携带TIMP-3基因的重组腺病毒增加HPV阳性宫颈癌放疗敏感性的体内外实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景与目的细胞对细胞外基质成分(extracellular matrix, ECM)的降解是肿瘤发生和发展过程中最重要的分子事件,基质金属蛋白酶(matrixmetalloproteinases MMPs)是一类最重要的执行ECM降解的水解酶,多种肿瘤组织中都伴有MMPs的高表达.基质金属蛋白酶组织抑制因子(tissue inhibitors of metalloproteinase TIMPs)是一类能特异性抑制MMPs功能的活性因子,对抑制肿瘤浸润和转移有重要功能。TIMP-3是TIMPs家族的新成员,由于它诱导肿瘤细胞凋亡和抑制血管形成的作用,使其在肿瘤治疗中越来越受到重视。
     宫颈癌发病率在全球妇女恶性肿瘤中居第二位。本实验室前期的有关体内外实验研究证实Ad-TIMP-3可有效地治疗宫颈癌:Ad-TIMP-3转染可以强烈地诱导宫颈癌细胞的凋亡,并存在显著的旁观者效应;Ad-TIMP-3可引起CaSKi细胞的G2/M期阻滞;Ad-TIMP-3和放疗联合使用可使疗效明显增强,起到效应相加或协同作用;对裸鼠宫颈癌皮下移植瘤用Ad-TIMP-3单独瘤体内注射或与顺铂腹腔内注射联合使用均显示明显抑制肿瘤生长。
     基于上述研究结果,本研究着重于TIMP-3增加HPV阳性宫颈癌放疗敏感性方面的探讨。以腺病毒为载体,将TIMP-3基因导入HPV阳性宫颈癌细胞HeLa-Luc和CaSki,分析TIMP-3对宫颈癌细胞的作用以及与放疗联合应用后的效果。
     方法应用RT-PCR法及Western Blot法检测HeLa-Luc和CaSki细胞感染Ad-TIMP-3前后TIMP-3 mRNA及蛋白表达水平;MTT法验证Ad-TIMP-3对HeLa-Luc和CaSki细胞增殖的抑制;平板克隆方法检测Ad-TIMP-3与X射线联合应用后对细胞生长的影响;体外侵袭及粘附实验检测Ad-TIMP-3与X射线联合应用后对细胞侵袭、粘附能力的影响;裸鼠体内实验了解Ad-TIMP-3与X射线联合应用后HeLa-Luc细胞体内致瘤性的变化。
     结果RT-PCR和Western Blot证实TIMP-3在HeLa-Luc和CaSki两种宫颈癌细胞系中均表达低下,而感染Ad-TIMP-3后TIMP-3表达水平明显升高,Ad-TIMP-3感染HeLa-Luc和CaSki细胞前后TIMP-3的表达有明显差异。MTT结果显示Ad-TIMP-3能够明显抑制HeLa-Luc和CaSki细胞增殖,且具有剂量效应关系。平板克隆方法显示Ad-TIMP-3与x射线联合应用可显著减少平板克隆形成数。体外侵袭及粘附实验显示Ad-TIMP-3与X射线联合应用后显著减弱宫颈癌细胞的侵袭能力及粘附性。裸鼠体内实验显示Ad-TIMP-3与X射线联合组HeLa-Luc细胞的体内致瘤性显著下降。
     结论Ad-TIMP-3抑制宫颈癌细胞增殖。与x射线联合应用后,Ad-TIMP-3显著提高宫颈癌细胞放疗敏感性,抑制放疗诱导的肿瘤细胞生长,显著削弱其侵袭及粘附能力,抑制其体内致瘤能力。
The background and objective:Excessive degradation and remodeling of the extracellular matrix (ECM) is one of the hallmarks of cancer progression at nearly every step from the first breakdown of the basal membrane of a primary tumor up to the extended growth of established metastases. Matrix metalloproteinases (MMPs) is the most important proteases in ECM turn over, and many tumors have high levels of MMPs.The activities of MMPs can be inhibited by tissue inhibitors of metalloproteinases (TIMPs), which are the endogenous and specific inhibitors of MMPs. As a new member of the TIMPs family, TIMP-3 has several unique properties that set it apart from other TIMPs, including its ability to induce apoptosis and inhibit angiogenesis in many tumors.
     Cervical cancer is the second most common malignancy in women worldwide. The past study by the doctor zhangying in our lab has suggested that Ad-TIMP-3 is an efficient agent for cervical cancer treating. Transfered Ad-TIMP-3 could induce massive apoptosis of cervical cancer cells and it had marked bystand effect. Ad-TIMP-3 remarkably arrested CaSKi cell in G2/M phase prior to apoptotic cell death. Combined Ad-TIMP-3 and radiation could induce stronger cytotoxic effect. In summary, there is additive or synergistic effect when using Ad-TIMP-3 and radiotherapy in combination. In vivo, directed injection of Ad-TIMP-3 into CaSKi tumors subcutaneously implanted into nude mice only, or followed by intraperitoneal administration of cisplatin, both could inhibit tumor growth significantly.
     In the base of the study above,our study focuses on the aspect of whether exogenous TIMP-3 sensitizes HPV positive cervical cancer cells to irradiation.
     Methods:We measured the expression of TIMP-3 mRNA by RT-PCR and TIMP-3 protein by Western Blot in CaSKi and HeLa-Luc before and after transfered Ad-TIMP-3.An adenovirus expressing TIMP-3 (Ad-TIMP-3), alone or in combination with irradiation, was used to treat HPV positive cervical cancer cells HeLa-Luc and CaSki, we compared the growth inhibition efficacy,invasion and adhesion ability. In vivo, we injected different HeLa-Luc cells treated by Ad-TIMP-3, x-ray, combination of this two or none of these subcutaneously into nude mice, and measured the growth of the tumor.
     Results:RT-PCR and Western Blot revealed that the expression of exogenous TIMP-3 was elevated obviously after infection. Ad-TIMP-3 suppressed the growth of HPV positive cervical cancer cells. Combination of Ad-TIMP-3 and irradiation significantly suppressed the cell growth, and decreased the invasion and adhesion ability than separate treatment. In vivo, after being treated by combination of Ad-TIMP-3 and x-ray, the cervical cancer cells growing to tumors was inhibited significantly than other cells in nude mice.
     Conclusions:Therefore our findings suggestes that Ad-TIMP-3 is an efficient agent for cervical cancer treating. Ad-TIMP-3 sensitizes HPV positive cervical cancer cells to irradiation.Combination of Ad-TIMP-3 and x-ray is a potential novel approach to the therapy of HPV positive cervical cancer.
引文
1. Parkin, D.M., et al., Estimating the world cancer burden:Globocan 2000. Int J Cancer,2001. 94(2):p.153-6.
    2. Chen, C.J., et al., Cancer epidemiology and control in Taiwan:a brief review. Jpn J Clin Oncol,2002.32 Suppl:p. S66-81.
    3. 路文婷,段仙芝,岑尧,宫颈癌流行病学概况.内蒙古医学杂志,2007.39(8):p.967-971.
    4. 李秀娟,宫颈癌流行病学及高危因素研究进展.实用医技杂志,2006.13(19):p.3517-3520.
    5. 王春晓,佟林林,孙淑娥,宫颈癌流行病学调查和筛查研究进展.齐齐哈尔医学院学报,2007.28(7):p.826-831.
    6. Calleja-Macias, I.E., et al., Worldwide genomic diversity of the high-risk human papillomavirus types 31,35,52, and 58, four close relatives of human papillomavirus type 16. J Virol,2005.79(21):p.13630-40.
    7. Clifford, GM., et al., Human papillomavirus types in invasive cervical cancer worldwide:a meta-analysis. Br J Cancer,2003.88(1):p.63-73.
    8. Motoyama, S., et al., The role of human papilloma virus in the molecular biology of cervical carcinogenesis. Kobe J Med Sci,2004.50(1-2):p.9-19.
    9. Pett, M. and N. Coleman, Integration of high-risk human papillomavirus:a key event in cervical carcinogenesis? J Pathol,2007.212(4):p.356-67.
    10. Castellsague, X. and N. Munoz, Chapter 3:Cofactors in human papillomavirus carcinogenesis--role of parity, oral contraceptives, and tobacco smoking. J Natl Cancer Inst Monogr,2003(31):p.20-8.
    11. 孔为民,孙建衡,宫颈癌的放射治疗及进展.中国实用妇科与产科杂志,2003.19(3):p.3.
    12. 谷铣之,肿瘤放射治疗学.1993:p.2.
    13. Duenas-Gonzalez, A., et al., Modern management of locally advanced cervical carcinoma. Cancer Treat Rev,2003.29(5):p.389-99.
    14. Anderson, W.F., R.M. Blaese, and K. Culver, The ADA human gene therapy clinical protocol:Points to Co.nsider response with clinical protocol, July 6,1990. Hum Gene Ther, 1990.1(3):p.331-62.
    15. Sato T, Sakai T, Noguchi Y, et al. Tumor-stromal cell contact promotes invasion of human uterine cervical carcinoma cells by augmenting the expression and activation of stromal matrix metalloproteinases. Gynecol Oncol.2004,92(1):47-56.
    16. Sheu BC, Lien HC, Ho HN, et al. Increased expression and activation of gelatinolytic matrix metalloproteinases is associated with the progression and recurrence of human cervical cancer. Cancer Res.2000,63(19):6537-42.
    17. Asha Nair S, Karunagaran D, Nair MB, et al. Changes in matrix metalloproteinases and their endogenous inhibitors during tumor progression in the uterine cervix. J Cancer Res Clin Oncol.2003,29(2):123-31.
    18. Okuda K, Miyazaki A, Momose M, et al. Levels of tissue inhibitor of metalloproteinase-1 and matrix metalloproteinases-1 and-8 in gingival crevicular fluid following treatment with enamel matrix derivative (EMDOGAIN). J Peiodom Res.2001,36:309-316.
    19. Bello L, Lucini V, Carrabba G, et al. Simultaneous inhibitor of glioma angiogenesis, cell proliferation and invasion by a naturally occurring fragment of human metalloproteinase-2. Cancer Res.2001,61:8730-8739.
    20. Brew K, Dinakarprndian D, Nagase H. Tissue inhibitors of metalloproteinase:evolution, stuctrue and function J. Biochem Biophys Acta.2000,1477(1-2):267-283.
    21. Hauwel M, Furon E, Gasque P. Molecular and cellular insights into the coxsackie-adenovirus receptor:role in cellular interactions in the stem cell niche. Brain Res Rev.2005,48:265-72
    22. Vorburger, S.A. and K.K. Hunt, Adenoviral gene therapy. Oncologist,2002.7(1):p.46-59.
    23. Sheu BC, Lien HC, Ho HN et al. Increased expression and activation of gelatinolytic matrix metalloproteinases is associated with the progression and recurrence of human cervical cancer. Cancer Res.2003,63(19):653-742.
    24. Lambert E, Dasse E, Haye B, et al. TIMPs as multifacial proteins. Critical Reviews in Oncology/Hematology.2004,49:187-198.
    25. Ahonen M, Poukkula M, Baker AH, et al. Tissue inhibitor of metalloporteinase-3 induces apoptosis in melanoma cells by stabilization of death receptors. Oncogene 2003,22:2121-2134.
    26. Alonso ME, Bello MJ, Gonzalez-Gomez P, et al. Aberrant promoter methylation of multiple genes in oligodendrogliomas and ependymomas. Cancer Genet Cytogenet.2003,144(2):134-42.
    27. Bachman KE, Herman JG, Corn PG, et al. Methylation-associated siencing of the tissue inhibitor of metalloproteinase-3 gene suggest a suppressor role in kidney,brain, and other human cancers. Cancer Res,1999,59:798-802.
    28. Beaulieu E, Kachra Z, Mousseau N, et al. Matrix metalloproteinase and their inhibitors in human pituitary tumors. Neurosurgery,1999,45:1432-1440.
    29. 吕国丽,文剑明,胥健敏等.人肝细胞癌金属蛋白酶组织抑制因子-3的表达及与基因启动子甲基化的关系.中华病理学杂志2003,32(3):230-233.
    30. Hsieb CL. Dependence of transcriptional repression on CpG methylation density. Mol cell Biol.1994,14:5487-5494.
    31. Baker AH, George AJ, Zaltsman AB, et al. Inhibition of invasion and induction of apoptotic cell death of cancer cell lines by overexpression of TIMP-3. Br J Cancer.1999,79 (9/10): 1347-1355.
    32. Bond M, Murphy G, Bennett MR, et al. Localization of the N terminus Metalloproteinase inhibitor is associated with proapoptotic activity. J Biol Chem 2000,275:41358-41363.
    33. George SJ, Lloyd CT, Angelini GD, et al. Inhibition of late vein graft neointima formation in human and porcine models by adenovirus-mediated overexpression of metalloproteinase-3. Circulation.2000,101:296-304.
    34. Yu WH, Yu S, Meng Q, Brew K, et al. TIMP-3 binds to sulfated glycosaminoglycans of the extracellular matrix. J Biol Chem.2000,275 (40):31226-32.
    35. Thorburn J, Moore F, Rao A, et al. Selective inactivation of a Fas-associated death domain protein (FADD)-dependent apoptosis and autopHagy pathway in immortal epithelial cells. Mol Biol Cell.2005,16(3):1189-99.
    36. Jaganathan J, Petit JH, Lazio BE, et al. Tumor necrosis factor-related apoptosis-inducing ligand-mediated apoptosis in established and primary glioma cell lines. Neurosurg Focus.2002, 3(3):ecp1.
    37. Oberle C, Massing U, Krug HF. On the mechanism of alkylphosphocholine (APC)-induced apoptosis in tumour cells. Biol Chem.2005,386(3):237-45.
    38. Martin MC, Allan LA, Lickrish M, et al. Protein kinase a regulates caspase-9 activation by apaf-1 downstream of cytochrome C. J Biol Chem.2005,280(15):15449-55.
    39. Riedl SJ, Li W, Chao Y, et al. Structure of the apoptotic protease-activating factor 1 bound to ADP. Nature.2005,434(7035):926-33.
    40. Nagahara Y, Shinomiya T, Kuroda S, et al. Phytosphingosine induced mitochondria-involved apoptosis. Cancer Sci.2005,96(2):83-92.
    41. Storey, A., et al., Role of a p53 polymorphism in the development of human papillomavirus-associated cancer. Nature,1998.393(6682):p.229-34.
    42. Lechner, M.S. and L.A. Laimins, Inhibition of p53 DNA binding by human papillomavirus E6 proteins. J Virol,1994.68(7):p.4262-73.
    43. Hamada, K., et al., Adenovirus-mediated transfer of a wild-type p53 gene and induction of apoptosis in cervical cancer. Cancer Res,1996.56(13):p.3047-54.
    44. Ahn, W.S., et al., Recombinant adenovirus-p53 gene transfer and cell-specific growth suppression of human cervical cancer cells in vitro and in vivo. Gynecol Oncol,2004.92(2): p.611-21.
    45. Das, S., W.S. El-Deiry, and K. Somasundaram, Efficient growth inhibition of HPV 16 E6-expressing cells by an adenovirus-expressing p53 homologue p73beta. Oncogene,2003. 22(52):p.8394-402.
    46. Amour AS, Slocombe PM, Webster A et al. TNF-a converting enzyme (TACE) is inhibited byTIMP-3.FEBS Lett.1998,435:39-44.
    47. Amour AS. The in vitro activity of ADAM-10 is inhibited by TIMP-1 and TIMP-3. FEBS Lett.2000,473:275-279.
    48. Kashiwagi M, Tortorella M, Nagase H, et al. TIMP-3 is a potent inhibitor of aggrecanasel (ADAM-TS5). J Biol Chem.2001,276:12501-12504.
    49. Smith MR, Kung H, Durum SK. TIMP-3 induces cell death by stabilizing TNF-alpha receptors on the surface of human colon carcinoma cells. Cytokine.1997,9(10):770-80.
    50 Fitzgerald ML, Wang Z, Park PW. Shedding of syndecan-1 and-4 ectodomains is r egulated by multiple signaling pathways and mediated by a TIMP-3-sensitive metalloproteinase. J Cell Biol.2000,148(4):811-24.
    51. Hargreaves PG, Wang F, Antcliff J. Human myeloma cells shed the interleukin-6 receptor: inhibition by tissue inhibitor of metalloproteinase-3 and a hydroxamate-based metalloproteinase inhibitor. Br J Haematol.1998,101(4):694-702.
    52. Borland G, MurpHy G, Ager ATissue inhibitor of metalloproteinases-3 inhibits shedding of L-selectin from leukocytes. J Biol Chem.1999,274(5):2810-5.
    53. Bond M, MurpHy G, Bennett MR, et al. Tissue inhibitor of metalloproteinase-3 induces a Fas-associated death domain-dependent type II apoptotic pathway. J Biol Chem.2002, 275:13787-13795.
    54. Bond M, MurpHy G, Bennett MR, et al. Localization of the N terminus. Metalloproteinase inhibitor is associated with proapoptotic activity. J Biol Chem.2000,275:41358-41363.
    55. Ahonen M, Ala-Aho R, Baker AH, et al. Antitumor activity and bystander effect of adenovirally delivered tissue inhibitor of metalloproteinases-3. Mol Ther.2002,5(6):705-15.
    56. Horowitz J. Adenovirus-mediated p53 gene therapy:overview of preclinical studies and potential clinical applications. Curr Opin Mol Ther.1999,1(4):500-9.
    57. Driessens G, Harsan L, Browaeys P, Assessment of in vivo chemotherapy-induced DNA damage in a p53-mutated rat tumor by micronuclei assay. Ann N Y Acad Sci.2003,10:775-9.
    58. Gwosdz C, Balz V, Scheckenbach K, p53, p63 and p73 expression in squamous cell carcinomas of the head and neck and their response to cisplatin exposure. Adv Otorhinolaryngol.2005,62: 58-71.
    59. Tanaka M, Rosser CJ, Grossman HB. PTEN gene therapy induces growth inhibition and increases efficacy of chemotherapy in prostate cancer. Cancer Detect Prev.2005,29(2):170-4.
    60. Malley BW Jr, Li D, McQuone SJ, et al. Combination nonviral interleukin-2 gene immunotherapy for head and neck cancer:from bench top to bedside. Laryngoscope.2005,, 115(3):391-404.
    61. Ohnishi K, Ota I, Takahashi A, Transfection of mutant p53 gene depresses X-ray-or CDDP-induced apoptosis in a human squamous cell carcinoma of the head and neck. Apoptosis.2002, (4):367-72.
    62. Kim SH, Wong RJ, Kooby DA, et al. Combination of mutated herpes simplex virus type 1 (G207 virus) with radiation for the treatment of squamous cell carcinoma of the head and neck. Eur J Cancer.2005,41(2):313-22.
    63. Buchsbaum DJ, Chaudhuri TR, Zinn KR. Radiotargeted gene therapy. J Nucl Med.2005,46 Suppl 1:179S-86S.
    64. Horowitz J. Adenovirus-mediated p53 gene therapy:overview of preclinical studies and potential clinical applications. Curr Opin Mol Ther.1999, (4):500-9.
    65. Castedo, M., et al., Cell death by mitotic catastrophe:a molecular definition. Oncogene,2004. 23(16):p.2825-37.
    66. Vakifahmetoglu, H., M. Olsson, and B. Zhivotovsky, Death through a tragedy:mitotic catastrophe. Cell Death Differ,2008.
    67. Huh, J.J., et al., Transduction of adenovirus-mediated wild-type p53 after radiotherapy in human cervical cancer cells. Gynecol Oncol,2003.89(2):p.243-50.
    68. Belli M, Sapora O, Tabocclini MA, et al. Molecular targets in cellular response to inonizing radiation and implications in space radiation protection [J]. Radiat Res (Tokyo).2002, 43(9):513-519.
    69. Jordan MA.Mechamism of action of antiumor drrgs that interact with microtubules and bubulin.[J]. Cur Med Chem Anti-Canc Agents.2002,2(1); 1-17.
    70. Gao H, Jin S, Song Y, et al. B23 regulates GADD45a nuclear translocation and contributes to GADD45a-induced cell cycle G2-M arrest. J Biol Chem,2005,280(12):10988-96.
    71. Covington MD, Bayless KJ, Burghardt RC, et al. Ischemia-Induced Cleavage of Cadherins in NRK Cells:Evidence for a Role of Metalloproteinases. Am J Physiol Renal Physiol.2005, Mar 15:Epub ahead of print.
    72. Deepa N, Nicola J,Willamson RJ, et al. Shedding of c-Met is regulated by crosstalk between a G-protein coupled receptor and the EGF receptor and is mediated by a TIMP-3 sensitive metalloproteinase. J Cell Sci.2000,114(5):1213-1220.
    73. Borland G, MurpHy G, Ager A. Tissue inhibitor of metalloproteinase-3 inhibitor shedding of L-selectin from leukocytes. J Bio Chem.1999,274(5):2810-2815.
    74. Ueda M, Terai Y, Yamashita Y, et al. Correlation between vascular endothelial growth factor-C expression and invasion phenotype in cervical carcinomas. Int J Cancer.2002,98(3):335-43.
    75. Hashimoto I, Kodama J, Seki N, et al. Vascular endothelial growth factor-C expression and its relationship to pelvic lymph node status in invasive cervical cancer. Br J Cancer.2001,85(1): 93-7.
    76. Jiang, M., C.P. Rubbi, and J. Milner, Gel-based application of siRNA to human epithelial cancer cells induces RNAi-dependent apoptosis. Oligonucleotides,2004.14(4):p.239-48.
    77. Palliser, D., et al., An siRNA-based microbicide protects mice from lethal herpes simplex virus 2 infection. Nature,2006.439(7072):p.89-94.
    78. Zhang, Y, et al., Engineering mucosal RNA interference in vivo. Mol Ther,2006.14(3):p. 336-42.
    79. Harrington KJ, Nutting CM, Pandha HS. Gene therapy for head and neck cancer. Cancer Metastasis Rev.2005,24(1):147-64.
    80. Creenberger. In optimizing radiation therapy for nonsmall cell lung cancer. Chenst.1998, 113(suppl):46-52.
    81. Kwong YL, Chen SH, Kosai K, et al. Combination therapy with suicide and cytokine genes for hepatic metastases of lung cancer.Chenst.1997,112:1332-1337.
    [1]Parkin DM,Bray FI,Devesa SS. Cancer burden in the year 2000. The global p icture [J] Eur J Cancer,2001,37 (Supp 18):S4.
    [2]Kuzuya K. Chemoradiotherapy for uterine cancer:current status and perspectives.Int J Clin Oncol,2004,9(6):458-470.
    [3]林伍梅,李艳芳,冯艳玲,等.宫颈锥切诊治CINⅢ宫颈癌ⅠA1期临床观察[J].肿瘤学杂志,2006,12(2):109-111.
    [4]贺豪杰,潘凌亚,黄惠芳,等.宫颈锥切术对宫颈上皮内瘤变患者妊娠及其结局的影响[J].中华妇产科杂志,2007,42(8):515-517.
    [5]Smith JR,Boyle DC, CorlessDJ, et al. Abdominal radical hysterectomy:a new surgical technique for the concervative management of cervical carcinoma[J]. Br J Obstet Gynecol,1997, 104(10):1196-1200.
    [6]DargentD,Bmn JL, Remy I. Pregnancies following radical trachelectomy for invasive cervical cancer[J]. Gynecol Oncol,1994,52Z(1):105-108.
    [7]Shepherd JH, Spencer C, Herod J, et al. Radical vaginal trachelectomy as a fertility-sparing procedure in women with early-stage cervical cancer-cumulative p regnancy rate in a series of 123 women[J]. BJOG,2006,113 (6):719-724.
    [8]张燕萍,邓继红,张雯,等.保留生育功能宫颈癌根治术的临床应用[J].中国妇幼保健,2008,23(6):841-842.
    [9]Shepherd JH,Milliken DA. Conservative surgery for carcinoma of the cervix[J]. ClinicalOncology,2008,20 (6):395-400.
    [10]Nezhat C,Nezhet F,BurrellMO, et al. Laparoscopic radical hysterectomy with paraaortic and pelvic node dissection [J]. Am J Obstet Gynecol,1994,170 (2):699.
    [11]Querleu D. Leblanc E. Laparoscopic surgery for gynecological oncology. Current Opinion Obs Gyne,2003,15:309-314.
    [12]ShimadaM, Kigawa J,Nishimura R, et al. Ovarian metastasis in carcinoma of the uterine cervix[J]. Gynecol Oncol,2006,101(2):234-237.
    [13]Nakanishi T,Wakai K, Ishikawa H, et al. A comparison of ovarian metastasis between squamous cell carcinoma and adenocarcinoma of the uterine cervix[J]. GynecolOncol,2001,82 (3): 504-509.
    [14]陈忠东,胡泳,曾宪端.卵巢移位及阴道延长术在宫颈癌治疗中的作用[J].中国肿瘤临床,2000,27(4):308-309.
    [15]FIGO Committe on Gynecologic Oncology. Staging of the cervix uteri. In:Benedet JL, Bender H, Jones III H, Edited. Staging classifications and clinical practice guidelines of gynecologic cancers,Elsevier,2003,36-54.
    [16]Rhim CC,Park J S,Bae SN,et al. Sentinel node biopsy as an indicator for pelvic nodes dissection in early stage cervical cancer. J Korean Med Sci,2002,17 (4):507-511.
    [17]殷蔚伯.谷铣之1肿瘤放射治疗学[M].第3版.北京:中国协和医科大学出版社,2002:889-936.
    [18]Mutic S,Malyapa RS, Grigsby PW, et al. PET-guided IMRT for cervical carcinoma with positive para-aortic lympy nodes-a dose-es-calation treatment planning study. Int J Radiat Oncol Biol Phys,2003,55 (1):28-35.
    [19]Olofsen van Acht MJ,Quint S, Seven M,et al. Three-dimensional treatment planning for postoperative radiotherapy in patients with node-positive cervical cancer. Comparison between a conventional and a conformal technique. Strahlenther nkol,1999,175 (9):462-469.
    [20]van de Bunt L, van der Heide UA, Ketelaars M, et al. Conventional,conformal, and intensity-modulated radiation therapy treatment planning of external beam radiotherapy for cervical cancer:The impact of tumor regression[J]. Int J Radiat Oncol Biol Phys,2006,64(1):189-196.
    [21]Salama JK, Mundt AJ, Roeske J, et al. Preliminary outcome and toxicity report of extended-field, intensity-modulated radiation therapy for gynecologic malignancies [J]. Int J Radiat Oncol Biol Phys,2006,65(4):1170-1176.
    [22]Gerszten K, Colonello K, Heron DE, et al. Feasibility of concurrent cisplatin and extended field radiate on therapy (EFRT) using intensity-modulated radiotherapy (IMRT) for carcinoma of the cervix[J]. Gynecol Oncol,2006,102(2):182-188.
    [23]Napolitano U, Imperato F, Mossa B, et al. The role of neoadjuvant chemotherapy for squamous cell cervical cancer (Ⅰb-Ⅲb):A long-term randomized trial. Eur J Gynaecol Oncol,2003,24(1):51-59.
    [24]Park DC, Kim JH,Lew YO, et al. Phase Ⅱ trial of neoadjuvant paclitaxel and cisplatin in uterine cervical cancer. Gynecol Oncol,2004,92(1):59-63.
    [25]Sardi JE, Boixadera MA, Sardi JJ. Neoadjuvant chemotherapy in cervical cancer:a newtrend[J]. Curr Opin Obstet Gynecol,2005,17(1):43-47.
    [26]Selvaggi L, Loizzi V, DI-Gilio AR, et al. Neoadjuvant chemotherapy in cervical cancer:a 67 patients experience [J]. Int J Gynecol Cancer,2006,16(2):631-637.
    [27]10 Tabata T, Takeshima N, Nishida H, et al. A randomized study of primary bleomycin, vincristine mitomycin and cisplatin (BOMP) chemotherapy followed by radiotherapy versus radiotherapy alone in stage ⅢB and ⅣA squamous cell carcinoma of the cervix. Anticancer Res,2003,23 (3C):2885-2901.
    [28]Maneo A, Colombo A, Landoni F, et al. Treatment of stage ⅢB cervical carcinoma. A comparison between radiotherapy, concurren chemo-radiotherapy and neoadjuvant chemotherapy. Minerva Ginecol,2005,57(2):141-152.
    [29]Symonds RP, HabeshawT, Reed NS, et al. The Scottish and Manchester randomised trial of neoadjuvant chemotherapy for advanced cervical cancer. Eur J Cancer,2000,36 (15):994-1001.
    [30]Napolitano U, Imperato F, Mossa B, et al. The role of neoadjuvant chemotherapy for squamous cell cervical cancer (Ib-Ⅲb):A long-term randomized trial. Eur J Gynaecol Oncol,2003,24(1):51-59.
    [31]Saito T, Takehara M, Lee R, et al. Neoadjuvant chemotherapy with cisplatin, aclacinomycin A, and mitomycin C for cervical adenocarcinoma:a preliminary study. Int J Gynecol Cancer, 2004,14 (3):483-490.
    [32]Timotheadou E, Gore ME. Neoadjuvant chemotherapy for locally advanced cervical cancer. Eur J Cancer,2003,39(17):2419-2421.
    [33]ThomasGM. Improved treatment for cervical cancer-concurrent chemotherapy and radiotherapy. NEngl J Med,1999,340(15):1198-1200.
    [34]Alberts DS, Garcia D, Mason-Liddil N. Cisplatin in advanced cancer of the cervix:an update.Semin Oncol,1998,18[1Suppl3]:11-24.
    [35]Kuzuya K. Chemoradiotherapy for uterine cancer:current status and perspectives.Int J Clin Oncol,2004,9(6):458-470.
    [36]Green JA, Kirwan JM, Tierney JF, et al. Survival and recurrence after concomitant chemotherapy and radiotherapy for cancer of the uterine cervix:a systematic review and meta-analysis.Lancet,2001,358(9284):781-786.
    [37]Ryu HS, Chun M, Chang KH, et al. Postoperative adjuvant concurrent chemoradiotherapy improves survival rates for high-risk, early stage cervical cancer patients. Gynecol Oncol,2005, 96(2):490-495.
    [38]McLemore MR. Gardasil:Introducing the new human papillomavirus vaccine [J]. Clin JOncol Nurs,2006,10(5):559-560.
    [39]Siddiqui MA, Perry CM. Human papillomavirus quadrivalent (types 6,11,16,18) recombinant vaccine (Gardasil) [J]. Drugs,2006,66 (9):1263-1271.
    [40]Daniel D, Chiu C, Giraudo E, et al. CD4+T cell-mediated antigen-specific immunotherapy in a mouse model of cervical cancer [J]. Cancer Res,2005,65 (5):2018-2025.
    [41]LiuM,AcresB,Balloul J-M, et al. Gene-based vaccines and immunotherapeutics [J]. PNAS,2004,101 (supp 1-2):14567-14571.
    [42]Garcia F, Petry KU,Muderspach L, et al. ZYC101a for treatment of high-grade cervical intraepithelial neoplasia:A randomized controlled trial[J]. Obstet Gynecol,2004,103 (2):317-326.
    [43]Klencke B,Matijevic M, Urban RG, et al. Encap sulated p lasmid DNA treatment for human papillomavirus 16-associated anal dysplasia:A phase I study of ZYC101 [J]. Clin Cancer Res, 2002,8(5):1028-1037.
    [44]McNeil C. Search for HPV treatment vaccine heats up, researchers optimistic[J]. J Natl Cancer Inst,2006,98 (14):954-955.
    [45]陈怀增,梁朝霞.宫颈癌HPV疫苗研究现状[J].实用妇产科杂志,2004,20(2):70-71.
    [46]徐道华,夏永鹏,邱宗荫,等.子宫颈癌治疗性疫苗的研究进展[J].免疫学杂志,2004,20(3):46-49.
    [47]Heinemann L,Dillon S,Crawford A, et al. Flow cytometric quantitation of the protective efficacy of dendritic cell based vaccines in a human papillomavirus type 16 murine challenge model [J]. J Virol Methods,2004,117 (1):9-18.
    [48]DiPaolo JA,Alvarez Salas LM. Advances in the development of therapeutic nucleic acids against cervical cancer [J]. Expert Op in Biol Ther,2004,4 (8):1251.
    [49]Sima N,Wang P, Xu Q, et al. Reversal effect of antisense RNA targeting human papillo-mavirus 16 (HPV 16) E6E7 onmalignancy of human cervical cancer cell line SiHa [J]. Ai Zheng, 2007,26(1):26.
    [50]Hamada K, Shirakawa T. Adenovirus-mediated transfer of human papillomavirus 16 E6/E7 antisense RNA and induction of apoptosis in cervical cancer [J]. J Cell Biochem,2007,100 (5): 1191.
    [51]Wu S,Meng L,Wang S, et al. Reversal of the malignant phenotype of cervical cancer CaSki cells through adeno-associated virus mediated delivery of HPV16 E7 antisense RNA [J].Clin Cancer Res,2006,12,2032.
    [52]GuW, Putral L, Hengst K, et al. Inhibition of cervical cancer cell growth in vitro and in vivo with lentiviral-vector delivered short hairp in RNA targeting human papillomavirus E6 and E7 oncogenes (J).Cancer Gene Ther,2006,13 (11):1023.
    [53]Hamada K, Alemany R, Zhang WW, et al. Adenovirus-mediated transfer of a wild-type p53 gene and induction of apoptosis in cervical cancer[J]. Cancer Res,1996,56 (13):3047-3054.
    [54]Wolf J K, Mills GB, Bazzet L, et al. Adenovirus-mediated p53 growth inhibition of ovarian cancer cells is independent of endogenous p53 status[J]. Gynecol Oncol,1999,75 (2):261-266.
    [55]Coll JL, Negoescu A, Louis N, et al. Antitumor activity of bax and p53 naked gene transfer in lung cancer:in vitro and in vivo analysis[J]. Hum Gene Ther,1998,9 (14):2063-2074.
    [56]Tsao YP, Huang SJ, Chang JL, et al. Adenovirus-Mediated p21 (WAF1PSDIIPCIP1) Gene Transfer Induces Apoptosis of Human Cervical Cancer Cell Lines[J]. J Virol,1999,73 (6):4983-4990.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700