系统,得到3种可有效抑制该传导通路的化合物。
     2、通过对其中两种化合物作用机理的初步探讨,推测化合物可能由于某些因素使细胞周期延长,细胞代谢活力下降,细胞增殖迟缓,进而引起相关基因(如IgE)的表达降低,其受体CD23表达亦降低,从而对IgE-luc细胞荧光素酶表达产生抑制作用。这种抑制作用对STAT6和STAT1通路均有影响。我们将在后期的实验中继续探讨化合物引起的细胞周期的延长以及CD23分子表达降低的机理。同时将对其它可能作用位点进行检测以及相关动物水平的研究。并期望以此深入,进一步探讨STAT6激活基因转录调控的分子机制,为治疗与该信号传导通路相关的哮喘等过敏性疾病的新药研发奠定基础。
Objective:Asthma is the most common chronic disease in children and young adults. The most effective treatment for asthma is glucocorticoids. These drugs are effective in controlling symptoms attributed to airway inflammation, but also have potentially serious side-effects. One of the principal goals in the development of new methods for treating asthma is therefore to identify non-steroidal drugs that can effectively control the inflammatory response underlying asthma symptoms. Many cytokines are involved in asthma, for example, interleukins (IL) IL-4and IL-13, which are derived from T-helper2(Th2) cells. It has been demonstrated that IL-4/JAK/STAT6signal pathway is highly active in asthma patients. The goal of our research is to establish a cell model which can be applied to identify potential new hits that selectively inhibit IL-4/JAK/STAT6signal pathway.
     Methods:The plasmid was cut with pCMV-luc and inserted into the synthetic STAT6DNA binding oligonucleotides sequences (IgE promotor sequences) by gene recombination. Using lipofectin method, the plasmid contains STAT6DNA binding oligonucleotides sequences (IgE promotor sequences) followed by luciferase DNA, and the plasmid expressing Hygromycine B were cotransfected into HeLa cell. After Hygromycine B selection, the luciferase activities of different cell clones were measured under IL-4stimulation. The suitable cell clone was selected to perform optimal conditions for high throughput screening. Some factors, such as final concentration of DMSO, working concentration of IL-4and incubation time were measured to optimize the assay condition.1,600compounds were screened by this reliable method.
     Furthermore, the potential molecular mechanisms of these inhibitors were investigated. HeLa cells were treated with different doses and intervals by NC00383or NC00438(compound A, compound B), which were obtained from high-throughput screening and had suppressive effect. The effects on cellular metabolic activity, cell proliferation and cell cycle distribution of HeLa were analyzed by MTT method and flow cytometer. STAT1or STAT6-dependent cell lines were established by the calcium-phosphate co-precipitant method, which can be activated by IFN-y and IL-4.
     Results:Measured by luciferase activity, The stable cell lines, which can express luciferase activity in a specific JAK-STAT6activation-dependent manner, were established to select inhibitors of JAK-STAT pathway via high-throughput screen. Considering optimization and feasibility of the assay condition, the stable cells were treated with IL-4for8hours,20ng/ml; the concentration of DMSO was lower than1. Under this condition,Z'-factor value of the system was near0.64. Three compounds were screened to have suppressive effect on JAK/STAT6pathway, with the hit rate at1.85%o, and the IC50value are showed respectively:12.1μmol/L,16.5μmol/L,7.5μmol/L.
     The MTT assay revealed that, at the given doses, the effects of both compounds on cellular metabolic activity and proliferation of HeLa cells were suppressively, with dose-dependent and time-dependent, which were also related to the different density of inoculability. The inhibitory rate of cellular metabolic activity of HeLa cells, which treated with compound A (1.0μg/ml) was higher than50%; while the rate of which treated with compound B was lower than25%. Results of flow cytometer assay showed that both compound A and B could prolong the HeLa cells cycle distribution, represented the blockage at G2-M phase and accumulation at S phase (P<0.05). The differences between each group are statistically significant (P<0.05). Besides that, IL-4-induced CD23expression was inhibited by compound A and B in BJAB cells. As the dosage increasing (A:0.25μg/ml,0.5μg/ml,1.0μg/ml, B:1.0μg/ml,1.5μg/ml,2.0μg/ml), the expression of CD23was lower down. Results of precipitate transfection experiment showed that both of these compounds could induce the expression of STAT1or STAT6-dependent luciferase. Since there's no statistically significant differences, these two kinds of compounds didn't have specific suppressive effect to STAT6pathway.
     Conclusion:The engineering cell line and high-throughput system depending on JAK/STAT6signal transdution pathway were established. This system can be used to screen compounds that inhibit JAK-STAT6signal transduction pathway. In our study, three effective compounds have been screened.
     According to the research of mechanism about these two compounds, we speculate that for some reasons they could prolong the cell cycle of HeLa cells, then reduce the cellular metabolic activity and slow down the proliferation, which induce the lower expression of related gene (e.g. IgE) and its receptor CD23, leading to suppressive effect to expression of IgE-luc luciferase, and affect the STAT6and STAT1pathway. We'll study more about if the prolonged S phase induced by the compounds was originally affected by expression of related genes or protein, and also what is the mechanism of decreased expression of CD23, the detection of other possible acting sites, which is important to the animal level research. More studies need to be done, for molecular mechanism of STAT6activating gene transcription and regulation, which will establish the basis for treatment of allergic diseases related to this signal transduction pathway.
引文
[1]O'Shea JJ, Ma A, Lipsky P. Cytokines and autoimmunity[J]. Nature Rev Immunol.2002,2(1):37-45
    [2]Jirapongsananuruk O, Leung DYM. Clinical applications of cytokines:new directions in the therapy of atopic diseases[J]. Ann Allergy Asthma Immunol. 1997,79:5-20
    [3]Huang H, Paul WE. Protein tyrosine phosphatase activity is required for IL 4 induction of IL-4 receptor alpha-chain[J]. J Immunol.2000,164(3):1211-1215
    [4]Haque SJ, Harbor P, Tabrizi M, et al. Protein-tyrosine phosphatase Shp-1 is a negative regulator of IL-4 and IL-13 dependent signal transduction[J]. J Biol Chem.1998,273(51):33893-33896
    [5]White ED, Andrews RP, Hershey GK. Sulfhydryl-2 domain-containing protein tyrosine phosphatase-1 is not a negative regulator of interleukin-4 signaling in murine mast cells[J]. J Leukoc Biol.2001,69(5):825-830
    [6]Alessandra B Pernis, Paul B Rothman. JAK-STAT signaling in asthma[J]. J Clin Invest.2002,109(10):1279-1283
    [7]Darnell JE. STATs and gene regulation[J]. Science.1997,277,1630-1635
    [8]Naka T, Narazaki M, Hirata T, et al. Structure and function of a new STAT-induced STAT inhibitor[J]. Nature.1997,387(6636):924-929
    [9]Ihle JN. The Stat family in cytokine signaling[J]. Curr Opin Cell Biol. 2001,13(2):211-217
    [10]Kisseleva T, Bhattacharya S. Signaling through the JAK/STAT pathway, recent advances and future challenges[J]. Gene.2002,285:1-24
    [11]Ni J, Lou W, Leman ZS, et al. Inhibition of constitute activated Stat3 signal pathway suppress grow of prostate cancer cells [J]. Cancer Res.2000,60(5): 1225-1228
    [12]O'Shea JJ, Pesu M, Borie DC, et al. A new modality for immunosuppression: targeting the JAK/STAT pathway[J]. Nat Rev Drug Discov.2004,3(7):555-64
    [13]Brown MA, Hural J. Functions of IL-4 and control of its expression[J]. Crit Rev Immunol.1997,17(1):1-32
    [14]Dickensheets HL, Venkataraman C, Schindler U. Interferons inhibit activation of STAT6 by interleukin 4 in human monocytes by inducing SOCS-1 gene expression[J]. ProcNatl Acad Sci USA.1999,96(19):10800-10805
    [15]Takeda K, Tanaka T, Shi W, et al. Essential role of Stat6 in IL-4 signaling[J]. Nature.1996,380(6575):627-630
    [16]Huang Z, Coleman JM, Su Y, et al. SHP-1 regulates STAT6 phosphorylation and IL-4-mediated function in a cell type-specific manner[J]. Cytokine. 2005,29(3):118-124
    [17]E1-Adawi H, Deng L, Tramontano A, et al. The functional role of the JAK-STAT pathway in post-infarction remodeling[J]. Cardiovasc Res.2003, 57(1):129-38
    [18]梁乾德,王升启.药物高通量筛选分析技术[J].国外医学药学分册,2002,29(1):22-28
    [19]Heemskerk J. High throughput drug screening[J]. Amyotroph Lateral Scler Other Motor Neuron Disord.2004,5 (1):19-21
    [20]Broach JR, Thorner J. High-throughput screening for drug disco very [J]. Nature. 1996,384(6604):14-16
    [21]Guangliang H, Nianyong SH, Guanhua D. HTS model for protein tyrosine kinase inhibitors [J]. Chin Pharmacol Bull.2005,21(5):628-31
    [22]Broach JR, Thorner J. High-through put screening for drug discovery [J]. Nature.1996,384(6604):14-16
    [23]黄家学,胡娟娟,杜冠华.化合物药物活性的高通量筛选[J].中国药理学通 报,1999,16(5):401-403
    [24]Zhang JH, Chung TD, Oldenburg KR. A simple statistical parameter for use in evaluation and validation of high throughput screening assays[J]. J Biomol Screen.1999,4(2):67-73
    [25]吴增茹,李有勇,徐筱杰.组合库的筛选及在新药研究中的应用[J].北京大学学报(自然科学版),2000,36:275
    [26]樊天蓓.新药设计与筛选新方法[A]:见:田乃旭,屠鹏飞药物学研究与展望[M].北京:科学出版社,1999:15-17
    [27]Deszo EL, Brake DK, Kelley KW, et al. IL-4-dependent CD86 expression requires JAK/STAT6 activation and is negatively regulated by PKC delta[J]. Cell Signal.2004,16(2):271-80
    [28]Quelle FW, Shimoda K, Thierfelder W, et al. Cloning of murine Stat6 and human Stat6, Stat proteins that are tyrosine phosphorylated in response to IL-4 and IL-3 but are not required for mitogenesis[J]. Mol Cell Biol. 1995,15(6),3336-3343
    [29]O'Shea JJ, Gadina M, Schreiber RD. Cytokine signaling in 2002:new surprises in the Jak/Stat pathway [J]. Cell.2002,109:121-31
    [30]Lukacs NW, Strieter RM, Chaklee CL, et al. MlP-la influences eosinophil recruitment in antigen-specific airway inflammation[J]. Eur J Immunol. 1995,25:245-251
    [31]E1-Adawi H, Deng L, Tramontano A, et al. The functional role of the JAK-STAT pathway in post-infarction remodeling[J]. Cardiovasc Res.2003, 57(1):129-38
    [32]陈凯先,蒋华良,裕汝运.创新药物研究与生物技术[A].见:中国科学院高技术发展报告[M].北京:科学出版社,2001:98-106
    [33]许家喜,麻远.组合化学[M].北京:北京大学出版社,1999:4
    [34]姚祝军.化学生物学—后基因阶段药物发现的发动机[A]:见:郑筱英,廖清江药学前沿[M].北京:中国医药科技出版社,20(2):178-187
    [35]Broach JR, Thorner J. High-throughput screening for drug discovery. Nature. [J] 1997,384:14-16
    [36]廖斌,张莉,廖清江.全球研究开发新药的进展与展望[A]:见:郑筱英,廖清江药学前沿仁[M].北京:中国医药科技出版社,20(2):99-129
    [37]Shimoda K, vanDeursen J, Sangster MY, et al. Lack of IL-4-induced Th2 response and IgE class switching in mice with disrupted Stat6 gene[J]. Nature. 1996,380(6575):630-633
    [38]Finkelman FD. Stat6 regulation of in vivo IL-4 responses[J]. J Immunol. 2000,164:2303-2310
    [39]Finkelman FD, Morris SC, Orekhova T, et al. Stat6 regulation of in vivo IL-4 responses[J]. J Immunol.2000,164(5):2303-2310
    [40]Papin JA, Palsson BO. The JAK-STAT signaling network in the human B-Cell: an extreme signaling pathway analysis[J]. Biophys J.2004,87(1):37-46
    [41]Eriksen KW, Nielsen M, Kaltoft K et al. Oligonucleotide fishing for STAT6: cross-talk between IL-4 and chemokines[J]. Exp Clin Immunogenet. 2001,18(4):233-241
    [42]Ryan JJ, DeSimone S, Klisch G. et al. IL-4 inhibits mouse mast cell FcεRI expression through a STAT6-dependent mechanism [J]. J Immunol. 1998,161(12):6915-6923
    [43]Mirmonsef P, Shelburne CP, Yeatman II, et al. Inhibition of Kit expression by IL-4 and IL-10 in murine mast cells:Role of STAT6 and phosphatidylinositol 3'-kinase[J]. J Immunol.1999,163(5):2530-2539
    [44]Rousset F, Malefijt RW, Slierendregt B. Regulation of Fc receptor for IgE (CD23) and class Ⅱ MHC antigen expression on Burkitt's lymphoma cell lines by human IL-4 and IFN-gamma[J]. J Immunol.1988,140(8):2625-32
    [45]Park LS, Friend D, Sassenfeld H M, et al. Characterization of the human B cell stimulatory factor 1 receptor[J]. J Exp Med.1987,166(2):476-488
    [46]Ohara J, Paul WE, Up-regulation of interleukin 4/B-cell stimulatory factor 1 receptor expression [J]. Proc Natl Acad Sci USA.1988,85(21):8221-8225.
    [47]Rothman P, Lutzker S, Cook W, et al. Mitogen plus interleukin 4 induction of C epsilon transcripts in B lymphoid cells[J]. J Exp Med.1988,168(6): 2385-2389
    [48]Berton MT, Uhr JW, Vitetta ES. Synthesis of germ-line gamma 1 immunoglobulin heavy-chain transcripts in resting B cells:Induction by interleukin 4 and inhibition by interferon gamma[J]. Proc Natl Acad Sci USA. 1989,86(8):2829-2833
    [49]Kanda N, Watanabe S. Ketoconazole suppresses interleukin-4 plus anti-CD40-induced IgE class switching in surface IgE negative B cells from patients with atopic dermatitis[J]. J Invest Dermatol.2002,119:590-599
    [50]Pandey V, Mihara S, Fensome-Green A, et al. Monomeric IgE stimulates NFAT translocation into the nucleus, a rise in cytosol Ca2+, degranulation, and membrane ruffling in the cultured rat basophilic leukemia-2H3 mast cell line[J]. J Immunol.2004,172:4048-4058
    [51]Nelms K, Keegan AD, Zamorano J, et al. The IL-4 receptor:Signaling mechanisms and biologic functions[J]. Annu Rev Immunol.1999,17:701-738
    [52]Nimmagadda SE, Spahn JD, Surs W, et al. Allergen exposure decreases glucocorticoid receptor binding affinity and steroid responsiveness in atopic asthmatics[J]. Am J Respir Cell Mol Biol.1997,155:87-93.
    [53]Renz H, Enssle K, Lauffer L, et al. Inhibition of allergen-induced IgE and IgG1 production by soluble IL-4 receptor[J]. Int Arch Allergy Immunol. 1995,106:46-54
    [54]Aittomaki S, Pesu M, Groner B, et al. Cooperation among Statl, glucocorticoid receptor, and PU.1 in transcriptional activation of the high-affinity Fc gamma receptor I in monocytes[J]. J Immunol.2000 Jun 1,164(11):5689-97
    [55]Hou J, Schindler U, Henzel WJ et al. An interleukin-4-induced transcription factor:IL-4/Stat[J].Science.1994,265,1701-1706
    [56]Xin C, Fan H, Yi J. References IL-4 and IL-4R (SH-2-containing protein tyro-sine phosphatase 1 is required for IL-4-induced IL-4R ex-pression in spleen cells) [J]. Chinese Science Bulletin.2005,50(14):1456-1461
    [57]Shuichi Yamamoto, Ikuko Kobayashi, Kohsuke Tsuji, et al. Upregulation of Interleukin-4 Receptor by Interferon-γ Enhanced Interleukin-4-Induced Eotaxin-3 Production in Airway Epithelium [J]. American Journal of Respiratory Cell and Molecular Biology.2004,31:456-462
    [58]Ono M, Okada, H, Bolland S, et al, Deletion of SHIP or SHP-1 reveals two distinct pathways for inhibitory signaling[J]. Cell.1997,90(2):293-301
    [59]Yi T, Mui AL, Krystal G, et al. Hematopoietic cell phosphatase associates with the interleukin-3 (IL-3) receptor beta chain and down-regulates IL-3-induced tyrosine phosphorylation and mitogenesis[J]. Mol Cell Biol.1993,13(12): 7577-7586
    [60]Paukku K, Yang J, Silvennoinen O. Tudor and nuclease-like domains containing protein p100 function as coactivators for signal transducer and activator of transcription 5[J]. Mol Endocrinol.2003,17,1805-1814
    [61]Yang J, Aittomaki S, Pesu M, et al. Identification of p100 as a coactivator for STAT6 that bridges STAT6 with RNA polymerase Ⅱ [J]. Embo J. 2001,21:4950-4958
    [62]Silvennoinen O. Immunodeficiencies and haematological disorders-direct connections to cellular signalling pathways[J]. Ann Med.1997,29:519-529
    [63]Kozlowski M, Larose L, Lee F, et al. SHP-1 binds and negatively modulates the c-Kit receptor by interaction with tyrosine 569 in the c-Kit juxtamembrane domain[J]. Mol Cell Biol.1998,18(4):2089-2099
    [64]Gavett S, O'Hearn D, Li X, et al. Interleukin 12 inhibits antigen-induced airway hyperresponsiveness, inflammation, and TH2 cytokine expression, in mice[J]. J Exp Med.1995,182:1527-1536
    [65]Okada S, Inoue HYamauchi K, et al. Potential Role of IL-1 in allergen induced late asthmatic reactions in guinea pigs:IL-1 receptor antagonist on late asthmatic reactions[J]. J Allergy Clin Immunol.1995,95:1236-1245
    [66]Boguniewicz M, Martin RJ, Martin D, et al. The effects of nebulized recombinant interferon gamma in asthmatic airways[J]. J Allergy Clin Immunol.1995,95:133-135
    [67]Shultz LD, Coman DR, Bailey CL, et al. "Viable motheaten", a new allele at the motheaten locus[J]. I Pathology Am J Pathol.1984,116(2):179-192
    [68]Romagnani S. Biology of human TH1 and TH2 cells[J]. J Clin Immunol. 1995,15:121-129
    [69]Losman JA, Chen XP, Hilton D, et al. Cutting edge:SOCS-1 is a potent inhibitror of IL-4 signal transduction[J]. J Immunol.1999,162(7):3370-3374
    [70]Long EO. Regulation of immune responses through inhibitory receptors[J]. Annu Rev Immunol.1999,17:875-904
    [71]Klingmuller U, Lorenz U, Cantley LC, et al. Specific recruitment of SH-PTP1 to the erythropoietin receptor causes inactivation of JAK2 and termination of proliferative signals[J]. Cell.1995,80(5):729-738
    [72]Bittleman D, Casale T. Allergic models and cytokines[J]. Am J Respir Crit Care Med.1994,150:72-76
    [73]Duodecim, Silvennoinen O. New knowledge about cytokines[J]. Hurme M. 2003,119(8):773-779
    [74]Becker S, Groner B, Muller CW. Three-dimensional structure of the STAT3 homodimer bound to DNA[J]. Nature.1998,394:145-151
    [75]Chen X. Crystal structure of a tyrosine phosphorylated STAT-1 dimer bound to DNA[J]. Cell.1998,93:827-839
    [76]Danielle LK, Douglas JH. SOCS Proteins:Negative Regulators of Cytokine Signaling[J]. Stem Cells.2001,19(5):378-387
    [77]Wormald S, Hilton DJ. Inhibitors of Cytokine Signal Transduction[J]. J Biol Chem.2004,279(2):821-824
    [78]Cheng HY, Li P, David M, et al. Arsenic inhibition of the JAK-STAT pathway. Oncogene.[J]2004,23(20):3603-12
    [79]Starr R, Hilton DJ. Negative regulation of the JAK-STAT pathway[J]. Bioessays.1999,21(1):47-52
    [80]Ungureanu D, Vanhatupa S, et al. PIAS proteins promote SUMO-1 conjugation to STAT1[J]. Blood.2003,102(9):3311-3313
    [81]Seki Y, Kai H, Shibata R, et al. Role of the JAK-STAT pathway in rat carotid artery remodeling after vascular injury[J]. Circ Res.2000,87(1):12-18
    [82]Mascareno E, Shafei EL, Maulik N, et al. JAK-STAT pathway in rat carotid artery with cardiac dysfunction during ischemia and reperfusion[J]. Circulation. 2001,104(3):325-329
    [83]Zhong H, Murphy TJ, Minneman KP. Activation of signal transducers and activators of transcription by alpha(1A)-adrenergic receptor stimulation in PC12 cells[J]. Mol Pharmacol.2000,57(5):961-967
    [84]Rebbaa A, Chou PM, Mirkin BL. Factors secreted by human neuroblsatoma mediated doxorubicin resistance by activating STAT3 and inhibiting apoptosis[J]. Mol Med.2001,7(6):393-400
    [85]Kovanen PE, Junttila I,Takaluoma K, et al. Regulation of JAK2 tyrosine kinase by protein kinase C during macrophage differentiation of IL-3-dependent myeloid progenitor cells[J]. Blood.2000,95(5):1626-1632
    [86]Jason AP, Bernhard OP. The JAK-STAT Signaling Network in the Human B-Cell:An Extreme Signaling Pathway Analysis[J]. Biophysical Journal. 2004,87:37-46
    [87]O'Shea JJ, Pesu M, Borie DC, et al. A new modality for immunosuppression: targeting the JAK/STAT pathway[J]. Nat Rev Drug Discov.2004,3(7):555-64

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700