rAAV1载体介导外源性VEGF-165和Angiopoietin-1基因治疗大鼠脑缺血的疗效评价及其机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景和目的
     动物实验和临床病人的研究资料均表明,急性脑缺血能诱导缺血区及其周围区血管保护性增生,新生血管能够增加缺血半暗区氧气和营养物质的供应,从而促进神经功能的恢复;然而,脑缺血后自体内源性促血管增殖因子表达量往往不足以诱导有效的代偿性微循环重建。因此,应用外源性促血管生成因子促进微血管增生治疗脑缺血的实验研究在近年来逐渐成为了研究热点之一。其中血管内皮生长因子(vascular endothelial growth factor,VEGF)是目前发现的最强的,也是在脑缺血实验中应用最多的促血管生成因子。大量研究表明,在急性脑缺血后VEGF在脑内有广泛的表达,在中枢神经系统VEGF不仅具有促进血管内皮细胞增殖和促进新生血管形成的作用,而且还具有直接的神经营养、神经保护以及抗神经细胞和神经前体细胞凋亡等多种作用,是治疗脑缺血等缺血性疾病颇具前景的细胞因子。另外,急性脑缺血的治疗有严格的时间窗,治疗因子早期干预治疗以挽救缺血半暗带受损细胞是基本治疗原则之一。然而,不少研究明确表明,VEGF在急性脑缺血的早期血管内应用可以增加血脑屏障(blood brain barrier,BBB)的破坏,增加微血管的渗出,诱发严重的脑水肿,甚至形成缺血灶内血肿。近年来,为了在脑缺血早期发挥VEGF最大限度的治疗作用,避免其作为通透性因子诱发脑水肿的副作用,很多学者相继做了不少有益的探索研究。这些研究主要集中在以下两个方面:(1)改良VEGF的用药途径:很多研究表明,在脑缺血早期通过脑室途径应用VEGF能够充分发挥其治疗保护作用,同时避免了其诱发BBB破坏和脑水肿的副作用。这些研究结果证实治疗途径对于VEGF在脑缺血的早期的成功应用可能是至关重要的,脑室途径可能因为VEGF不直接接触作用于血管内皮细胞从而减轻或者避免了诱发微血管的通透性增高;(2)VEGF和血管生成素(Angiopoietin-1,Ang1)联合应用:近年来很多研究还表明,Ang-1参与维持成熟血管的完整性,它的表达可抑制单层血管内皮细胞的通透性,防止微血管渗漏,是迄今为止发现的第一个作用于血管内皮细胞的抗血管通透性因子,这提示Ang-1在调节血管通透性方面发挥重要作用。也有很多研究也证明,Ang-1可以对抗由VEGF所引发的血管渗透性增加,并认为Ang-1和VEGF的平衡对于维持中枢神经系统BBB的完整性起关键作用,而在急性脑缺血打破了这种平衡从而诱发了BBB的破坏。
     研究内容、方法及结果
     尽管上述最新的研究成果证实了早期脑室途径应用VEGF或者VEGF和Ang-1联合应用在脑缺血的治疗中取得了较好的疗效。但是VEGF和Ang-1都是大分子蛋白质,无论通过何种用药途径恐怕很难透过BBB进入脑实质内发挥其药理作用。也有研究指出通过脑室内输注,由于BBB的限制,大分子量的治疗因子只是局限分布在脑室室管膜表层和脑脊液内,其分布体积不足脑体积的1%。相比之下,脑室途径应用病毒载体介导的VEGF或Ang-1基因转染可能是更好的治疗途径,因为病毒载体比大分子治疗因子具有更强的通过BBB和脑室壁的能力。而且我们实验室的前期工作已经证实成年大鼠侧脑室内输注携带增强型绿色荧光蛋白(enhanced green fluorescent protein,EGFP)报告基因的rAAV1型载体能够实现EGFP在大脑皮层、胼胝体和纹状体等较广泛脑区的转染和基因表达。
     本研究将采用脑立体定向输注的方法,将rAAV1-VEGF治疗载体或者rAAV1-VEGF和rAAV1-Angl的混合治疗载体通过侧脑室转染途径对大鼠大脑中动脉阻塞缺血再灌注模型(transient middle cerebral artery occlusion,tMCAO)进行基因治疗,以观察其在脑缺血再灌注损伤中的治疗作用和可能的机制。本研究共分两部分:(1)rAAV1-VEGF165单基因治疗大鼠脑缺血疗效及其机制的实验研究。在该研究中我们系统的检测了rAAV1-VEGF165脑室途径转染后在脑内的表达和脑微血管增殖的情况,并在缺血早期不同时问点对脑水含量、颅内压、脑水肿体积、脑梗塞体积和神经功能评分等项目进行了系统的检测。我们的结果表明在大鼠tMCAO脑缺血再灌注损伤前8周,通过脑室途径注入治疗载体rAAV-VEGF165基因治疗可以使VEGF165在脑内得到较高水平的表达,并可以促进脑内微血管密度的增加,但VEGF165的过度表达在脑缺血早期会诱发缺血半球脑水含量显著增加、脑水肿体积增大,从而引起颅内压显著性增高,进而加重了缺血后的继发性脑损伤,导致了脑梗死体积的扩展和神经功能评分的增加。上述结果可能与VEGF在脑缺血早期增加微血管和BBB的通透性密切相关。(2)rAAV1-VEGF165联合rAAV1-Ang1基因治疗大鼠脑缺血疗效及机制的实验研究。在该研究中我们系统的检测了rAAV1-VEGF165和rAAV1-Ang1经脑室途径混合转染后在脑内的表达情况,并对大鼠脑缺血再灌注损伤后的BBB的通透性、缺血周围区微血管的密度、缺血周围区脑血流量、细胞调亡及BBB功能性蛋白因子表达等项目进行了系统的检测,我们的研究结果初步表明,通过脑室途径在大鼠tMCAO脑缺血再灌注损伤前8周,利用rAAV-VEGF165联合rAAV-Ang1双基因治疗与rAAV-VEGF165单基因治疗相比,可以明显减轻脑缺血后BBB渗出,促进缺血灶周围区血管密度的显著增加及增加其脑血流量,增加脑保护蛋白c-fos的生成表达,减少了缺血性细胞的调亡,减少与脑水肿密切相关的4型水通道蛋白的表达。上述治疗机制可能与rAAV-Ang1协同VEGF促使具有occludin蛋白表达的在功能上更加成熟的新生微血管增殖有关。结论在脑缺血早期应用VEGF可以明显增加缺血脑组织BBB的渗出,诱发脑水肿,从而引起颅内压明显增高,加重了继发性脑损伤,故应该避免VEGF在脑缺血急性期的应用。脑室途径应用VEGF并不能避免其在脑内增加微血管渗出的副作用。通过脑室途径,rAAV载体介导的VEGF和Ang1双基因联合治疗脑缺血是很有前景的治疗方法,该方法一方面可以成功的实现治疗基因在脑内的广泛转染,另一方面外源性表达的VEGF和Ang1在脑缺血急性期能够协同促进有功能的微血管增生,抑制BBB渗出,协同发挥神经保护作用。
Introduction
     Vascular endothelial growth factor (VEGF), a potent endothelial cell mitogen associated with angiogenesis, is strongly induced after acute focal cerebral ischemia in rats. And it has been suggested as a promising pharmacological agent for stroke therapy due to its strong angiogenic and neuroprotective capacities. In addition, early intervention of therapeutic factors within the time window of therapy is considered as a main treatment principal for stroke to rescue the ischemic penumbra. However, a few of previous studies clearly indicated that acute VEGF therapy via intraluminal way during reperfusion significantly aggravated ischemic injury by increased leakage of blood-brain barrier (BBB) and intracerebral hematoma formation in experimental stroke. In contrast, several recent investigations have demonstrated that VEGF application via intraventricular approach at the early stage of stroke could exhibit neuroprotective effects on brain ischemia without increasing BBB permeability or inducing further cerebral edema. And several new reports also indicated that the VEGF-induced permeability effect in the acute stage of stroke could be counteracted by angiopioetin-1, which shows a synergic effect on inducing ischemic angiogenesis with VEGF. Fortunately, these results open the possibility that the intraventricular route may be a favourable way for VEGF to exert early protective effect on cerebral ischemic injury, since VEGF infusion by this way was believed to avoid acting directly on vascular endothelial cells to increase microvessel leakage. Or combination of Ang-1 and VEGF may provide a more adapted therapeutic strategy than the use of VEGF alone in the early therapy for stroke.
     However, it was also reported that large-molecule therapeutic agents with intracerebroventricular delivery only distributed to the ependymal surface of the ipsilateral ventricle and failed to significantly penetrate into cerebral parenchyma with a very small treatment volume less than one percent of the brain. Likewise, with a molecular weight as large as 45,000 Da and 72,000 Da, infused VEGF or Ang-1 protein in the cerebral ventricle may be unable to substantially transport across the BBB and reach its maximal efficiency in the treatment of cerebral ischemia either. In contrast, preischemic vector-mediated VEGF gene transfer via intraventricular way may be a preferable alternative for VEGF early treatment for ischemic stroke due to its increased ability to pass through BBB. In a previous study, it was reported that intraventricular infusion of rAAV1 vector carrying enhanced green fluorescence protein gene resulted in a multiple transduction in both choroids plexus and paraventricular regions of adult rat brain18. In the present study,we injected rAAVl-VEGF165 into the lateral ventricle of adult rats eight weeks before transient middle cerebral artery occlusion (tMCAO) for gene therapy and examine its possible effects on ischemic insults at the early stage of stroke.
     Materials and methods
     PartⅠ
     Ninety-three adult male Wistar rats (body weight 180-200 g) were divided randomly into there equal groups to be injected with rAAV-VEGF (2.0×10~(10)vg),rAAV-null(2.0×10~(10)vg),or physiological saline (NS) respectively. And tMCAO models were induced after 8 weeks. During the following 48 hours, intracranial pressure (ICP), brain water content, cerebral edema volume in MRI,cerebral infarct volume, modified neurological severity scores (NSS), and VEGF level were determined respectively and compared statistically with that of the control groups.
     PartⅡ
     Ninety-three adult male Wistar rats (body weight 180-200 g) were divided randomly into two equal groups to be injected with rAAV-VEGF(1.0×10~(10)vg)/rAAV-Angl(1.0×10~(10)vg) or rAAV-VEGF(1.0×10~(10)vg)/rAAV-null(1.0×10~(10)vg),respectively. And tMCAO models were induced after 8 weeks. During the following 48 hours, VEGF and Ang-1 level, BBB permeablilty,microvessle density,the cerebral blood flow in peri-infarct zone, AQP4 expression, c-fos expression, and occludin expression were determined respectively and compared statistically with that of the control group.
     Results
     PartⅠ
     Intraventricular application of rAAV-VEGF eight weeks before tMCAO resulted in VEGF overexpression and microvessle density elevation in multiple brain areas. At 24 hours following tMCAO, the rAAV-VEGF group, with VEGF overexpression in the rats brain, showed a significantly increase in ICP, brain water content, and cerebral edema volume compared with two control groups (P<0.05). And the ICP significantly correlated with the brain water content in the infarct hemisphere in all three groups during 24 hours following tMCAO (r=0. 93, P<0. 05). At 48 hours followingtMCAO,a 1.4-fold larger infarct volume and 1. 3-fold higher NSS were observed in the rAAV-VEGF group than both control groups (P<0.05). PartⅡ
     Intraventricular application of rAAV-VEGF/rAAV-Angl eight weeks before tMCAO resulted in VEGF and Ang-1 overexpression, and significantly decreased EB permeability and AQP4 expression following ischemia (P< 0.05).In addition, the cerebral blood flow was also signicantly elevated with increased microvessle density in peri-infarct zone in rAAV-VEGF/ rAAV-Angl group compared to rAAV-VEGF/ rAAV-null group(P<0.05). Moreover, we also observed that there were more positive cells expressing c-fos or occludin in the brain of rat coming from rAAV-VEGF/rAAV-Angl group than that from rAAV-VEGF/rAAV-null group(P<0.05).
     Conclusions
     PartⅠOur results indicate that intraventricular rAAV-VEGF pretreatment can result in deleterious intracranial hypertension and augment secondary ischemic insults at the early stage of tMCAO, and preischemic VEGF gene transfer via intraventricular approach may not be a favorable therapeutic strategy for tMCAO which should be adopted with caution or avoided in experimental stroke.
     PartⅡIn cerebral ischemia, the combination of Ang-1 and VEGF could be used early to promote the formation of mature neovessles and protect the injured cells without inducing side effects on BBB permeability. And the early intraventricualr injection of mixed rAAV-VEGF and rAAV-Angl may be a rational therapeutic strategy in the gene therapy for experimental stroke.
引文
1. Storkebaum E, Lambrechts D, Carmeliet P. VEGF: once regarded as a specific angiogenic factor, now implicated in neuroprotection[J]. Bioessays, 2004 ,26(9):943-54.
    2. Namiecinska M, Marciniak K, Nowak JZ, et al.VEGF as an angiogenic, neurotrophic, and neuroprotective factor[J]. Postepy Hig Med Dosw, 2005,59:573-83.
    3. Zhang ZG, Zhang L, Tsang W, et al. Correlation of VEGF and angiopoietin expression with disruption of blood-brain barrier and angiogenesis after focal cerebral ischemia. J Cereb Blood Flow Metab. 2002 Apr;22(4):379-92.
    4. Lennmyr F, Ata KA, Funa K, et al. Expression of vascular endothelial growth factor (VEGF) and its receptors (Flt—1 and Flk-1) following permanent and transient occlusion of the middle cerebral artery in the rat. J Neuropathol Exp Neurol. 1998 Sep;57(9):874-82.
    5. Beck H, Acker T, Puschel AW, et al.Cell type-specific expression of neuropilins in an MCA-occlusion model in mice suggests a potential role in post-ischemic brain remodeling. J Neuropathol Exp Neurol. 2002 Apr; 61 (4): 339-50.
    6. Zhang L, Zhang ZG, Zhang C, et al. Intravenous administration of a GPIIb/IIIa receptor antagonist extends the therapeutic window of intra-arterial tenecteplase-tissue plasminogen activator in a rat stroke model. Stroke 2004; 35: 2890-2895
    7. Davis S, Lees K, Donnan G. Treating the acute stroke patient as an emergency: Current practices and future opportunities. Int J Clin Pract 2006; 60: 399-407
    8. Zhang ZG, Zhang L, Jiang Q, et al.VEGF enhances angiogenesis and promotes blood-brain barrier leakage in the ischemic brain. J Clin Invest. 2000 Oct;106(7):829-38.
    9. Bao WL, Lu SD, Wang H, Sun FY. Intraventricular vascular endothelial growth factor antibody increases infarct volume following transient cerebral ischemia. Zhongguo Yao Li Xue Bao. 1999 Apr;20(4):313-8.
    10. Harrigan MR, Ennis SR, Masada T, et al. Intraventricular infusion of vascular endothelial growth factor promotes cerebral angiogenesis with minimal brain edema. Neurosurgery 2002; 50: 589-598
    11. Sun Y, Jin K, Xie L, et al. VEGF-induced neuroprotection, neurogenesis, and angiogenesis after focal cerebral ischemia. J Clin Invest 2003; 111: 1843 - 185
    12. KayaD, Gursoy-Ozdemir Y, Yemisci M, et al. VEGF protects brain against focal ischemia without increasing blood - brain permeability when administered intracerebroventricularly. J Cereb Blood Flow Metab 2005; 25: 1111-1118
    13. Yan Q, Matheson C, Sun J, et al. Distribution of intracerebral ventricularly administered neurotrophins in rat brain and its correlation with Trk receptor expression. Exp Neurol 1994; 127: 23-26
    14. Pardridge WM. Targeting neurotherapeutic agents through the blood-brain barrier. Arch Neurol 2002; 59: 35-40
    15. Li SF, Wang RZ, Meng QH, et al. Intra-ventricular infusion of rAAV1-EGFP resulted in transduction in multiple regions of adult rat brain: A comparative study with rAAV2 and rAAV5 vectors. Brain Res 2006; 1122: 1 -9
    16. Bellomo M, Adamo EB, Deodato B, et al. Enhancement of expression of vascular endothelial growth factor after adenoassociated virus gene transfer is associated with improvement of brain ischemia injury in the gerbil. Pharmacol Res 2003; 48: 309-317
    17. Shen F, Su H, Fan Y, et al. Adeno-associated viral-vector-mediated hypoxia-inducible vascular endothelial growth factor gene expression attenuates ischemic brain injury after focal cerebral ischemia in mice. Stroke 2006; 37: 2601-2606
    1.Hayashi T, Abe K, Suzuki H, et al. Rapid induction of vascular endothelial growth factor gene expression after transient middle cerebral artery occlusion in rats. Stroke 1997; 28: 2039-2044
    2. Plate KH, Beck H, Danner S, et al. Cell type specific upregulation of vascular endothelial growth factor in an MCA-occlusion model of cerebral infarct. J Neuropathol Exp Neurol 1999; 58: 654-666
    3. Hayashi T, Noshita N, Sugawara T, et al. Temporal profile of angiogenesis and expression of related genes in the brain after ischemia. J Cereb Blood Flow Metab 2003; 23: 166-180
    4. Sun Y, Jin K, Xie L, et al. VEGF-induced neuroprotection, neurogenesis, and angiogenesis after focal cerebral ischemia. J Clin Invest 2003; 111: 1843-185
    5. Bellomo M, Adamo EB, Deodato B, et al. Enhancement of expression of vascular endothelial growth factor after adenoassociated virus gene transfer is associated with improvement of brain ischemia injury in the gerbil. Pharmacol Res 2003; 48: 309-317
    6. Manoonkitiwongsa PS, Schultz RL, McCreery DB, et al. Neuroprotection of ischemic brain by vascular endothelial growth factor is critically dependent on proper dosage and may be compromised by angiogenesis. J Cereb Blood Flow Metab 2004;24: 693-702
    7.Storkebaum E, Lambrechts D, Carmeliet P. VEGF: Once regarded as a specific angiogenic factor, now implicated in neuroprotection. Bioessays 2004; 26: 943-954
    8. Wang Y, Kilic E, Kilic U, et al. VEGF overexpression induces postischaemic neuroprotection, but facilitates haemodynamic steal phenomena. Brain 2005; 128: 52-63
    9. Kaya D, Gursoy-Ozdemir Y, Yemisci M, et al. VEGF protects brain against focal ischemia without increasing blood - brain permeability when administered intracerebroventricularly. J Cereb Blood Flow Metab 2005; 25: 1111-1118
    10.Shen F, Su H, Fan Y, et al. Adeno-associated viral-vector-mediated hypoxia-inducible vascular endothelial growth factor gene expression attenuates ischemic brain injury after focal cerebral ischemia in mice. Stroke 2006; 37: 2601 -2606
    11.Zhang L, Zhang ZG, Zhang C, et al. Intravenous administration of a GPIIb/IIIa receptor antagonist extends the therapeutic window of intra-arterial tenecteplase-tissue plasminogen activator in a rat stroke model. Stroke 2004; 35: 2890-2895
    12. Davis S, Lees K, Donnan G. Treating the acute stroke patient as an emergency: Current practices and future opportunities. Int J Clin Pract 2006; 60: 399-407
    13.Zhang ZG, Zhang L, Jiang Q, et al. VEGF enhances angiogenesis and promotes blood - brain barrier leakage in the ischemic brain. J Clin Invest 2000; 106: 829-838
    14.Abumiya T, Yokota C, Kuge Y, et al. Aggravation of hemorrhagic transformation by early intraarterial infusion of low-dose vascular endothelial growth factor after transient focal cerebral ischemia in rats. Brain Res 2005; 1049: 95-103
    15. Harrigan MR, Ennis SR, Sullivan SE, et al. Effects of intraventricular infusion of vascular endothelial growth factor on cerebral blood flow, edema, and infarct volume. Acta Neurochir (Wien) 2003; 145: 49-53
    16. Yan Q, Matheson C, Sun J, et al. Distribution of intracerebral ventricularly administered neurotrophins in rat brain and its correlation with Trk receptor expression. Exp Neurol 1994; 127: 23-26
    17.Pardridge WM. Targeting neurotherapeutic agents through the blood-brain barrier. Arch Neurol 2002; 59: 35-40
    18. Li SF, Wang RZ, Meng QH, et al. Intra-ventricular infusion of rAAV1-EGFP resulted in transduction in multiple regions of adult rat brain: A comparative study with rAAV2 and rAAV5 vectors. Brain Res 2006; 1122: 1-9
    19.Torii K, Uneyama H, Nishino H, et al. Melatonin suppresses cerebral edema caused by middle cerebral artery occlusion/reperfusion in rats assessed by magnetic resonance imaging. J Pineal Res 2004; 36: 18-24
    20. Kusaka G, Calvert JW, Smelley C, et al. New lumbar method for cerebrospinal fluid pressure in rats. J Neurosci Methods 2004; 135: 121-127
    21. Watanabe T, OkudaY, Nonoguchi N, et al. Postischemic intraventricular administration of FGF-2 expressing adenoviral vectors improves neurologic outcome and reduces infarct volume after transient focal cerebral ischemia in rats. J Cereb Blood Flow Metab 2004; 24: 1205 -
    22. Koskinen LO. Effects of raised intracranial pressure on regional cerebral blood flow: A comparison of effects of naloxone and TRH on the microcirculation in partial cerebral ischaemia. Br J Pharmacol 1985; 85: 489-497
    
    23. Valtysson J, Jiang M, Persson L. Transient elevation of the intracranial pressure increases the infarct size and perifocal edema after subsequent middle cerebral artery occlusion in the rat. Neurosurgery 1992; 30: 887-890
    24. Klatzo I. Brain oedema following brain ischaemia and the influence of therapy. Br J Anaesth 1985; 57: 18-22
    25. Ropper AH, Shafran B. Brain edema after stroke: Clinical syndrome and pressure. Arch Neurol 1984; 41: 26-29
    26.O' Brien MD, Waltz AG. Intracranial pressure gradients caused by experimental cerebral ischemia and edema. Stroke 1973; 4: 694-698
    27. Manoonkitiwongsa PS, Schultz RL, Whitter EF, et al. Contraindications of VEGF-based therapeutic angiogenesis: Effects on macrophage density and histology of normal and ischemic brains. Vascul Pharmacol 2006; 44: 316-325
    28.Weaver DD, Winn HR, Jane JA. Differential intracranial pressure in patients with unilateral mass lesions. J Neurosurg 1982; 56:660 - 665
    29. van Bruggen N, Thibodeaux H, Palmer JT, et al. VEGF antagonism reduces edema formation and tissue damage after ischemia/reperfusion injury in the mouse brain. J Clin Invest 1999; 104:1613-1620
    30. Wang Z, Ma HI, Li J, et al. Rapid and highly efficient transduction by double-stranded adeno-associated virus vectors in vitro and in vivo. Gene Ther 2003; 10: 2105-2111
    31.Harrigan MR, Ennis SR, Masada T, et al. Intraventricular infusion of vascular endothelial growth factor promotes cerebral angiogenesis with minimal brain edema. Neurosurgery 2002; 50: 589-598
    32. Bao WL, Lu SD, Wang H, Sun FY. Intraventricular vascular endothelial growth factor antibody increases infarct volume following transient cerebral ischemia. Zhongguo Yao Li Xue Bao. 1999 Apr;20(4):313-8.
    33. Plate KH, Beck H, Danner S, Allegrini PR, Wiessner CCell type specific upregulation of vascular endothelial growth factor in an MCA-occlusion model of cerebral infarct. J Neuropathol Exp Neurol. 1999 Jun;58(6):654-66.
    34.Zhang ZG, Zhang L, Tsang W, Soltanian-Zadeh H, Morris D, Zhang R, Goussev A, Powers C, Yeich T, Chopp M.Correlation of VEGF and angiopoietin expression with disruption of blood-brain barrier and angiogenesis after focal cerebral ischemia. J Cereb Blood Flow Metab. 2002 Apr;22(4):379-92.
    35.Manoonkitiwongsa PS, Schultz RL, McCreery DB, Whitter EF, Lyden PD. Neuroprotection of ischemic brain by vascular endothelial growth factor is critically dependent on proper dosage and may be compromised by angiogenesis. J Cereb Blood Flow Metab. 2004 Jun;24(6):693-702.
    36. Wang Y, Kilic E, Kilic U, Weber B, Bassetti CL, Marti HH, Hermann DM. VEGF overexpression induces post-ischaemic neuroprotection, but facilitates haemodynaraic steal phenomena. Brain. 2005 Jan;128(Pt 1): 52-63.
    37. Bates DO, Harper SJ. Regulation of vascular permeability by vascular endothelial growth factors. Vascul Pharmacol. 2002
    38. Bates DO, Hillman NJ, Williams B, Neal CR, Pocock TM. Regulation of microvascular permeability by vascular endothelial growth factors.J Anat. 2002 Jun;200(6):581-97. Review
    39. Dobrogowska DH, Lossinsky AS, Tarnawski M, Vorbrodt AW. Increased blood-brain barrier permeability and endothelial abnormalities induced by vascular endothelial growth factor. J Neurocytol. 1998 Mar; 27 (3): 163-173
    40. Roberts WG, Palade GE. Increased microvascular permeability and endothelial fenestration induced by vascular endothelial growth factor. J Cell Sci. 1995 Jun; 108 ( Pt 6):2369-79.
    41.Schoch HJ, Fischer S, Marti HH. Hypoxia-induced vascular endothelial growth factor expression causes vascular leakage in the brain. Brain. 2002 Nov;125(Pt 11):2549-57
    42.Thurston G, Rudge JS, Ioffe E, Zhou H, Ross L, Croll SD, Glazer N, Holash J, McDonald DM, Yancopoulos GD. Angiopoietin-1 protects the adult vasculature against plasma leakage. Nat Med. 2000 Apr ;6(4):460-3.
    43. Zhang ZG, Zhang L, Jiang Q, Zhang R, Davies K, Powers C, Bruggen N, Chopp M. VEGF enhances angiogenesis and promotes blood-brain barrier leakage in the ischemic brain.J Clin Invest. 2000 Oct;106(7) :829-38.
    44. Zhao L, Zhang MM, Ng KY. Effects of vascular permeability factor on the permeability of cultured endothelial cells from brain capillaries. J Cardiovasc Pharmacol. 1998 Jul ;32(1):1-4.
    45. Wang Y, Kilic E, Kilic U, Weber B, Bassetti CL, Marti HH, Hermann DM. VEGF overexpression induces post-ischaemic neuroprotection, but facilitates haemodynamic steal phenomena. Brain. 2005 Jan;128(Pt 1): 52-63.
    1. Plate KH, Beck H, Danner S, et al. Cell type specific upregulation of vascular endothelial growth factor in an MCA-occlusion model of cerebral infarct[J].J Neuropathol Exp Neurol, 1999 , 58(6):654-66.
    2. Marti HJ, Bernaudin M, Bellail A, et al.Hypoxia-induced vascular endothelial growth factor expression precedes neovascularization after cerebral ischemia[J]. Am J Pathol, 2000 ,156(3):965-76.
    3.Yancopoulos GD, Davis S, Gale NW, et al. Vascular-specific growth factors and blood vessel formation [J]. Nature, 2000,407: 242-248.
    4 Thurston G, Suri C, Smith K, et al. Leakage-resistant blood vessels in mice transgenically overexpressing angiopoietin-1[J]. Science, 1999, 286(5449): 2511-4.
    4. Gamble JR, Drew J, Trezise L, et al. Angiopoietin-1 is an antipermeability and anti-inflammatory agent in vitro and targets cell junctions[J]. Circ Res, 2000, 87(7):603-7.
    5. Zhang Z, Chopp M. Vascular endothelial growth factor and angiopoietins in focal cerebral ischemia[J]. Trends Cardiovasc Med, 2002 , 12(2) :62-6.
    6 Namiecinska M, Marciniak K, Nowak JZ. et al.VEGF as an angiogenic, neurotrophic, and neuroprotective factor[J]. Postepy Hig Med Dosw, 2005,59:573-83.
    6. Valable S, Montaner J, Bellail A, et al. VEGF-induced BBB permeability is associated with an MMP-9 activity increase in cerebral ischemia: both effects decreased by Ang-l[J]. J Cereb Blood Flow Metab, 2005 ,25(11): 1491-504.
    7. Storkebaum E, Lambrechts D, Carmeliet P. VEGF: once regarded as a specific angiogenic factor, now implicated in neuroprotection[J]. Bioessays, 2004 ,26(9):943-54.
    8. Sundberg C, Kowanetz M, Brown LF, et al. Stable expression of angiopoietin-1 and other markers by cultured pericytes: phenotypic similarities to a subpopulation of cells in maturing vessels during later stages of angiogenesis in vivo[J]. Lab Invest, 2002 ,82(4):387-401.
    9. Yancopoulos GD, KlagsbrunM, Folkman J. Vasculogenesis, angiogenesis, andgrowth factors: ephrins enter the fray at the border[J]. Cell , 1998,93:661-664.
    10 . Gamble JR, Drew J, Trezise L, et al. Angiopoietin-l is an antipermeability and anti-inflammatory agent in vitro and targets cell junctions[J]. Circ Res, 2000, 87(7):603-7.
    11. Thurston G, Rudge JS, Ioffe E, et al. Angiopoietin-l protects the adult vasculature against plasma leakage[J]. Nat Med, 2000 ,6(4): 460-3.
    12. Zhang ZG, Zhang L, TsangW, et al. Correlation of VEGF and angiopoietin expression with disruption of blood-brain barrier and angiogenesis after focal cerebral ischemia[J]. J Cereb Blood Flow Metab, 2002 ,22(4): 379-92.
    13. Zhang ZG, Zhang L, Jiang Q, et al.VEGF enhances angiogenesis and promotes blood-brain barrier leakage in the ischemic brain[J]. J Clin Invest, 2000 ,106(7):829-38.
    14. Valable S, Montaner J, Bellail A, et al. VEGF-induced BBB permeability is associated with an MMP-9 activity increase in cerebral ischemia: both effects decreased by Ang-l[J]. J Cereb Blood Flow Metab, 2005 ,25(11): 1491-504.
    15. Abumiya T, Yokota C, Kuge Y, et al.Aggravation of hemorrhagic transformation by early intraarterial infusion of low-dose vascular endothelial growth factor after transient focal cerebral ischemia in rats[J]. Brain Res, 2005 , 1049(1):.95-103.
    16. Harrigan MR, Ennis SR, Sullivan SE, et al. Effects of intraventricular infusion of vascular endothelial growth factor on cerebral blood flow, edema, and infarct volume[J]. Acta Neurochir (Wien), 2003 ,145(1): 49-53.
    17. Sun Y, Jin K, Xie L, et al. VEGF-induced neuroprotection, neurogenesis, and angiogenesis after focal cerebral ischemia[J]. J Clin Invest, 2003 ,111(12) :1843-51.
    18. Yano A, Shingo T, Takeuchi A, et al. Encapsulated vascular endothelial growth factor-secreting cell grafts have neuroprotective and angiogenic effects on focal cerebral ischemia[J]. J Neurosurg, 2005 ,103(1): 104-14.
    19. Zhang ZG, Zhang L, Croll SD, et al. Angiopoietin-1 reduces cerebral blood vessel leakage and ischemic lesion volume after focal cerebral embolic ischemia in mice[J]. Neuroscience, 2002,113(3):683-7.
    20. Zhu Y, Shwe Y, Du R, et al. Effects of angiopoietin-1 on vascular endothelial growth factor-induced angiogenesis in the mouse brain[J]. Acta Neurochir Suppl, 2006,96:438-43.
    21. Belayev L, Busto R, Zhao W, Ginsberg MD. Quantitative evaluation of blood-brain barrier permeability following middle cerebral artery occlusion in rats. Brain Res. 1996 Nov 11;739(1-2):88-96.
    1. Burger C, Nash K, Mandel RJ. Recombinant adeno-associated viral vectors in the nervous system. Hum Gene Ther, 2005 ,16(7):781-91. Review.
    2. Delayed expression of adeno-associated virus vector DNA. Intervirology. 1999;42(4):213-20. Afione SA, Wang J, Walsh S, Guggino WB, Flotte TR.
    3. Identification of PDGFR as a receptor for AAV-5 transduction. Nat Med. 2003 Oct;9(10):1306-12. Epub 2003 Sep 14. Di Pasquale G, Davidson BL, Stein CS, Martins I, Scudiero D, Monks A, Chiorini JA
    4.Identification of amino acid residues in the capsid proteins of adeno-associated virus type 2 that contribute to heparan sulfate proteoglycan binding. J Virol. 2003 Jun;77(12):6995-7006. Opie SR, Warrington KH Jr, Agbandje-McKenna M, Zolotukhin S, Muzyczka N.
    5. Basic fibroblast growth factor enhances transduction, distribution, and axonal transport of adeno-associated virus type 2 vector in rat brain. Hum Gene Ther. 2004 May;15(5):469-79. Hadaczek P, Mirek H, Bringas J, Cunningham J, Bankiewicz K.
    6. Recombinant adeno-associated virus type 2, 4, and 5 vectors: transduction of variant cell types and regions in the mammalian central nervous system. Proc Natl Acad Sci U S A. 2000 Mar 28;97(7):3428-32. Davidson BL, Stein CS, Heth JA, Martins I, Kotin RM, Derksen TA, Zabner J, Ghodsi A, Chiorini JA.
    7.Adeno-associated virus vectors serotyped with AAV8 capsid are more efficient than AAV-1 or -2 serotypes for widespread gene delivery to the neonatal mouse brain. Neuroscience. 2006; 138(2):501-10. Epub 2006 Jan 18. Broekman ML, Comer LA, Hyman BT, Sena-Esteves M.
    8. Convection-enhanced delivery of AAV-2 combined with heparin increases TK gene transfer in the rat brain. Neuroreport. 2001 Jul 3; 12(9) : 1961-4. Nguyen JB, Sanchez-Pernaute R, Cunningham J, Bankiewicz KS.
    9. Self-complementary adeno-associated virus serotype 2 vector: global distribution and broad dispersion of AAV-mediated transgene expression in mouse brain. Mol Ther. 2003 Dec;8(6):911-7. Fu H, Muenzer J, Samulski RJ, Breese G, Sifford J, Zeng X, McCarty DM.
    10. Convection-enhanced delivery of adeno-associated virus type 2 (AAV2) into the striatum and transport of AAV2 within monkey brain. Hum Gene Ther. 2006 Mar;17(3):291-302. Hadaczek P, Kohutnicka M, Krauze MT, Bringas J, Pivirotto P, Cunningham J, Bankiewicz K.
    11.Hildinger M et al .Hybrid vectors based on adeno-associated virus serotypes 2 and 5 for muscle-directed gene transfer. J Virol 2001;75:6199-6203
    12. Halbert CL et al. Repeat transduction in the mouse lung by using adeno-associated virus vectors with different serotypes. J Virol.2000;74:1524-1532.
    13. Chiorini, J. A., F. Kim, L. Yang, et al .Cloning and characterization of adeno-associated virus type 5.J. Virol.1999;73:1309-1319.
    14. Immune responses to adenovirus and adeno-associated virus in humans. Gene Ther. 1999 Sep;6(9) : 1574-83. Chirmule N, Propert K, Magosin S, Qian Y, Qian R, Wilson J.
    15. Update on the prevalence of serum antibodies (IgG and IgM) to adeno-associated virus (AAV). J Med Virol. 1999 Nov;59(3):406-11.
    16. Adeno-associated virus (AAV) vectors in the CNS. Curr Gene Ther. 2005 Jun;5(3):333-8. Review. McCown TJ. Erles K, Sebokova P, Schlehofer JR
    17. Adeno-associated virus-mediated gene transfer to the brain: duration and modulation of expression. Hum Gene Ther. 1999 Jan 20; 10(2) :201-13. Lo WD, Qu G, Sferra TJ, Clark R, Chen R, Johnson PR.
    18. Immunological aspects of recombinant adeno-associated virus delivery to the mammalian brain. J Virol. 2002 Aug;76(16) :8446-54. Mastakov MY, Baer K, Symes CW, Leichtlein CB, Kotin RM, During MJ
    19. Circulating anti-wild-type adeno-associated virus type 2 (AAV2) antibodies inhibit recombinant AAV2 (rAAV2)-mediated, but not rAAV5-mediated, gene transfer in the brain. J Virol. 2004 Jun;78 (12):6344-59. Peden CS, Burger C, Muzyczka N, Mandel RJ.
    20.Striatal delivery of rAAV-hAADC to rats with preexisting immunity to AAV. Mol Ther. 2004 Mar;9(3):403-9. Sanftner LM, Suzuki BM, Doroudchi MM, Feng L, McClelland A, Forsayeth JR, Cunningham J
    21. Efficient gene delivery to human and rodent islets with double-stranded (ds) AAV-based vectors. Gene Ther. 2005 Sep;12(17):1313-23. Rehman KK, Wang Z, Bottino R, Balamurugan AN, Trucco M, Li J, Xiao X, Robbins PD.
    22. Rapid and highly efficient transduction by double-stranded adeno-associated virus vectors in vitro and in vivo. Gene Ther. 2003 Dec;10(26):2105-11. Wang Z, Ma HI, Li J, Sun L, Zhang J, Xiao X.
    23. High-level transgene expression in nonhuman primate liver with novel adeno-associated virus serotypes containing self-complementary genomes. J Virol. 2006 Jun;80(12):6192-4. Gao GP, Lu Y, Sun X, Johnston J, Calcedo R, Grant R, Wilson JM.
    24. Self-complementary adeno-associated virus serotype 2 vector: global distribution and broad dispersion of AAV-mediated transgene expression in mouse brain. Mol Ther. 2003 Dec;8(6):911-7. Fu H, Muenzer J, Samulski RJ, Breese G, Sifford J, Zeng X, McCarty DM
    25.Production and purification of serotype 1, 2, and 5 recombinant adeno-associated viral vectors. Methods. 2002 Oct;28(2):158-67. Zolotukhin S, Potter M, Zolotukhin I, Sakai Y, Loiler S, Fraites TJ Jr, Chiodo VA, Phillipsberg T, Muzyczka N, Hauswirth WW, Flotte TR, Byrne BJ, Snyder RO.
    26.Recombinant AAV viral vectors pseudotyped with viral capsids from serotypes 1, 2, and 5 display differential efficiency and cell tropism after delivery to different regions of the central nervous system. Mol Ther. 2004 Aug; 10(2): 302-17. Burger C, Gorbatyuk OS, Velardo MJ, Peden CS, Williams P, Zolotukhin S, Reier PJ, Mandel RJ, Muzyczka N.
    27. Adeno-associated viral-vector-mediated hypoxia-inducible vascular endothelial growth factor gene expression attenuates ischemic brain injury after focal cerebral ischemia in mice. Stroke. 2006 Oct; 37 (10): 2601-6. Epub 2006 Aug 31. Shen F, Su H, Fan Y, Chen Y, Zhu Y, Liu W, Young WL, Yang GY.
    28.Tsai TH, Chen SL, Xiao X, Chiang YH, Lin SZ, Kuo SW, Liu DW,Tsao YP. Gene treatment of cerebral stroke by rAAV vector delivering IL-lra in a rat model. Neuroreport 2003 May 6;14(6):803-7.
    29.Sun YJ, Jin KL, Peel A, Mao XO, Xie L, Greenberg DA .Neuroglobin protects the brain from experimental stroke in vivo. Proc Natl Acad Sci USA 2003 Mar 18;100(6):3497-500.
    30. Okada T, Shimazaki K, Nomoto T, Matsushita T, Mizukami H, Urabe M, Hanazono Y, Kume A, Tobita K, Ozawa K, Kawai N. Adeno-associated viral vector-mediated gene therapy of ischemia-induced neuronal death. Methods Enzymol 2002;346:378-93.
    31. Sun Y, Jin K, Clark KR, Peel A, Mao XO, Chang Q, Simon RP, Greenberg DA. Adeno-associated virus-mediated delivery of BCL-w gene improves outcome after transient focal cerebral ischemia. Gene Therapy 2003 Jan; 10 (2): 115-22.
    32.Shimazaki K, Urabe M, Monahan J, Ozawaand K, Kawai N.Adeno-associated virus vector-mediated bcl-2 gene transfer into post-ischemic gerbil brain in vivo: prospects for gene therapy of ischemia-induced neuronal death.Gene Ther 2000 Jul;7(14):1244-9.
    33. Gustafsson E, Andsberg G, Darsalia V, Mohapel P, Mandel RJ, Kirik D, Lindvall O , Kokaia Z. Anterograde delivery of brain-derived neurotrophic factor to striatum via nigral transduction of recombinant adeno-associated virus increases neuronal death but promotes neurogenic response following stroke. Eur. J. Neurosci 2003; 17: 2667-2678.
    34.Andsberg G, Kokaia Z, Klein RL, Muzyczka N, Lindvall 0 , Mandel RJ. Neuropathological and behavioral consequences of adeno-associated viral vector-mediated continuous intrastriatal neurotrophin delivery in a focal ischemia model in rats. Neurobiol Dis 2002 Mar;9(2): 187-204.
    35. Bellomo M, Adamo EB, Deodato B, Catania MA, Mannucci C, Marini H, Marciano MC, Marini R, Sapienza S, Giacca M, Caputi AP, Squadrito F,Calapai G. Enhancement of expression of vascular endothelial growth factor after adeno-associated virus gene transfer is associated with improvement of brain ischemia injury in the gerbil. Pharmacol Res 2003 Sep;48(3):309-17
    36. Burger C, Nguyen FN, Deng J, Mandel RJ. Systemic mannitol-induced hyperosmolality amplifies rAAV2-mediated striatal transduction to a greater extent than local co-infusion. Mol Ther 2005 Feb; 11 (2) :327-31.
    37. Larsson E,Mandel RJ,Klein RL, Muzyczka N,Lindvall O, Kokaia Z. Suppression of insult-induced neurogenesis in adult rat brain by brain-derived neurotrophic factor. Exp Neurol 2002 Sep;177(1):1-8.
    38. Cloning of a novel Apaf-1-interacting protein: a potent suppressor of apoptosis and ischemic neuronal cell death. J Neurosci. 2004 Jul 7;24(27):6189-201. Cao G, Xiao M, Sun F, Xiao X, Pei W, Li J, Graham SH, Simon RP, Chen J.
    39. Recombinant adeno-associated virus vector expressing glial cell line-derived neurotrophic factor reduces ischemia-induced damage. Exp Neurol. 2000 Dec;166(2):266-75. Tsai TH, Chen SL, Chiang YH, Lin SZ, Ma HI, Kuo SW, Tsao YP.
    40. Elevated GDNF levels following viral vector-mediated gene transfer can increase neuronal death after stroke in rats. Neurobiol Dis. 2003 Dec;14(3):542-56. Arvidsson A, Kirik D, Lundberg C, Mandel RJ, Andsberg G, Kokaia Z, Lindvall O.
    41.Gene therapy for treatment of cerebral ischemia using defective recombinant adeno-associated virus vectors. Methods. 2002 Oct;28(2):253-8. Review. Tsai TH, Chen SL, Xiao X, Liu DW, Tsao YP.
    42. Gene therapy of focal cerebral ischemia using defective recombinant adeno-associated virus vectors. Front Biosci. 2006 Sep 1;11:2061-70. Tsai TH, Chen SL, Xiao X, Chiang YH, Tsao YP.
    1. Plate KH, Beck H, Danner S, et al. Cell type specific upregulation of vascular endothelial growth factor in an MCA-occlusion model of cerebral infarct[J]. J Neuropathol Exp Neurol, 1999 , 58(6):654-66.
    2. Marti HJ, Bernaudin M, Bellail A, et al. Hypoxia-induced vascular endothelial growth factor expression precedes neovascularization after cerebral ischemia[J]. Am J Pathol, 2000 , 156(3):965-76.
    3. Yancopoulos GD, Davis S, Gale NW, et al. Vascular-specific growth factors and blood vessel formation [J]. Nature, 2000,407: 242-248.
    4. Thurston G, Suri C, Smith K, et al. Leakage-resistant blood vessels in mice transgenically overexpressing angiopoietin-l[J].Science, 1999, 286 (5449): 2511-4.
    5. Zhang Z, Chopp M. Vascular endothelial growth factor and angiopoietins in focal cerebral ischemia[J]. Trends Cardiovasc Med, 2002 ,12(2) :62-6.
    6. Namiecinska M, Marciniak K, Nowak JZ.et al.VEGF as an angiogenic, neurotrophic, and neuroprotective factor[J]. Postepy Hig Med Dosw, 2005,59:573-83.
    7. Storkebaum E, Lambrechts D, Carmeliet P. VEGF: once regarded as a specific angiogenic factor, now implicated in neuroprotection[J]. Bioessays, 2004 ,26(9):943-54.
    8. Sundberg C, Kowanetz M, Brown LF, et al. Stable expression of angiopoietin-1 and other markers by cultured pericytes: phenotypic similarities to a subpopulation of cells in maturing vessels during later stages of angiogenesis in vivo[J]. Lab Invest, 2002 ,82(4): 387-401.
    9. Yancopoulos GD, Klagsbrun M, Folkman J. Vasculogenesis, angiogenesis, andgrowth factors: ephrins enter the fray at the border[J]. Cell , 1998,93:661 -664.
    10. Gamble JR, Drew J, Trezise L, et al.Angiopoietin-1 is an antipermeability and anti-inflammatory agent in vitro and targets cell junctions[J]. Circ Res, 2000, 87(7):603-7.
    11. ThurstonG, Rudge JS, Ioffe E, et al. Angiopoietin-1 protects the adult vasculature against plasma leakage[J]. Nat Med, 2000 ,6(4):460-3.
    12. Zhang ZG, Zhang L, Tsang W, et al. Correlation of VEGF and angiopoietin expression with disruption of blood-brain barrier and angiogenesis after focal cerebral ischemia[J]. J Cereb Blood Flow Metab, 2002 ,22(4): 379-92.
    13. Zhang ZG, Zhang L, Jiang Q, et al.VEGF enhances angiogenesis and promotes blood-brain barrier leakage in the ischemic brain[J]. J Clin Invest, 2000 , 106(7):829-38.
    14. Valable S, Montaner J, Bellail A, et al. VEGF-induced BBB permeability is associated with an MMP-9 activity increase in cerebral ischemia: both effects decreased by Ang-1[J]. J Cereb Blood Flow Metab, 2005 ,25(11): 1491-504.
    15. Abumiya T, Yokota C, Kuge Y, et al. Aggravation of hemorrhagic transformation by early intraarterial infusion of low-dose vascular endothelial growth factor after transient focal cerebral ischemia in rats[J]. Brain Res, 2005 , 1049(1):95-103.
    16. Harrigan MR, Ennis SR, Sullivan SE, et al. Effects of intraventricular infusion of vascular endothelial growth factor on cerebral blood flow, edema, and infarct volume[J]. Acta Neurochir (Wien), 2003 ,145(1):49-53.
    17. Sun Y, Jin K, Xie L, et al. VEGF-induced neuroprotection, neurogenesis, and angiogenesis after focal cerebral ischemia[J]. J Clin Invest, 2003 ,111(12):1843-51.
    18.Yano A, Shingo T, Takeuchi A, et al. Encapsulated vascular endothelial growth factor-secreting cell grafts have neuroprotective and angiogenic effects on focal cerebral ischemia[J]. J Neurosurg, 2005 ,103(1): 104-14.
    19. Zhang ZG, Zhang L, Croll SD, et al. Angiopoietin-1 reduces cerebral blood vessel leakage and ischemic lesion volume after focal cerebral embolic ischemia in mice[J]. Neuroscience, 2002,113(3):683-7.
    20. Zhu Y, Shwe Y, Du R,et al. Effects of angiopoietin-1 on vascular endothelial growth factor-induced angiogenesis in the mouse brain [J]. Acta Neurochir Suppl, 2006,96:438-43.
    1. Blaese RM, Culver KW, Miller AD, et al. T lymphocyte-directed gene therapy for ADA-SCID: initial trial results after 4 years. Science 1995; 270: 475-480.
    2. Buchholz CJ, Cichutek K. Is it going to be SIN? J Gene Med 2006;8: 1274 - 1276.
    3. Cavazzana-Calvo M, Hacein-Bey S, de Saint Basile G, et al. Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science 2000; 288: 669-672.
    4. Check E. Harmful potential of viral vectors fuels doubts over gene therapy. Nature 2003; 423: 573-574.
    5. Chen L, Woo SLC. Complete and persistent phenotypic correction of phenylketonuria in mice by site-specific genome integration of murine phenylalanine hydroxylase cDNA. Proc Natl Acad Sci U S A 2005; 102: 15581 - 15586
    6. Couzin J, Kaiser J. As Gelsinger case ends, gene therapy suffers another blow. Science 2005; 307: 1028.
    7. During MJ, Feigin A, Eidelberg D, et al. Subthalamic GAD gene transfer improves brain metabolism associated with clinical recovery in Parkinson' s disease. Abstracts from Neuroscience 2006: The 36~(th) Annual Meeting of the Society for Neuroscience.
    8. Edelstein ML, Abedi MR, Wixon J, Edelstein RM. Gene therapy clinical trials worldwide 1989-2004 - an overview. J Gene Med 2004; 6: 597 - 602.
    9. Edelstein ML, Abedi MR, Wixon J. Gene therapy clinical trials worldwide to 2007—an update. J Gene Med. 2007 Oct;9(10) :833-42
    10. European Society of Gene Therapy (ESGT). One of three successfully treated CGD patients in a Swiss-German gene therapy trial died due to his underlying disease: A position statement from the European
    11.Society of Gene Therapy (ESGT). J Gene Med 2006; 8: 1435. Fire A, Xu S, Montgomery M, Kostas S, Driver S, Mello C. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998; 391: 806-811.
    12. Gansbacher B for the European Society of Gene Therapy. Policy statement on the social, ethical and public awareness issues in gene therapy. J Gene Med 2002; 4: 687-691.
    13. Gansbacher B for the European Society of Gene Therapy. Report of a second serious adverse event in a clinical trial of gene therapy for X-linked severe combined immune deficiency (XSCID). Position of the European Society of Gene Therapy (ESGT). J Gene Med 2003; 5: 261 - 262.
    14. Gaspar HB, Parsley KL, Howe S, et al. Gene therapy of X-linked severe combined immunodeficiency by use of a pseudotyped gammaretroviral vector. Lancet 2004; 364: 2181-2187.
    15. Gaspar HB, Bjorkegren E, Parsley K, et al. Successful reconstitution of immunity in ADA-SCID by stem cell gene therapy following cessation of PEG-ADA and use of mild preconditioning. Mol Ther 2006; 14: 505-513.
    16.Ginn SL, Curtin JA, Kramer B, et al. Treatment of an infant with X-linked severe combined immunodeficiency (SCID—X1) by gene therapy in Australia. Med J Aust 2005; 182: 458-463.
    17. GuoG, XinH. Chinese gene therapy: splicing out the west? Science 2006; 314: 1232-1235.
    18. Hacein-Bey-Abina S, von Kalle C, Schmidt M, et al. A serious adverse event after successful gene therapy for X-linked severecombined immunodeficiency. NEngl J Med 2003; 348: 255-256.
    19. Hacein-Bey-Abina S, Von Kalle C, Schmidt M, et al. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 2003; 302: 415-419.
    20. Kohn DB, Gansbacher B. Letter to the editors of Nature from the American Society of Gene Therapy (ASGT) and the European Society of Gene Therapy (ESGT). J Gene Med 2003; 5: 641.
    21.Laufs S, Nagy KZ, Giordano FA, Hotz-Wagenblatt A, Zeller WJ, Fruehauf S. Insertion of retroviral vectors in NOD/SCID epopulating human peripheral blood progenitor cells occurs preferentially in the vicinity of transcription start regions and in introns. Mol Ther 2004; 10: 874-881.
    22.Morgan RA, Dudley ME, Wunderlich JR, et al. Cancer regression in patients after transfer of genetically engineered lymphocytes. Science 2006; 314: 126-129.
    23. Ott MG, Schmidt M, Schwarzwaelder K, et al. Correction of X-linked chronic granulomatous disease by gene therapy, augmented by insertional activation of MDS1-EVI1, PRDM16 or SETBP1. Nat Med 2006; 12: 401-409.
    24. Peng Z. Current status of gendicine in China: recombinant human Ad-p53 agent for treatment of cancers. Hum Gene Ther 2005; 16: 1016- 10127.
    25. Progress and prospects: gene therapy clinical trials (part 1). Gene Ther 2007 Oct;14(20):1439-47. Review
    26. Raper SE, Chirmule N, Lee FS, et al. Fatal systemic inflammatory response syndrome in a ornithine transcarbamylase deficient patient following adenoviral gene transfer. Mol Genet Metab 2003; 80: 148-158.
    27. Reynolds A, Anderson E, Vermeulen A , et al. Induction of the interferon response by siRNA is cell type- and duplex lengthdependent. RNA 2006; 12: 988-993.
    
    28. Rosenberg SA, Aebersold P, Cornetta K, et al. Gene transfer into humans -immunotherapy of patients with advancedmelanoma, using tumor-infiltrating lymphocytes modified by retroviral gene transduction. N Engl JMed 1990; 323: 570-578.
    29. Rush University Medical Center and UCSF researchers found gene therapy appeared to reduce symptoms of Parkinson' s disease by 40 percent. Press release from Rush University Medical Center, October 16, 2006; Available: http://www.rush. edu/webapps/MEDREL/servlet/ NewsRelease?id=802.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700