低维氧化锌功能材料的气敏、发光及场发射性质的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
ZnO是一种非常重要的新型半导体功能材料,其独特的电学、光学性质引起了极大的关注。由于ZnO在气体传感器、发光器件制作和场发射领域具有广泛的应用前景,其气敏特性、光致发光性质以及场发射性质成为了研究的热点。本论文的研究工作就是基于ZnO以上三个方面的性质展开的。论文中的主要研究结果总结如下:
     1.采用激光脉冲沉积方法在蓝宝石衬底上沉积了厚度大约为10nm的ZnO以及掺杂ZnO薄膜,并对部分ZnO薄膜进行了金属Pd颗粒包覆或者空气中高温退火,然后对这些样品进行了H2气敏测试,实验结果表明P、Mn和Sb元素掺杂后,样品对H2的灵敏度没有提高,而Mg0.1Zn0.9O薄膜对H2的灵敏度明显提高,并通过气敏机制分析解释了实验结果;而包覆Pd颗粒后样品对H2的响应温度显著地降低了,在室温下对低浓度的H2(10ppm)就有较好的响应;此外对ZnO薄膜进行空气退火后样品对H2的灵敏度显著地提高了。在对样品进行H2气敏测试的过程中发现ZnO薄膜在低温下为p型导电类型,随着温度的升高又变为n型导电类型,文中分析了导电类型转变的原因,并给出了p型ZnO薄膜中存在的本征缺陷。
     2.采用电纺丝技术制备了不同形貌的ZnO一维纳米结构,并测试了样品的气敏特性。首先发现排列的ZnO纳米管对H2的敏感度要优于同条件下制备的ZnO薄膜;其次在研究不同浓度Tb掺杂ZnO纳米纤维对乙醇和丙酮气体的敏感特性时发现低浓度的Tb掺杂(<3%)可以提高样品对乙醇气体的灵敏度,而Tb掺杂浓度为2%或3%时,样品对丙酮气体的敏感度较高;最后制备了SnO2/ZnO并排纳米管,并对其生长机制做出了解释,同时测试样品对乙醇和丙酮气体的敏感特性,发现测试温度高于200℃时,样品对乙醇气体具有很好的敏感特性,而其作为丙酮气敏材料的最佳工作温度为300℃。
     3.用电纺丝方法分别制备了Al和Tb掺杂的ZnO纳米纤维,此外还制备了Eu和Tb掺杂的ZnO/ZrO2纳米带,研究了样品的光致发光(PL)特性。实验结果表明:首先Al掺杂可以同时抑制ZnO纳米纤维PL谱中的绿光和橙光发射,由对比实验得出绿光和橙光发射分别源于样品中存在的O空位和间隙O缺陷,而这两种缺陷在晶粒中分布的区域不相同,Al的掺入促进了两种相对立的缺陷的中和,因此同时减弱了两种缺陷发光峰的强度;其次实验证明在325nm的激光激发下掺Tb的ZnO纳米纤维不能为Tb3+离子发光提供很好的基质,因此稀土发光效率很低;而Tb掺杂的ZnO/ZrO2纳米带的PL谱可以观察到Tb3+离子的特征发光谱线。另外,掺Eu的ZnO/ZrO2纳米带可以激发Eu3+离子的特征谱线,并且其中ZnO的O空位有可能为Eu3+离子发光提供了敏化剂。
     4.结合了电纺丝技术和低温水溶液方法制备了ZnO一维同质外延结构,场发射测试结果表明该结构具有非常高的场发射性能,其开启电场仅为4.8V/μm,当场强为6.7V/μm时样品的发射电流密度就达到了100μA/cm2,场发射增强因子为3361。通过分析得出ZnO同质外延结构优异的场发射性能可以归因于三方面的因素:纳米棒的针状形貌、ZnO纳米针的高长径比和ZnO纳米针在衬底上的高低起伏分布。
ZnO, considered as one of the most important semiconductor functional material, has attracted great attention due to its unique electrical and optical characteristics. ZnO is a very promising candidate in the fields of gas sensors, optoelectronic devices and field emitters. Thus the sensing, photoluminescence (PL) and field emission properties of ZnO have been widely investigated. This thesis is focused on these three properties of ZnO. The main research work and the results as listed as follows:
     1. Undoped and doped ZnO thin films with the thickness of about 10 nm were deposited on sapphire substrates by pulsed laser deposition (PLD) technique. Some of the undoped films were covered with Pd particles or annealed in air. The H2 sensing properties of all these samples were measured. When P, Mn and Sb elements were doped into the ZnO films, the sensitivities were not improved. And Mg doping could greatly improve the H2 sensitivity of the ZnO film. The sensing mechanism was analyzed to explain the great improvement of sensitivity for Mg doped ZnO film. The ZnO films coated with Pd particles showed good response to H2 at low temperatre. It could detect 10 ppm H2 even at room temperature. Moreover, post-annealing in air could also improve the H2 sensitivity of the ZnO films. Basing on the H2 sensing measurement, we found that the conductivity of the undoped ZnO films converted from p-type at low temperature to n-type at higher temperature. Opposite responses to H2 were observed for ZnO with different conduction type. We explained the reason for such a conversion and the origins of the p-type ZnO were proposed.
     2. Different structures of one-dimensional ZnO have been fabricated by electrospinning method and the sensing properties of them were tested. It was found that the aligned ZnO nanotubes showed better H2 sensitivity than the ZnO films did. The ethanol and acetone sensing properties of the Tb doped ZnO nanofibers were measured. The results indicated that low concentration (<3%) of Tb doping could improve the sensitivity of the ZnO nanofibers to ethanol and the ZnO nanofibers with the Tb concentration of 2% and 3% showed higher acetone sensitivities among all the Tb doped ZnO nanofibers. Besides, bicomponent SnO2/ZnO nanotubes were fabricated by electrospinning with a side-by-side dual spinneret. The side-by-side SnO2/ZnO nanotubes sample showed good sensing properties to both ethanol and acetone. Its gas sensitivity to ethanol was high at the operation temperature higher than 200℃. And the optimal operation temperature for it to detect acetone was 300℃.
     3. Al doped ZnO (AZO) nanofibers, Tb doped ZnO (TZO) nanofibers and Eu or Tb doped ZnO/ZrO2 nanaobelts were fabricated by electrospinning technique. The Al doping could simultaneously suppress the green and orange emissions in the PL spectra of the ZnO nanofibers, which derived from oxygen vacancies and excess oxygen in the ZnO nanofibers respectively. This phenomenon could be explained as the separate distribution of these two kinds of the defects in the ZnO nanograins and Al doping could facilitate the neutralization of the two kinds of defects. The PL spectra of the Tb doped ZnO nanofibers showed that using a 325 nm laser as the excitation source, Tb3+ ions could not be well excited and the characteristic peaks of the Tb3+ ions were very weak. That is to say ZnO nanofibers could not be a good matrix for Tb3+ ions. On the other hand, Tb3+ in the ZnO/ZrO2 nanobelts showed strong characteristic peaks of Tb3+ ions, which could be attributed to ZrO2 in the nanobelts. Furthermore, the emissions corresponding to intra-5D0→7Fj(j=0,1,2,3 and 4) transitions of Eu3+ ions in the ZnO/ZrO2 nanobelts could be observed with a high emission intensity. And ZnO oxygen vacancy in the host matrix might act as an effective sensitizer for adjacent Eu ions.
     4. Homogeneous hierarchical-structure ZnO with ZnO nanoneedles growing on ZnO nanofibers has been fabricated by combining electrospinning and aqueous solution processes. High field emission performance of the hierarchical-structure ZnO, including low turn-on field, high current density at low applied field and high field enhancement factor was obtained. This good FE performance of the hierarchical-structure ZnO is due to the tapered tips of the ZnO nanoneedles, the high aspect ratio of the ZnO nanoneedles and the undulant space distribution of the ZnO nanoneedles.
引文
[1]C. W. Bunn, The lattice-dimensions of zinc oxide Proceedings of the Physical Society 1935, 47835.
    [2]N. F. Foster and G. A. Rozgonyi, Zinc oxide film transducers Appl. Phys. Lett.1966,8 (9):221-223.
    [3]L. P. Solie, Piezoelectric Acoustic Surface Waves For a Film on Substrate, Appl. Phys. Lett. 1971,18(4):111-112.
    [4]W. Yang and J. Joo, Effects of pulsed sputtering frequency on the uniformity of Al:ZnO's transparent conductive oxide properties for solar cell applications, Journal of Vacuum Science & Technology A:Vacuum, Surfaces, and Films 2009,27 (6):1310-1315.
    [5]J. H. Lee and et al., Growth-controlled surface roughness in Al-doped ZnO as transparent conducting oxide, Nanotechnology 2009,20 (39):395704.
    [6]D. C. Reynolds, D. C. Look and B. Jogai, Optically pumped ultraviolet lasing from ZnO, Solid State Commun.1996,99 (12):873-875.
    [7]Y. Ye, R. Lim and J. M. White, High mobility amorphous zinc oxynitride semiconductor material for thin film transistors, J. Appl. Phys.2009,106 (7):074512.
    [8]J. Liu, D. B. Buchholz, R. P. H. Chang, A. Facchetti and T. J. Marks, High-Performance Flexible Transparent Thin-Film Transistors Using a Hybrid Gate Dielectric and an Amorphous Zinc Indium Tin Oxide Channel, Adv. Mater.2010,22 (21):2333-2337.
    [9]H. Ting-Jen and H. Cheng-Liang, Fabrication of gas sensing devices with ZnO nanostructure by the low-temperature oxidation of zinc particles, Sens. Actuators B 2008,131 572-576.
    [10]S.-H. Choi, G. Ankonina, D.-Y. Youn, S.-G. Oh, J.-M. Hong, A. Rothschild and I.-D. Kim, Hollow ZnO Nanofibers Fabricated Using Electrospun Polymer Templates and Their Electronic Transport Properties, ACS Nano 2009,3 (9):2623-2631.
    [11]H. Zeng, X. Xu, Y. Bando, U. K. Gautam, T. Zhai, X. Fang, B. Liu and D. Golberg, Template Deformation-Tailored ZnO Nanorod/Nanowire Arrays:Full Growth Control and Optimization of Field-Emission, Adv. Funct. Mater.2009,19 3165-3172.
    [12]N. Pan, H. Xue, M. Yul, X. Cui, X. Wang, J. Hou, J. Huang and S. Deng, Tip-morphology-dependent field emission from ZnO nanorod arrays, Nanotechnology 2010, 21 (22):225707.
    [13]K. Takahashi, A. Yoshikawa and A. Sandhu, Wide bandgap semiconductors:fundamental properties and modern photonic and electronic devices. Tokyo:Morikita Publishing Co., Ltd.2006.
    [14]http://en.wikipedia.org/wiki/ZnO.
    [15]C. Jagadish and S. J. Pearton, eds., Zinc Oxide-Bulk, Thin Films and Nanostructures-Processing, Properties, and Applications (Elsevier,2006).
    [16]K. W. Liu, R. Chen, G. Z. Xing, T. Wu and H. D. Sun, Photoluminescence characteristics of high quality ZnO nanowires and its enhancement by polymer covering, Appl. Phys. Lett. 2010,96(2):023111.
    [17]A. B. Djurisic, Y. H. Leung, K. H. Tam, Y. F. Hsu, L. Ding, W. K. Ge, Y. C. Zhong, K. S. Wong, W. K. Chan, H. L. Tam, K. W. Cheah, W. M. Kwok and D. L. Phillips, Defect emissions in ZnO nanostructures, Nanotechnology 2007,18 095702.
    [18]X. L. Wu, G. G. Siu, C. L. Fu and H. C. Ong, Photoluminescence and cathodoluminescence studies of stoichiometric and oxygen-deficient ZnO films, Appl. Phys. Lett.2001,78 (16):2285-2287.
    [19]W. M. Kwok, A. B. Djurisic, Y. H. Leung, W. K. Chan and D. L. Phillips, Time-resolved photoluminescence from ZnO nanostructures, Appl. Phys. Lett.2005,87 (22):223111.
    [20]U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S.-J. Cho and H. Morkoc, A comprehensive review of ZnO materials and devices, J. Appl. Phys.2005, 98(4):041301.
    [21]L. Wu, Y. Wu, X. Pan and F. Kong, Synthesis of ZnO nanorod and the annealing effect on its photoluminescence property, Opt. Mater.2006,28 (4):418-422.
    [22]A. B. Djurisic, Y. H. Leung, K. H. Tam, L. Ding, W. K. Ge, H. Y. Chen and S. Gwo, Green, yellow, and orange defect emission from ZnO nanostructures:Influence of excitation wavelength, Appl. Phys. Lett.2006,88 (10):103107.
    [23]C.-C. Lin, H.-P. Chen and S.-Y. Chen, Synthesis and optoelectronic properties of arrayed p-type ZnO nanorods grown on ZnO film/Si wafer in aqueous solutions, Chem. Phys. Lett. 2005,404 (1-3):30-34.
    [24]A. Urbieta and et al., Scanning tunnelling spectroscopy characterization of ZnO single crystals, Semicond. Sci. Technol.2001,16 (7):589.
    [25]N. Sakagami, M. Yamashita, T. Sekiguchi, S. Miyashita, K. Obara and T. Shishido, Variation of electrical properties on growth sectors of ZnO single crystals, J. Cryst. Growth 2001,229 (1-4):98-103.
    [26]D. C. Look, Recent advances in ZnO materials and devices, Materials Science and Engineering:B 2001,80 (1-3):383-387.
    [27]K. Song, J. Noh, T. Jun, Y. Jung, H. Y. Kang and J. Moon, Fully Flexible Solution-Deposited ZnO Thin-Film Transistors, Adv. Mater.2010,22 (38):4308-4312.
    [28]O. Lupan, S. Shishiyanu, V. Ursaki, H. Khallaf, L. Chow, T. Shishiyanu, V. Sontea, E. Monaico and S. Railean, Synthesis of nanostructured Al-doped zinc oxide films on Si for solar cells applications, Sol. Energy Mater. Sol. Cells 2009,93 (8):1417-1422.
    [29]S. Fernandez and F. B. Naranjo, Optimization of aluminum-doped zinc oxide films deposited at low temperature by radio-frequency sputtering on flexible substrates for solar cell applications, Sol. Energy Mater. Sol. Cells 2010,94 (2):157-163.
    [30]A. B. Djurisic, A. M. C. Ng and X. Y. Chen, ZnO nanostructures for optoelectronics: Material properties and device applications, Prog. Quantum Electron.2010,34 (4):191-259.
    [31]H. L. Pan, B. Yao, T. Yang, Y. Xu, B. Y. Zhang, W. W. Liu and D. Z. Shen, Electrical properties and stability of p-type ZnO film enhanced by alloying with S and heavy doping of Cu, Appl. Phys. Lett.2010,97 (14):142101.
    [32]G. D. Yuan, W. J. Zhang, J. S. Jie, X. Fan, J. A. Zapien, Y. H. Leung, L. B. Luo, P. F. Wang, C. S. Lee and S. T. Lee, p-type ZnO nanowire arrays, Nano Lett.2008,8 (8):2591-2597.
    [33]S. Chu, M. Olmedo, Z. Yang, J. Y. Kong and J. L. Liu, Electrically pumped ultraviolet ZnO diode lasers on Si, Appl. Phys. Lett.2008,93 (18):181106.
    [34]Y. F. Hsu, Y. Y. Xi, K. H. Tam, A. B. Djurisic, J. Luo, C. C. Ling, C. K. Cheung, A. M. C. Ng, W. K. Chan, X. Deng, C. D. Beling, S. Fung, K. W. Cheah, P. W. K. Fong and C. C. Surya, Undoped p-Type ZnO Nanorods Synthesized by a Hydrothermal Method, Adv. Funct. Mater. 2008,18 1020-1030.
    [35]Y. Ma, G. T. Du, S. R. Yang, Z. T. Li, B. J. Zhao, X. T. Yang, T. P. Yang, Y. T. Zhang and D. L. Liu, Control of conductivity type in undoped ZnO thin films grown by metalorganic vapor phase epitaxy, J. Appl. Phys.2004,95 (11):6268-6272.
    [36]D. C. Look, G. C. Farlow, P. Reunchan, S. Limpijumnong, S. B. Zhang and K. Nordlund, Evidence for native-defect donors in n-type ZnO, Phys. Rev. Lett.2005,95 (22):4.
    [37]F. Tuomisto, K. Saarinen, D. C. Look and G. C. Farlow, Introduction and recovery of point defects in electron-irradiated ZnO, Phys. Rev. B 2005,72 (8):11.
    [38]P. Zu, Z. K. Tang, G. K. L. Wong, M. Kawasaki, A. Ohtomo, H. Koinuma and Y. Segawa, Ultraviolet spontaneous and stimulated emissions from ZnO microcrystallite thin films at room temperature, Solid State Commun.1997,103 (8):459-463.
    [39]D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, S. Koyama, M. Y. Shen and T. Goto, Optically pumped lasing of ZnO at room temperature, Appl. Phys. Lett.1997,70 (17):2230-2232.
    [40]M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo and P. D. Yang, Room-temperature ultraviolet nanowire nanolasers, Science 2001,292 (5523):1897-1899.
    [41]Z. W. Pan, Z. R. Dai and Z. L. Wang, Nanobelts of Semiconducting Oxides, Science 2001, 291 (5510):1947-1949.
    [42]X. Y. Kong, Y. Ding, R. Yang and Z. L. Wang, Single-Crystal Nanorings Formed by Epitaxial Self-Coiling of Polar Nanobelts, Science 2004,303 (5662):1348-1351.
    [43]Z. L. Wang and J. Song, Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays, Science 2006,312 (5771):242-246.
    [44]K. H. Tam, C. K. Cheung, Y. H. Leung, A. B. Djurisic, C. C. Ling, C. D. Beling, S. Fung, W. M. Kwok, W. K. Chan, D. L. Phillips, L. Ding and W. K. Ge, Defects in ZnO Nanorods Prepared by a Hydrothermal Method, J. Phys. Chem. B 2006,110 20865-20871.
    [45]J. Qiu and et al., Solution-derived 40μm vertically aligned ZnO nanowire arrays as photoelectrodes in dye-sensitized solar cells, Nanotechnology 2010,21 (19):195602.
    [46]X. Sheng, L. Changshi, W. Benjamin and W. Zhong Lin, Density-controlled growth of aligned ZnO nanowire arrays by seedless chemical approach on smooth surfaces, J. Mater. Res.2008,23 (8):2072.
    [47]C. Wang, B. Mao, E. Wang, Z. Kang and C. Tian, Solution synthesis of ZnO nanotubes via a template-free hydrothermal route, Solid State Commun.2007,141 (11):620-623.
    [48]A. Wei, X. W. Sun, C. X. Xu, Z. L. Dong, M. B. Yu and W. Huang, Stable field emission from hydrothermally grown ZnO nanotubes, Appl. Phys. Lett.2006,88 (21):213102-213103.
    [49]J. K. Park, Y. J. Kim, J. Yeom, J. H. Jeon, G. C. Yi, J. H. Je and S. K. Hahn, The Topographic Effect of Zinc Oxide Nanoflowers on Osteoblast Growth and Osseointegration, Adv. Mater. 2010,22(43):4857-4861.
    [50]Y. Li, J. Gong and Y. Deng, Hierarchical structured ZnO nanorods on ZnO nanofibers and their photoresponse to UV and visible lights, Sens. Actuators, A 2010,158 (2):176-182.
    [51]K. S. Kim, H. Jeong, M. S. Jeong and G. Y. Jung,Hydrothermal Growth:Polymer-Templated Hydrothermal Growth of Vertically Aligned Single-Crystal ZnO Nanorods and Morphological Transformations Using Structural Polarity, Adv. Funct. Mater.2010,20 3055-3063.
    [52]L.-J. Bie, X.-N. Yan, J. Yin, Y.-Q. Duan and Z.-H. Yuan, Nanopillar ZnO gas sensor for hydrogen and ethanol, Sens. Actuators B 2007,126 604-608.
    [53]Q. Wan, Q. H. Li, Y. J. Chen and T. H. Wang, Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors, Applied Physics Letter 2004,84 (18):3654-3656.
    [54]B. Wang, J. H. Min, Y. Zhao, W. B. Sang and C. J. Wang, The grain boundary related p-type conductivity in ZnO films prepared by ultrasonic spray pyrolysis, Appl. Phys. Lett.2009,94 (19):192101.
    [55]S. M. Chou, L. G. Teoh, W. H. Lai, Y. H. Su and M. H. Hon, ZnO:A1 Thin Film Gas Sensor for Detection of Ethanol Vapor, Sensors 2006,61420-1427.
    [56]H. Okuma, T. Takahashi, M. Katsura and N. Ichinose, NEWLY-DEVELOPED LP-GAS SENSOR, Toshiba Rev (Int Ed) 1978, (118):31-34.
    [57]S. Majumdar and P. Banerji, Moisture sensitivity of p-ZnO/n-Si heterostructure, Sens. Actuator B 2009,140 (1):134-138.
    [58]K. W. Kim, P. S. Cho, S. J. Kim, J. H. Lee, C. Y. Kang, J. S. Kim and S. J. Yoon, The selective detection of C2H5OH using SnO2-ZnO thin film gas sensors prepared by combinatorial solution deposition, Sens. Actuators B 2007,123 (1):318-324.
    [59]J. Y. Park, S.-W. Choi, J.-W. Lee, C. Lee and S. S. Kim, Synthesis and Gas Sensing Properties of TiO2-ZnO Core-Shell Nanofibers, J. Am. Ceram. Soc.2009,92 (11):2551-2554.
    [60]林颖,鹿崇发,半导体气敏原件应用中的几个问题,仪表设计与传感器1997,248-49.
    [61]X. Y. Xue, P. Feng, Y. G. Wang and T. H. Wang, Extremely high oxygen sensing of individual ZnSnO3 nanowires arising from grain boundary barrier modulation, Appl. Phys. Lett.2007,91 (2):022111.
    [62]Y. S. Sonawane, K. G. Kanade, B. B. Kale and R. C. Aiyer, Electrical and gas sensing properties of self-aligned copper-doped zinc oxide nanoparticles, Mater. Res. Bull.2008,43 (10):2719-2726.
    [63]T.-J. Hsueh, Y.-W. Chen, S.-J. Chang, S.-F. Wang, C.-L. Hsu, Y.-R. Lin, T.-S. Lin and I.-C. Chen, ZnO nanowire-based CO sensors prepared on patterned ZnO:Ga/SiO2/Si templates, Sens. Actuators B 2007,125498-503.
    [64]T.-J. Hsueh and S.-J. Chang, Highly sensitive ZnO nanowire ethanol sensor with Pd adsorption, Appl. Phys. Lett.2007,91 053111.
    [65]F. C. Huang, Y. Y. Chen and T. T. Wu, A room temperature surface acoustic wave hydrogen sensor with Pt coated ZnO nanorods, Nanotechnology 2009,20 (6):065501.
    [66]H. T. Wang, B. S. Kang and F. Ren, Hydrogen-selective sensing at room temperature with ZnO nanorods, Appl. Phys. Lett.2005,86 243503.
    [67]N. S. Ramgir, Y. Yang and M. Zacharias, Nanowire-Based Sensors, Small 2010,6 1705-1722.
    [68]B. Ding, W. Moran, Y. Jianyong and S. Gang, Gas Sensors Based on Electrospun Nanofibers Sensors 2009,91609-1624.
    [69]A. V. Chadwick, N. V. Russell, A. R. Whitham and A. Wilson, Nanocrystalline metal oxide gas sensors, Sens. Actuator B 1994,18 (1-3):99-102.
    [70]Y. W. Heo, L. C. Tien and D. P. Norton, Electrical transport properties of single ZnO nanorods Appl. Phys. Lett.2004,85 (11):2002-2004.
    [71]Q. H. Li, Q. Wan, Y. X. Liang and T. H. Wang, Electronic transport through individual ZnO nanowires, Appl. Phys. Lett.2004,84 (22).
    [72]O. Lupan, V. V. Ursaki, G. Chai, L. Chow, G. A. Emelchenko, I. M. Tiginyanu, A. N. Gruzintsev and A. N. Redkin, Selective hydrogen gas nanosensor using individual ZnO nanowire with fast response at room temperature, Sens. Actuators B 2010,144 (1):56-66.
    [73]S. J. Y, L. S. J., C. J. H., S. W. K. and K. Hyungjun, Synthesis of horizontally aligned ZnO nanowires localized at terrace edges and application for high sensitivity gas sensor, Appl. Phys. Lett.2008,93 053109.
    [74]S. Vibha, A. D. K., K. Manmeet, K. S. P., G. S. K. and Y. J. V., Enhanced NO2 selectivity of hybrid poly (3-hexylthiophene):ZnO-nanowire thin films, Appl. Phys. Lett,2007,90 043516.
    [75]沈学础,半导体光学性质.北京:1992.
    [76]R. G. Xie, T. Sekiguchi, T. Ishigaki, N. Ohashi, D. S. Li, D. R. Yang, B. D. Liu and Y. S. Bando, Enhancement and patterning of ultraviolet emission in ZnO with an electron beam, Appl. Phys. Lett.2006,88 (13):134103.
    [77]L. Luo, L. Gong, Y. F. Liu, J. Chen, C. R. Ding, X. G. Tang, X. L. Li, Z. R. Qiu, H. Z. Wang, X. M. Chen, K. F. Li, H. H. Fan and K. W. Cheah, Enhanced ultraviolet lasing from europium-doped zinc oxide nanocrystals, Opt. Mater.2010,32 (9):1066-1070
    [78]S. Li, G. Fang, H. Long, X. Mo, H. Huang, B. Dong and X. Zhao, Enhancement of ultraviolet electroluminescence based on n-ZnO/n-GaN isotype heterojunction with low threshold voltage, Appl. Phys. Lett.2010,96 (20):201111.
    [79]O. Lupan, T. Pauport? and B. Viana, Low-Voltage UV-Electroluminescence from ZnO-Nanowire Array/p-GaN Light-Emitting Diodes, Adv. Mater.2010,22 (30):3298-3302.
    [80]W. H. Ni, J. An, C. W. Lai, H. C. Ong and J. B. Xu, Emission enhancement from metallodielectric-capped ZnO films, J. Appl. Phys.2006,100 (2):026103.
    [81]M. Liu, S. W. Qu, W. W. Yu, S. Y. Bao, C. Y. Ma, Q. Y. Zhang, J. He, J. C. Jiang, E. I. Meletis and C. L. Chen, Photoluminescence and extinction enhancement from ZnO films embedded with Ag nanoparticles, Appl. Phys. Lett.2010,97 (23):231906-231903.
    [82]J.-P. Richters and et al., Enhanced surface-excitonic emission in ZnO/Al2O3 core shell nanowires, Nanotechnology 2008,19 (30):305202.
    [83]F. K. Shan, G. X. Liu, W. J. Lee and B. C. Shin, The role of oxygen vacancies in epitaxial-deposited ZnO thin films, J. Appl. Phys.2007,101 (5):053106.
    [84]S. H. Bae, S. Y. Lee, H. Y. Kim and S. Im, Comparison of the optical properties of ZnO thin films grown on various substrates by pulsed laser deposition, Appl. Surf. Sci.2000,168 (1-4):332-334.
    [85]H. Zeng, G. Duan, Y. Li, S. Yang, X. Xu and W. Cai, Blue Luminescence of ZnO Nanoparticles Based on Non-Equilibrium Processes:Defect Origins and Emission Controls, Adv. Funct. Mater.2010,20 (4):561-572.
    [86]B. Panigrahy, M. Aslam, D. S. Misra, M. Ghosh and D. Bahadur, Defect-Related Emissions and Magnetization Properties of ZnO Nanorods, Adv. Funct. Mater.2010,20 (7):1161-1165.
    [87]S. A. Studenikin, N. Golego and M. Cocivera, Fabrication of green and orange photoluminescent, undoped ZnO films using spray pyrolysis, J. Appl. Phys.1998,84 (4):2287-2294.
    [88]Y. H. Lu, Z. X. Hong, Y. P. Feng and S. P. Russo, Roles of carbon in light emission of ZnO, Appl. Phys. Lett.2010,96 (9):091914.
    [89]C.-H. Choi and S.-H. Kim, Effects of post-annealing temperature on structural, optical, and electrical properties of ZnO and Zn1-xMgxO films by reactive RF magnetron sputtering, J. Cryst. Growth 2005,283 170-179.
    [90]J. J. Ding, S. Y. Ma, H. X. Chen, X. F. Shi, T. T. Zhou and L. M. Mao, Influence of Al-doping on the structure and optical properties of ZnO films, Physica B:Condensed Matter 2009,404 (16):2439-2443.
    [91]Y. Zhang, L. Wu, H. Li, J. Xu, L. Han, B. Wang, Z. Tuo and E. Xie, Influence of Fe doping on the optical property of ZnO films, J. Alloys. Compd.2009,473 (1-2):319-322.
    [92]徐叙瑢,苏勉曾,发光学与发光材料.北京:化学工业出版社.2004.
    [93]X. T. Zhang, Y. C. Liu, J. G. Ma, Y. M. Lu, D. Z. Shen, W. Xu, G. Z. Zhong and X. W. Fan, Room-temperature blue luminescence from ZnO:Er thin films, Thin Solid Films 2002,413 (1-2):257-261.
    [94]X. Zeng, J. Yuan, Z. Wang and L. Zhang, Nanosheet-Based Microspheres of Eu3+-doped ZnO with Efficient Energy Transfer from ZnO to Eu3+ at Room Temperature, Adv. Mater. 2007,19 (24):4510-4514.
    [95]X. Chen and B. Yan, Induced synthesis of ZnO:Tb3+ green hybrid phosphors by the assembly of polyethylene glycol matrices, Mater. Lett.2007,61 (8-9):1707-1710.
    [96]M. Peres, A. Cruz, S. Pereira, M. R. Correia, M. J. Soares, A. Neves, M. C. Carmo, T. Monteiro, A. S. Pereira, M. A. Martins, T. Trindade, E. Alves, S. S. Nobre and R. A. Sa Ferreira, Optical studies of ZnO nanocrystals doped with Eu3+ ions, Appl. Phys. A:Mater. Sci. Process.2007,88 (1):129-133.
    [97]Y. Zhang and et al., Photoluminescence and ZnO-Eu3+ energy transfer in Eu3+-doped ZnO nanospheres, J. Phys. D:Appl. Phys.2009,42 (8):085106.
    [98]S. Gao, H. Zhang, R. Deng, X. Wang, D. Sun and G. Zheng, Engineering white light-emitting Eu-doped ZnO urchins by biopolymer-assisted hydrothermal method, Appl. Phys. Lett.2006,89 (12):123125.
    [1]T. Znotins, in SPIE Conference on Excimer Lasers and Optics (Cambridge; MA (USA), 1986) p.55-62.
    [2]A. V. Singh, R. M. Mehra, N. Buthrath, A. Wakahara and A. Yoshida, Highly conductive and transparent aluminum-doped zinc oxide thin films prepared by pulsed laser deposition in oxygen ambient, J. Appl. Phys.2001,90 (11):5661-5665.
    [3]D. B. Geohegan, Fast intensified-CCD photography of YBa2Cu3O7-x laser ablation in vacuum and ambient oxygen, Appl. Phys. Lett.1992,60 (22):2732-2734.
    [4]C. Roy, S. Byrne, E. McGlynn, J. P. Mosnier, E. de Posada, D. O'Mahony, J. G. Lunney, M. O. Henry, B. Ryan and A. A. Cafolla, Correlation of Raman and X-ray diffraction measurements of annealed pulsed laser deposited ZnO thin films, Thin Solid Films 2003, 436 (2):273-276.
    [5]E. M. Kaidashev, M. Lorenz, H. von Wenckstern, A. Rahm, H. C. Semmelhack, K. H. Han, G. Benndorf, C. Bundesmann, H. Hochmuth and M. Grundmann, High electron mobility of epitaxial ZnO thin films on c-plane sapphire grown by multistep pulsed-laser deposition, Appl. Phys. Lett.2003,82 (22):3901-3903.
    [6]Y. B. Zhang, Q. Liu, T. Sritharan, C. L. Gan and S. Li, Pulsed laser ablation of preferentially orientated ZnO:Co diluted magnetic semiconducting thin films on Si substrates, Appl. Phys. Lett.2006,89(4):042510.
    [7]X. H. Pan, W. Guo, W. Tian, H. P. He, Z. Z. Ye, X. Q. Gu, D. G. Schlom and X. Q. Pan, Optical properties of ZnO/Zn0.9Mg0.1O multiple quantum wells grown on (111) Si using buffer assisted pulsed-laser deposition, J. Appl. Phys.2010,107 (3):033102.
    [8]F. K. Shan, B. C. Shin, S. W. Jang and Y. S. Yu, Substrate effects of ZnO thin films prepared by PLD technique, J. Eur. Ceram. Soc.2004,24 (6):1015-1018.
    [9]S. H. Bae, S. Y. Lee, H. Y. Kim and S. Im, Comparison of the optical properties of ZnO thin films grown on various substrates by pulsed laser deposition, Appl. Surf. Sci.2000,168 (1-4):332-334.
    [10]H. Sankur and J. T. Cheung, Highly oriented ZnO films grown by laser evaporation, Journal of Vacuum Science & Technology A:Vacuum, Surfaces, and Films 1983,1 (4):1806-1809.
    [11]S. Robin C., L. Kevin D., B. Burhan, L. David C. and Z. Yong-Hang, Highly conductive ZnO grown by pulsed laser deposition in pure Ar, Appl. Phys. Lett.2010,97 (7):072113.
    [12]N. Ashkenov, B. N. Mbenkum, C. Bundesmann, V. Riede, M. Lorenz, D. Spemann, E. M. Kaidashev, A. Kasic, M. Schubert, M. Grundmann, G. Wagner, H. Neumann, V. Darakchieva, H. Arwin and B. Monemar, Infrared dielectric functions and phonon modes of high-quality ZnO films, J. Appl. Phys.2003,93 (1):126-133.
    [13]Y. Liu, Q. Li and H. Shao, Optical and photoluminescent properties of Al-doped zinc oxide thin films by pulsed laser deposition, J. Alloys. Compd.2009,485(1-2):529-531.
    [14]H. von Wenckstern, M. Brandt, H. Schmidt, G. Biehne, R. Pickenhain, H. Hochmuth, M. Lorenz and M. Grundmann, Donor-like defects in ZnO substrate materials and ZnO thin films, Appl. Phys. A 2007,88 (1):135-139.
    [15]B. J. Jin, S. H. Bae, S. Y. Lee and S. Im, Effects of native defects on optical and electrical properties of ZnO prepared by pulsed laser deposition, Mater. Sci. Eng., B 2000,71 (1-3):301-305.
    [16]D. Li and Y. Xia, Electrospinning of Nanofibers:Reinventing the Wheel?, Adv. Mater.2004, 16( 14):1151-1170.
    [17]A. L. Yarin, S. Koombhongse and D. H. Reneker, Taylor cone and jetting from liquid droplets in electrospinning of nanofibers, J. Appl. Phys.2001,90 (9):4836-4846.
    [18]C. D. Hendricks, R. S. Carson, J. J. Hogan and J. M. Schneeider, Photomicrography of electrically sprayed heavy particles, AIAA J.1964,2 (4):733-737.
    [19]G. Taylor, Studies in Electrohydrodynamics. I. The Circulation Produced in a Drop by Electrical Field, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 1966,291 (1425):159-166.
    [20]Y. M. Shin, M. M. Hohman, M. P. Brenner and G. C. Rutledge, Experimental characterization of electrospinning:the electrically forced jet and instabilities, Polymer 2001, 42 (25):09955-09967.
    [21]K. H. Lee, H. Y. Kim, M. S. Khil, Y. M. Ra and D. R. Lee, Characterization of nano-structured poly(ε-caprolactone) nonwoven mats via electrospinning, Polymer 2003,44 (4):1287-1294.
    [22]C. J. Thompson, G. G. Chase, A. L. Yarin and D. H. Reneker, Effects of parameters on nanofiber diameter determined from electrospinning model, Polymer 2007,48 (23):6913-6922.
    [23]H. Fong, I. Chun and D. H. Reneker, Beaded nanofibers formed during electrospinning, Polymer 1999,40 (16):4585-4592.
    [24]M. S. Khil, H. Y. Kim, M. S. Kim, S. Y. Park and D.-R. Lee, Nanofibrous mats of poly(trimethylene terephthalate) via electrospinning, Polymer 2004,45 (1):295-301.
    [25]L. Rayleigh, Investigations in Capillarity:The size of drops. The liberation of gas from supersaturated solutions. Colliding jets. The tension of contaminated water-surfaces, Philosophical Magazine Series 5 1899,48 (293):321-337.
    [26]J. Doshi and D. H. Reneker, Electrospinning Process and Applications of Electrospun Fibers 1993,93 Pts 1-3,1698-1703.
    [27]Z. Zhang, C. Shao, X. Li, C. Wang, M. Zhang and Y. Liu, Electrospun Nanofibers of p-Type NiO/n-Type ZnO Heterojunctions with Enhanced Photocatalytic Activity, ACS Appl. Mat. Interfaces 2010,2 (10):2915-2923.
    [28]C. J. Hogan Jr, K. M. Yun, D.-R. Chen, I. W. Lenggoro, P. Biswas and K. Okuyama, Controlled size polymer particle production via electrohydrodynamic atomization, Colloids Surf. Physicochem. Eng. Aspects 2007,311 (1-3):67-76.
    [29]G. Hota, S. Sundarrajan, S. Ramakrishna and N. WunJern, One Step Fabrication of MgO Solid and Hollow Submicrometer Fibers Via Electrospinning Method, J. Am. Ceram. Soc. 2009,92(10):2429-2433.
    [30]D. Li and Y. Xia, Direct Fabrication of Composite and Ceramic Hollow Nanofibers by Electrospinning, Nano Lett.2004,4 (5):933-938.
    [31]Z. Liu, D. D. Sun, P. Guo and J. O. Leckie, An Efficient Bicomponent TiO2/SnO2 Nanofiber Photocatalyst Fabricated by Electrospinning with a Side-by-Side Dual Spinneret Method, Nano Lett.2006,7 (4):1081-1085.
    [32]姚永毅,朱谱新,叶海,钮安建,高绪珊和吴大诚,静电纺丝法和气流-静电纺丝制备聚砜纳米纤维,高分子学报2005,5687-692.
    [33]B. Lu, Y. Wang, Y. Liu, H. Duan, J. Zhou, Z. Zhang, X. Li, W. Wang, W. Lan and E. Xie, Superhigh-Throughput Needleless Electrospinning Using a Rotary Cone as Spinneret, Small 2010,6(15):1612-1616.
    [34]Y. Liu, X. Zhang, Y. Xia and H. Yang, Magnetic-Field-Assisted Electrospinning of Aligned Straight and Wavy Polymeric Nanofibers, Adv. Mater.2010,22 (22):2454-2457.
    [35]H.-Y. Kim, M. Lee, K. J. Park, S. Kim and L. Mahadevan, Nanopottery:Coiling of Electrospun Polymer Nanofibers, Nano Lett.2010,10 (6):2138-2140.
    [36]Y. Z. Wang, H. Li, G. X. Wang, T. Y. Yin, B. C. Wang and Q. S. Yu, Electrospinning of Polymer Nanofibers with Ordered Patterns and Architectures, J. Nanosci. Nanotechnol.2010, 10(3):1699-1706.
    [37]M. R. Badrossamay, H. A. McIlwee, J. A. Goss and K. K. Parker, Nanofiber Assembly by Rotary Jet-Spinning, Nano Lett.2010,10 (6):2257-2261.
    [38]何崇智,X射线衍射实验技术.北京:原子能出版社.1988.
    [39]张清敏,徐濮,扫描电子显微镜和X射线微区分析.天津:南开大学出版社.1988.
    [40]叶恒强,透射电子显微学进展.北京:科学出版社.2003.
    [41]C.D.Wagner, W. M. Riggs, L. E. Davis and J.F.Moulder, Handbook of X-Ray Photoelectron Spectroscopy Perkin-Elmer.1979.
    [42]M. Y. Smirnov and G. W. Graham, Pd oxidation under UHV in a model Pd/ceria-zirconia catalyst, Catal. Lett.2001,72 (1-2):39-44.
    [43]G. W. Graham, NO chemisorption on supported Pd, Surf. Sci.1992,268 (1-3):25-35.
    [44]左演声,陈文哲,梁伟,材料现代分析方法.北京:北京工业大学出版社.2000.
    [45]郑顺旋,激光喇曼光谱学.上海:上海科学技术出版社.1985.
    [46]沈学础,半导体光学性质.北京:科学出版社.1992.
    [47]L. W. Nordheim, The effect of image force on the emission and reflexion of electrons by metals, Proceedings of the Royal Society A:Mathematical, Physical and Engineering Sciences 1928,121 (121):626-639.
    [1]N Jayadev Dayan, S R Sainkar, R. N. Karekar and R. C. Aiyer, A thick-film hydrogen sensor based on a ZnO:MoO3 formulation, Meas. Sci. Technol.1998,9360-364.
    [2]L. C. Tien, P. W. Sadik, D. P. Norton, L. F. Voss and S. J. Pearton, Hydrogen sensing at room temperature with Pt-coated ZnO thin films and nanorods, Appl. Phys. Lett.2005,87 222106.
    [3]Q. Wan, C. L. Lin, X. B. Yu and T. H. Wang, Room-temperature hydrogen storage characteristics of ZnO nanowires, Appl. Phys. Lett.2004,84 (1):124-126.
    [4]O. Lupan, V. V. Ursaki, G. Chai, L. Chow, G. A. Emelchenko, I. M. Tiginyanu, A. N. Gruzintsev and A. N. Redkin, Selective hydrogen gas nanosensor using individual ZnO nanowire with fast response at room temperature, Sens. Actuators B 2010,144 (1):56-66.
    [5]H. T. Wang, B. S. Kang and F. Ren, Hydrogen-selective sensing at room temperature with ZnO nanorods, Appl. Phys. Lett.2005,86 243503.
    [6]S. N. Das, J. P. Kar, J. H. Choi, T. Il Lee, K. J. Moon and J. M. Myoung, Fabrication and Characterization of ZnO Single Nanowire-Based Hydrogen Sensor, J. Phys. Chem. C 2010, 114(3):1689-1693.
    [7]A. Allenic, Structural, Electrical and Optical Properties of p-Type ZnO Epitaxial Films in "Materials Science and Engineering" (University of Michigan Ann Arbor,2008).
    [8]C. Roy, S. Byrne, E. McGlynn, J. P. Mosnier, E. de Posada, D. O'Mahony, J. G. Lunney, M. O. Henry, B. Ryan and A. A. Cafolla, Correlation of Raman and X-ray diffraction measurements of annealed pulsed laser deposited ZnO thin films, Thin Solid Films 2003, 436 (2):273-276.
    [9]F. K. Shan, G. X. Liu, W. J. Lee and B. C. Shin, The role of oxygen vacancies in epitaxial-deposited ZnO thin films, J. Appl. Phys.2007,101 (5):053106.
    [10]X. Q. Wei, B. Y. Man, M. Liu, C. S. Xue, H. Z. Zhuang and C. Yang, Blue luminescent centers and microstructural evaluation by XPS and Raman in ZnO thin films annealed in vacuum, N2 and O2, Physica B-Condensed Matter 2007,388 (1-2):145-152.
    [11]V. Kobrinsky, A. Rothschild, V. Lumelsky, Y. Komem and Y. Lifshitz, Tailoring the gas sensing properties of ZnO thin films through oxygen nonstoichiometry, Appl. Phys. Lett. 2008,93 113502.
    [12]I. G. Dimitrov, A. O. Dikovska, P. A. Atanasov, T. R. Stoyanchov and T. Vasilev, A1 doped ZnO thin films for gas sensor application, J. Phys:Conf. Ser.2008,113 012044.
    [13]S. M. Chou, L. G. Teoh, W. H. Lai, Y. H. Su and M. H. Hon, ZnO:Al Thin Film Gas Sensor for Detection of Ethanol Vapor, Sensors 2006,6 1420-1427.
    [14]L.-J. Bie, X.-N. Yan, J. Yin, Y.-Q. Duan and Z.-H. Yuan, Nanopillar ZnO gas sensor for hydrogen and ethanol, Sens. Actuators B 2007,126 604-608.
    [15]H. Ting-Jen and H. Cheng-Liang, Fabrication of gas sensing devices with ZnO nanostructure by the low-temperature oxidation of zinc particles, Sens. Actuators B 2008,131 572-576.
    [16]Q. Wan, Q. H. Li, Y. J. Chen and T. H. Wang, Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors, Applied Physics Letter 2004,84 (18):3654-3656.
    [17]J. F. Chang, H. H. Kuo, I. C. Leu and M. H. Hon, The effects of thickness and operation temperature on ZnO:Al thin film CO gas sensor, Sens. Actuators B 2002,84 258-264.
    [18]B.L.Zhu, D.W.Zeng, J.Wu, W.L.Song and C.S.Xie, Systhesis and gas sensitivity of In-doped ZnO nanoparticles, J. Mater. Sci.:Mater. Electron.2003,14521-526.
    [19]A. Tubtimtael, S. Choopun, A. Gardchareon, P. Mangkomtong and N. Mangkorntong, Ethanol Sensor Based on Au-doped ZnO Nanostructures in "Proceedings of the 2nd IEEE International Conference on Nano/Micro Engineered and Molecular Systems" (Bangkok, Thailand,2007).
    [20]X. X. Y., C. Y. J., W. Y. G. and W. T. H., Synthesis and ethanol sensing properties of ZnSnO3 nanowires, Appl. Phys. Lett.2005,86 233101.
    [21]W. Jyh Ming, A room temperature ethanol sensor made from p-type Sb-doped SnO2 nanowires, Nanotechnology 2010,21 (23):235501.
    [22]Y. Anno, T. Maekawa, J. Tamaki, Y. Asano, K. Hayashi, N. Miura and N. Yamazoe, Zinc-oxide-based semiconductor sensors for detecting acetone and capronaldehyde in the vapour of consomme soup, Sens. Actuator B 1995,25 (1-3):623-627.
    [23]K.-K. Kim, H.-S. Kim, D.-K. Hwang, J.-H. Lim and S.-J. Park, Realization of p-type ZnO thin films via phosphorus doping and thermal activation of the dopant, Appl. Phys. Lett. 2003,83 (1):63-65.
    [24]H. F. Liu and S. J. Chua, Doping behavior of phosphorus in ZnO thin films:Effects of doping concentration and postgrowth thermal annealing, Appl. Phys. Lett.2010,96 (9).
    [25]S. Limpijumnong, S. B. Zhang, S.-H. Wei and C. H. Park, Doping by Large-Size-Mismatched Impurities:The Microscopic Origin of Arsenic- or Antimony-Doped p-Type Zinc Oxide, Phys. Rev. Lett.2004,92 (15):155504.
    [26]W. Guo, A. Allenic, Y. B. Chen, X. Q. Pan, Y. Che, Z. D. Hu and B. Liu, Microstructure and properties of epitaxial antimony-doped p-type ZnO films fabricated by pulsed laser deposition, Appl. Phys. Lett.2007,90 (24):242108-242108-242103.
    [27]T. Fukumura, Z. Jin, A. Ohtomo, H. Koinuma and M. Kawasaki, An oxide-diluted magnetic semiconductor:Mn-doped ZnO, Appl. Phys. Lett.1999,75 (21):3366-3368.
    [28]J. J. Liu, M. H. Yu and W. L. Zhou, Well-aligned Mn-doped ZnO nanowires synthesized by a chemical vapor deposition method, Appl. Phys. Lett.2005,87 172505.
    [29]N. J. Dayan, S. R. Sainkar, R. N. Karekar and R. C. Aiyer, Formulation and characterization of ZnO:Sb thick-film gas sensors, Thin Solid Films 1998,325 (1-2):254-258.
    [30]B. L. Zhu, C. S. Xie, D. W. Zeng, W. L. Song and A. H. Wang, Investigation of gas sensitivity of Sb-doped ZnO nanoparticles, Mater. Chem. Phys.2005,89 148-153.
    [31]H. Li, X. Pan, M. Qiao, Y. Zhang, T. Wang and E. Xie, The influence of ambient conditions on properties of MgxZn1-xO films by sputtering, Vacuum 2008,82 (5):459-462.
    [32]P. Bhattacharya, R. R. Das and R. S. Katiyar, Fabrication of stable wide-band-gap ZnO/MgO multilayer thin films, Appl. Phys. Lett.2003,83 (10):2010-2012.
    [33]K. Ajay and K. Davinder, Effect of Mg contentonstructural, electrical and optical properties of Zn1-xMgxO nanocomposite thin films Sol. Energy Mater. Sol. Cells 2009,93 193-198.
    [34]A. L. Yang, H. Y. Wei, X. L. Liu, H. P. Song, H. B. Fan, P. F. Zhang, G. L. Zheng, S. Y. Yang, Q. S. Zhu and Z. G. Wang, Characterization of ZnMgO hexagonal-nanotowers/films on m-plane sapphire synthesized by metal organic chemical vapour deposition, J. Phys. D:Appl. Phys.2008,41205416.
    [35]T. Maemoto, N. Ichiba, S. Sasa and M. Inoue, Growth of ZnO/Zn1-xMgxO films by pulsed laser ablation, Thin Solid Films 2005,486174-177.
    [36]X. H. Pan, W. Guo, W. Tian, H. P. He, Z. Z. Ye, X. Q. Gu, D. G. Schlom and X. Q. Pan, Optical properties of ZnO/Zn0.9Mg0.1O multiple quantum wells grown on (111) Si using buffer assisted pulsed-laser deposition, J. Appl. Phys.2010,107 (3):033102.
    [37]J. W. Mares, R. C. Boutwell, A. Scheurer and W. V. Schoenfeld, Cubic ZnxMg1-xO thin films grown by plasma-assisted molecular-beam epitaxy for optoelectronic applications, J. Mater. Res.2010,26 1072-1079.
    [38]S. Choopun, R. D. Vispute, W. Yang, R. P. Sharma and T. Venkatesan, Realization of band gap above 5.0 eV in metastable cubic-phase MgxZn1-xO alloy films, Appl. Phys. Lett.2002, 80(9):1529-1531.
    [39]Z. Chen and K. Colbow, MgO-doped Cr2O3:solubility limit and the effect of doping on the resistivity and ethanol sensitivity, Sens. Actuator B 1992,9 (1):49-53.
    [40]X. Liu, B. Cheng, J. Hu, H. Qin and M. Jiang, Semiconducting gas sensor for ethanol based on LaMgxFe1-xO3 nanocrystals, Sens. Actuator B 2008,129 (1):53-58.
    [41]D. C. Kim and et al., Structural transition from MgZnO nanowires to ultrathin nanowalls by surface separation:growth evolution and gas sensing properties, Nanotechnology 2010,21 (42):425503.
    [42]N. S. Ramgir, Y. Yang and M. Zacharias, Nanowire-Based Sensors, Small 2010,6 1705-1722.
    [43]X. Y. Xue, P. Feng, Y. G. Wang and T. H. Wang, Extremely high oxygen sensing of individual ZnSnO3 nanowires arising from grain boundary barrier modulation, Appl. Phys. Lett.2007,91 (2).
    [44]K. Mukherjee and S. B. Majumder, Hydrogen sensing characteristics of wet chemical synthesized tailored Mg0.5Zn0.5Fe2O4 nanostructures, Nanotechnology 2010,21 (25):255504.
    [45]S. M. Sze, Physics of Semiconductor Devices. New York:Wiley.1981.
    [46]M. Lorenz, M. Brandt, M. Lange, G. Benndorf, H. von Wenckstern, D. Klimm and M. Grundmann, Homoepitaxial MgxZn1-xO (0≤x≤0.22) thin films grown by pulsed laser deposition, Thin Solid Films 2010,518 (16):4623-4629.
    [47]Z. Shi, D. Liu, X. Yan, Z. Gao and S. Bai, Effect of oxygen partial pressure on conductivity type of MgZnO nanocrystalline thin films prepared by metal-organic chemical vapor deposition, Microelectronics Journal 2008,39 (12):1583-1586.
    [48]W. Liu, B. Yao, Y. Li, B. Li, Z. Zhang, C. Shan, J. Zhang, D. Shen and X. Fan, Oxygen partial pressure dependence of the properties of MgZnO thin films during annealing, J. Mater. Sci.2010,1-6.
    [49]P. Bhattacharyya, P. K. Basu, C. Lang, H. Saha and S. Basu, Noble metal catalytic contacts to sol-gel nanocrystalline zinc oxide thin films for sensing methane, Sens. Actuators B 2008, 129551-557.
    [50]F. C. Huang, Y. Y. Chen and T. T. Wu, A room temperature surface acoustic wave hydrogen sensor with Pt coated ZnO nanorods, Nanotechnology 2009,20 (6):065501.
    [51]G. S. T. Rao and D. T. Rao, Gas sensitivity of ZnO based thick film sensor to NH3 at room temperature, Sens. Actuator B 1999,55 (2-3):166-169.
    [52]T.-J. Hsueh and S.-J. Chang, Highly sensitive ZnO nanowire ethanol sensor with Pd adsorption, Appl. Phys. Lett.2007,91 053111.
    [53]M. Y. Smirnov and G. W. Graham, Pd oxidation under UHV in a model Pd/ceria-zirconia catalyst, Catal. Lett.2001,72 (1-2):39-44.
    [54]A. M. Ruiz, G. Sakai, A. Cornet, K. Shimanoe, J. R. Morante and N. Yamazoe, Cr-doped TiO2 gas sensor for exhaust NO2 monitoring, Sens. Actuator B 2003,93 (1-3):509-518.
    [55]A. M. Ruiz, A. Cornet, K. Shimanoe, J. R. Morante and N. Yamazoe, Transition metals (Co, Cu) as additives on hydrothermally treated TiO2 for gas sensing, Sens. Actuator B 2005,109 (1):7-12
    [56]G. D. Yuan, W. J. Zhang, J. S. Jie, X. Fan, J. A. Zapien, Y. H. Leung, L. B. Luo, P. F. Wang, C. S. Lee and S. T. Lee, p-type ZnO nanowire arrays, Nano Lett.2008,8 (8):2591-2597.
    [57]S. Chu, M. Olmedo, Z. Yang, J. Y. Kong and J. L. Liu, Electrically pumped ultraviolet ZnO diode lasers on Si, Appl. Phys. Lett.2008,93 (18):181106.
    [58]Y. F. Hsu, Y. Y. Xi, K. H. Tam, A. B. Djurisic, J. Luo, C. C. Ling, C. K. Cheung, A. M. C. Ng, W. K. Chan, X. Deng, C. D. Beling, S. Fung, K. W. Cheah, P. W. K. Fong and C. C. Surya, Undoped p-Type ZnO Nanorods Synthesized by a Hydrothermal Method, Adv. Funct. Mater. 2008,18 1020-1030.
    [59]Y. Ma, G. T. Du, S. R. Yang, Z. T. Li, B. J. Zhao, X. T. Yang, T. P. Yang, Y. T. Zhang and D. L. Liu, Control of conductivity type in undoped ZnO thin films grown by metalorganic vapor phase epitaxy, J. Appl. Phys.2004,95 (11):6268-6272.
    [60]D. C. Look, G. C. Farlow, P. Reunchan, S. Limpijumnong, S. B. Zhang and K. Nordlund, Evidence for native-defect donors in n-type ZnO, Phys. Rev. Lett.2005,95 (22):4.
    [61]F. Tuomisto, K. Saarinen, D. C. Look and G. C. Farlow, Introduction and recovery of point defects in electron-irradiated ZnO, Phys. Rev. B 2005,72 (8):11.
    [62]C.D.Wagner, W. M. Riggs, L. E. Davis and J.F.Moulder, Handbook of X-Ray Photoelectron Spectroscopy Perkin-Elmer.1979.
    [1]A. Umar, M. M. Rahman and Y. B. Hahn, Ultra-sensitive hydrazine chemical sensor based on high-aspect-ratio ZnO nanowires, Talanta 2009,77 (4):1376-1380.
    [2]O. K. Varghese, D. Gong, M. Paulose, K. G. Ong, E. C. Dickey and C. A. Grimes, Extreme Changes in the Electrical Resistance of Titania Nanotubes with Hydrogen Exposure, Adv. Mater.2003,15 (7-8):624-627.
    [3]S.-H. Choi, G. Ankonina, D.-Y. Youn, S.-G. Oh, J.-M. Hong, A. Rothschild and I.-D. Kim, Hollow ZnO Nanofibers Fabricated Using Electrospun Polymer Templates and Their Electronic Transport Properties, ACS Nano 2009,3 (9):2623-2631.
    [4]T. J. Hsueh, S. J. Chang, C. L. Hsu, Y. R. Lin and I. C. Chen, ZnO nanotube ethanol gas sensors, J. Electrochem. Soc.2008,155 (9):K152-K155.
    [5]D. R. Rolison, Catalytic Nanoarchitectures--the Importance of Nothing and the Unimportance of Periodicity, Science 2003,299 (5613):1698-1701.
    [6]K. Shankar, J. Bandara, M. Paulose, H. Wietasch, O. K. Varghese, G. K. Mor, T. J. LaTempa, M. Thelakkat and C. A. Grimes, Highly Efficient Solar Cells using TiO2 Nanotube Arrays Sensitized with a Donor-Antenna Dye, Nano Lett.2008,8 (6):1654-1659.
    [7]L. Li, X. Yin, S. Liu, Y. Wang, L. Chen and T. Wang, Electrospun porous SnO2 nanotubes as high capacity anode materials for lithium ion batteries, Electrochem. Commun.2010,12 (10):1383-1386.
    [8]D. N. Futaba, K. Hata, T. Yamada, T. Hiraoka, Y. Hayamizu, Y. Kakudate, O. Tanaike, H. Hatori, M. Yumura and S. Iijima, Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes, Nat. Mater.2006,5 (12):987-994.
    [9]E. Ben-Jacob and Y. Hanein, Carbon nanotube micro-electrodes for neuronal interfacing, J. Mater. Chem.2008,18 (43):5181-5186.
    [10]M. Zhou, J. Zhou, R. Li and E. Xie, Preparation of Aligned Ultra-long and Diameter-controlled Silicon Oxide Nanotubes by Plasma Enhanced Chemical Vapor Deposition Using Electrospun PVP Nanofiber Template, Nanoscale Res. Letts 2010,5 (2):279-285.
    [11]D. Li and Y. Xia, Electrospinning of Nanofibers:Reinventing the Wheel?, Adv. Mater.2004, 16(14):1151-1170.
    [12]J. H. Yu and G. M. Choi, Selective CO gas detection of CuO- and ZnO-doped SnO2 gas sensor, Sens. Actuator B 2001,75 (1-2):56-61.
    [13]T.-J. Hsueh, Y.-W. Chen, S.-J. Chang, S.-F. Wang, C.-L. Hsu, Y.-R. Lin, T.-S. Lin and I.-C. Chen, ZnO nanowire-based CO sensors prepared on patterned ZnO:Ga/SiO2/Si templates, Sens. Actuators B 2007,125498-503.
    [14]Y. S. Sonawane, K. G. Kanade, B. B. Kale and R. C. Aiyer, Electrical and gas sensing properties of self-aligned copper-doped zinc oxide nanoparticles, Mater. Res. Bull.2008,43 (10):2719-2726.
    [15]艾常涛,李珍,掺杂ZnO功能薄膜研究新进展,材料导报2005,19(5):7-10.
    [16]陈祖耀,张大杰,钱逸泰,气体传感器用稀土气敏材料,仪表材料1989,20(1):25-32.
    [17]T. Arakawa, H. Kurachi and J. Shiokawa, Physicochemical properties of rare earth perovskite oxides used as gas sensor material, J. Mater. Sci.1985,20 (4):1207-1210.
    [18]T. Maekawa, J. Tamaki, N. Miura, N. Yamazoe and S. Matsushima, Development of SnO2-based ethanol gas sensor, Sens. Actuator B 1992,9 (1):63-69.
    [19]S. Chi Tsang and C. Bulpitt, Rare earth oxide sensors for ethanol analysis, Sens. Actuator B 1998,52 (3):226-235.
    [20]Y. Anno, T. Maekawa, J. Tamaki, Y. Asano, K. Hayashi, N. Miura and N. Yamazoe, Zinc-oxide-based semiconductor sensors for detecting acetone and capronaldehyde in the vapour of consomme soup, Sens. Actuator B 1995,25 (1-3):623-627.
    [21]N. Koshizaki and T. Oyama, Sensing characteristics of ZnO-based NOX sensor, Sens. Actuator B 2000,66 (1-3):119-121.
    [22]J. Kolaczkiewicz and E. Bauer, The adsorption of Eu, Gd and Tb on the W(110) surface, Surf. Sci.1986,175 (3):487-507.
    [23]J. Liu and X. Huang, A low-temperature synthesis of ultraviolet-light-emitting ZnO nanotubes and tubular whiskers, J. Solid State Chem.2006,179 (3):843-848.
    [24]X. H. Li, C. L. Shao, Y. C. Liu, X. Y. Chu, C. H. Wang and B. X. Zhang, Photoluminescence properties of highly dispersed ZnO quantum dots in polyvinylpyrrolidone nanotubes prepared by a single capillary electrospinning, J. Chem. Phys.2008,129 (11):5.
    [25]G. Hota, S. Sundarrajan, S. Ramakrishna and N. WunJern, One Step Fabrication of MgO Solid and Hollow Submicrometer Fibers Via Electrospinning Method, J. Am. Ceram. Soc. 2009,92(10):2429-2433.
    [26]W. Wang, J. Zhou, S. Zhang, J. Song, H. Duan, M. Zhou, C. Gong, Z. Bao, B. Lu, X. Li, W. Lan and E. Xie, A novel method to fabricate silica nanotubes based on phase separation effect, J. Mater. Chem.2010,20 (41):9068-9072.
    [27]Z. Liu, D. D. Sun, P. Guo and J. O. Leckie, An Efficient Bicomponent TiO2/SnO2 Nanofiber Photocatalyst Fabricated by Electrospinning with a Side-by-Side Dual Spinneret Method, Nano Lett.2006,7 (4):1081-1085.
    [28]I.-D. Kim, E.-K. Jeon, S.-H. Choi, D.-K. Choi and H. Tuller, Electrospun SnO2 nanofiber mats with thermo-compression step for gas sensing applications, J. Electroceram.2010,25 (2):159-167.
    [29]M. Ahmad, C. F. Pan, L. Gan, Z. Nawaz and J. Zhu, Highly Sensitive Amperometric Cholesterol Biosensor Based on Pt-Incorporated Fullerene-like ZnO Nanospheres, J. Phys. Chem. C 2010,114 (1):243-250.
    [1]S. Fernandez and F. B. Naranjo, Optimization of aluminum-doped zinc oxide films deposited at low temperature by radio-frequency sputtering on flexible substrates for solar cell applications, Sol. Energy Mater. Sol. Cells 2010,94 (2):157-163.
    [2]O. Lupan, S. Shishiyanu, V. Ursaki, H. Khallaf, L. Chow, T. Shishiyanu, V. Sontea, E. Monaico and S. Railean, Synthesis of nanostructured Al-doped zinc oxide films on Si for solar cells applications, Sol. Energy Mater. Sol. Cells 2009,93 (8):1417-1422.
    [3]M. Zamfirescu, A. Kavokin, B. Gil, G. Malpuech and M. Kaliteevski, ZnO as a material mostly adapted for the realization of room-temperature polariton lasers, Phys. Rev. B 2002, 65(16):161205.
    [4]M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo and P. D. Yang, Room-temperature ultraviolet nanowire nanolasers, Science 2001,292 (5523):1897-1899.
    [5]D. C. Reynolds, D. C. Look and B. Jogai, Optically pumped ultraviolet lasing from ZnO, Solid State Commun.1996,99 (12):873-875.
    [6]A. B. Djurisic, A. M. C. Ng and X. Y. Chen, ZnO nanostructures for optoelectronics: Material properties and device applications, Prog. Quantum Electron.2010,34 (4):191-259.
    [7]F. K. Shan, G. X. Liu, W. J. Lee and B. C. Shin, The role of oxygen vacancies in epitaxial-deposited ZnO thin films, J. Appl. Phys.2007,101 (5):053106.
    [8]A. B. Djurisic, Y. H. Leung, K. H. Tam, L. Ding, W. K. Ge, H. Y. Chen and S. Gwo, Green, yellow, and orange defect emission from ZnO nanostructures:Influence of excitation wavelength, Appl. Phys. Lett.2006,88 (10):103107.
    [9]S. H. Bae, S. Y. Lee, H. Y. Kim and S. Im, Comparison of the optical properties of ZnO thin films grown on various substrates by pulsed laser deposition, Appl. Surf. Sci.2000,168 (1-4):332-334.
    [10]S. A. Studenikin, N. Golego and M. Cocivera, Fabrication of green and orange photoluminescent, undoped ZnO films using spray pyrolysis, J. Appl. Phys.1998,84 (4):2287-2294.
    [11]J. W. P. Hsu, D. R. Tallant, R. L. Simpson, N. A. Missert and R. G. Copeland, Luminescent properties of solution-grown ZnO nanorods, Appl. Phys. Lett.2006,88 (25):252103.
    [12]A. B. Djurisic, Y. H. Leung, K. H. Tam, Y. F. Hsu, L. Ding, W. K. Ge, Y. C. Zhong, K. S. Wong, W. K. Chan, H. L. Tam, K. W. Cheah, W. M. Kwok and D. L. Phillips, Defect emissions in ZnO nanostructures, Nanotechnology 2007,18 095702.
    [13]S. Li, X. Z. Zhang, B. Yan and T. Yu, Growth mechanism and diameter control of well-aligned small-diameter ZnO nanowire arrays synthesized by a catalyst-free thermal evaporation method, Nanotechnology 2009,20 (49):495604.
    [14]R. Jothilakshmi, V. Ramakrishnan, R. Thangavel, J. Kumar, A. Sarua and M. Kuball, Micro-Raman scattering spectroscopy study of Li-doped and undoped ZnO needle crystals, J. Raman Spectrosc.2009,40 (5):556-561.
    [15]M. Tzolov, N. Tzenov, D. Dimova-Malinovska, M. Kalitzova, C. Pizzuto, G. Vitali, G. Zollo and I. Ivanov, Vibrational properties and structure of undoped and Al-doped ZnO films deposited by RF magnetron sputtering, Thin Solid Films 2000,379 (1-2):28-36.
    [16]A. J. Cheng, Y. H. Tzeng, H. Xu, S. Alur, Y. Q. Wang, M. Park, T. H. Wu, C. Shannon, D. J. Kim and D. Wang, Raman analysis of longitudinal optical phonon-plasmon coupled modes of aligned ZnO nanorods, J. Appl. Phys.2009,105 (7):073104.
    [17]J. N. Zeng, J. K. Low, Z. M. Ren, T. Liew and Y. F. Lu, Effect of deposition conditions on optical and electrical properties of ZnO films prepared by pulsed laser deposition, Appl. Surf. Sci.2002, (197-198):362-367.
    [18]C. Roy, S. Byrne, E. McGlynn, J. P. Mosnier, E. de Posada, D. O'Mahony, J. G. Lunney, M. O. Henry, B. Ryan and A. A. Cafolla, Correlation of Raman and X-ray diffraction measurements of annealed pulsed laser deposited ZnO thin films, Thin Solid Films 2003, 436 (2):273-276.
    [19]H. W. Kim, M. A. Kebede and H. S. Kim, Structural, Raman, and photoluminescence characteristics of ZnO nanowires coated with Al-doped ZnO shell layers, Current Applied Physics 2010,10(1):60-63.
    [20]K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt and B. E. Gnade, Mechanisms behind green photoluminescence in ZnO phosphor powders, J. Appl. Phys. 1996,79(10):7983-7990.
    [21]I. Shalish, H. Temkin and V. Narayanamurti, Size-dependent surface luminescence in ZnO nanowires, Phys. Rev. B 2004,69 (24):245401.
    [22]H. M. Zhong, Q. Liu, Y. Sun and W. Lu, Annealing effect on structure and green emission of ZnO nanopowder by decomposing precursors, Chinese Physics B 2009,18 (11):5024-5028.
    [23]M. S. Wang, X. N. Cheng and J. Yang, Controlled visible photoluminescence of ZnO thin films prepared by RF magnetron sputtering, Appl. Phys. A 2009,96 (3):783-787.
    [24]M. Wang, K. E. Lee, S. H. Hahn, E. J. Kim, S. Kim, J. S. Chung, E. W. Shin and C. Park, Optical and photoluminescent properties of sol-gel Al-doped ZnO thin films, Mater. Lett. 2007,61 (4-5):1118-1121.
    [25]L. Wu, Y. Wu, X. Pan and F. Kong, Synthesis of ZnO nanorod and the annealing effect on its photoluminescence property, Opt. Mater.2006,28 (4):418-422.
    [26]J. Zhong, A. H. Kitai, P. Mascher and W. Puff, The Influence of Processing Conditions on Point Defects and Luminescence Centers in ZnO, J. Electrochem. Soc.1993,140 (12):3644-3649.
    [27]X. Chen and B. Yan, Induced synthesis of ZnO:Tb3+ green hybrid phosphors by the assembly of polyethylene glycol matrices, Mater. Lett.2007,61 (8-9):1707-1710.
    [28]A. S. Pereira and et al., Synthesis, surface modification and optical properties of Tb3+-doped ZnO nanocrystals, Nanotechnology 2006,17 (3):834.
    [29]A. Cetin, R. Kibar, M. AyvaclklI, Y. Tuncer, C. Buchal, P. D. Townsend, T. Karali, S. Selvi and N. Can, Optical properties of Tb implantation into ZnO, Surf. Coat. Technol.2007,201 (19-20):8534-8538.
    [30]S. Ji, L. Yin, G. Liu, L. Zhang and C. Ye, Synthesis of Rare Earth Ions-Doped ZnO Nanostructures with Efficient Host-Guest Energy Transfer, J. Phys. Chem. C 2009,113 (37):16439-16444.
    [31]J. Song, X. An, J. Zhou, Y. Liu, W. Wang, X. Li, W. Lan and E. Xie, Investigation of enhanced ultraviolet emission from different Ti-capped ZnO structures via surface passivation and surface plasmon coupling, Appl. Phys. Lett.2010,97 (12):122103.
    [32]M. Liu, S. W. Qu, W. W. Yu, S. Y. Bao, C. Y. Ma, Q. Y. Zhang, J. He, J. C. Jiang, E. I. Meletis and C. L. Chen, Photoluminescence and extinction enhancement from ZnO films embedded with Ag nanoparticles, Appl. Phys. Lett.2010,97 (23):231906-231903.
    [33]W. H. Ni, J. An, C. W. Lai, H. C. Ong and J. B. Xu, Emission enhancement from metallodielectric-capped ZnO films, J. Appl. Phys.2006,100 (2):026103.
    [34]J. Kolaczkiewicz and E. Bauer, The adsorption of Eu, Gd and Tb on the W(110) surface, Surf. Sci.1986,175 (3):487-507.
    [35]Y. Xie, Z. Ma, L. Liu, Y. Su, H. Zhao, Y. Liu, Z. Zhang, H. Duan, J. Li and E. Xie, Oxygen defects-modulated green photoluminescence of Tb-doped ZrO2 nanofibers, Appl. Phys. Lett. 2010,97(14):141916.
    [36]L. A. Gomez, L. d. S. Menezes, C. B. d. Araujo, R. R. Goncalves, S. J. L. Ribeiro and Y. Messaddeq, Upconversion luminescence in Er3+ doped and Er3+/Yb3+ codoped zirconia and hafnia nanocrystals excited at 980 nm, J. Appl. Phys.2010,107 (11):113508.
    [37]G. Cabello, L. Lillo, C. Caro, G. E. Buono-Core, B. Chornik and M. A. Soto, Structure and optical characterization of photochemically prepared ZrO2 thin films doped with erbium and europium, J. Non-Cryst. Solids 2008,354 (33):3919-3928.
    [38]S. Lange, I. Sildos, M. Hartmanova, J. Aarik and V. Kiisk, Luminescence properties of Sm3+-doped polycrystalline ZrO2, J. Non-Cryst. Solids 2008,354 (35-39):4380-4382.
    [39]L. Liu, H. Zhang, Y. Wang, Y. Su, Z. Ma, Y. Xie, H. Zhao, C. Chen, Y. Liu, X. Guo, Q. Su and E. Xie, Synthesis and White-Light Emission of ZnO/HfO2:Eu Nanocables, Nanoscale Res. Lett.s 2010,5 (9):1418-1423.
    [1]L. E. Greene, M. Law, J. Goldberger, F. Kim, J. C. Johnson, Y. Zhang, R. J. Saykally and P. Yang, Low-Temperature Wafer-Scale Production of ZnO Nanowire Arrays, Angew. Chem. Int. Ed.2003,42 (26):3031-3034.
    [2]P.-Y. Yang, J.-L. Wang, W.-C. Tsai, S.-J. Wang, J.-C. Lin, I. C. Lee, C.-T. Chang and H.-C. Cheng, Photoresponse of hydrothermally grown lateral ZnO nanowires, Thin Solid Films 2010,518 (24):7328-7332.
    [3]N. Bano, S. Zaman, A. Zainelabdin, S. Hussain, I. Hussain, O. Nur and M. Willander, ZnO-organic hybrid white light emitting diodes grown on flexible plastic using low temperature aqueous chemical method, J. Appl. Phys.2010,108 (4):043103.
    [4]P. Gao and Z. L. Wang, Self-Assembled Nanowire-nanoribbon Junction Arrays of ZnO, J. Phys. Chem. B 2002,106 (49):12653-12658.
    [5]J. Y. Lao, J. G. Wen and Z. F. Ren, Hierarchical ZnO Nanostructures, Nano Lett.2002,2 (11):1287-1291.
    [6]S. Xu, Y. Wei, M. Kirkham, J. Liu, W. Mai, D. Davidovic, R. L. Snyder and Z. L. Wang, Patterned Growth of Vertically Aligned ZnO Nanowire Arrays on Inorganic Substrates at Low Temperature without Catalyst, J. Am. Chem. Soc.2008,130 (45):14958-14959.
    [7]J. K. Park, Y. J. Kim, J. Yeom, J. H. Jeon, G. C. Yi, J. H. Je and S. K. Hahn, The Topographic Effect of Zinc Oxide Nanoflowers on Osteoblast Growth and Osseointegration, Adv. Mater. 2010,22(43):4857-4861.
    [8]X.-H. Lu, G.-R. Li, W.-X. Zhao and Y.-X. Tong, A simple electrochemical deposition route for the controllable growth of Ce4+-doped ZnO nanorods, Electrochim. Acta 2008,53 (16):5180-5185.
    [9]J. Elias, C. Levy-Clement, M. Bechelany, J. Michler, G. Y. Wang, Z. Wang and L. Philippe, Hollow Urchin-like ZnO thin Films by Electrochemical Deposition, Adv. Mater.2010,22 (14):1607-1612.
    [10]Y. Li, G. Chen, Q. Wang, X. Wang, A. Zhou and Z. Shen, Hierarchical ZnS-In2S3-CuS Nanospheres with Nanoporous Structure:Facile Synthesis, Growth Mechanism, and Excellent Photocatalytic Activity, Adv. Funct. Mater.2010,20 (19):3390-3398.
    [11]Y. Li, J. Gong and Y. Deng, Hierarchical structured ZnO nanorods on ZnO nanofibers and their photoresponse to UV and visible lights, Sens. Actuators, A 2010,158 (2):176-182.
    [12]H. Bai, Z. Liu and D. D. Sun, Hierarchically multifunctional TiO2 nano-thorn membrane for water purification, Chem. Commun.2010,46 (35):6542-6544.
    [13]X.-L. Yu, J.-G. Song, Y.-S. Fu, Y. Xie, X. Song, J. Sun and X.-W. Du, ZnS/ZnO Heteronanostructure as Photoanode to Enhance the Conversion Efficiency of Dye-Sensitized Solar Cells, J. Phys. Chem. C 2010,114 (5):2380-2384.
    [14]A. Wei, X. W. Sun, C. X. Xu, Z. L. Dong, M. B. Yu and W. Huang, Stable field emission from hydrothermally grown ZnO nanotubes, Appl. Phys. Lett.2006,88 (21):213102-213103.
    [15]R. Z. Wang, B. Wang, H. Wang, H. Zhou, A. P. Huang, M. K. Zhu, H. Yan and X. H. Yan, Band bending mechanism for field emission in wide-band gap semiconductors, Appl. Phys. Lett.2002,81 (15):2782-2784.
    [16]N. Pan, H. Xue, M. Yu, X. Cui, X. Wang, J. Hou, J. Huang and S. Deng, Tip-morphology-dependent field emission from ZnO nanorod arrays, Nanotechnology 2010, 21 (22):225707.
    [17]N. X. Wang, C. H. Sun, Y. Zhao, S. Y. Zhou, P. Chen and L. Jiang, Fabrication of three-dimensional ZnO/TiO2 heteroarchitectures via a solution process, J. Mater. Chem. 2008,18(33):3909-3911.
    [18]M. Kanjwal, N. Barakat, F. Sheikh, S. Park and H. Kim, Photocatalytic activity of ZnO-TiO2 hierarchical nanostructure prepared by combined electrospinning and hydrothermal techniques, Macromol. Res.2010,18 (3):233-240.
    [19]R. Liu, H. Ye, X. Xiong and H. Liu, Fabrication of TiO2/ZnO composite nanofibers by electrospinning and their photocatalytic property, Mater. Chem. Phys.2010,121 (3):432-439.
    [20]A. B. Djurisic, A. M. C. Ng and X. Y. Chen, ZnO nanostructures for optoelectronics: Material properties and device applications, Prog. Quantum Electron.2010,34 (4):191-259.
    [21]S. Li, X. Z. Zhang, B. Yan and T. Yu, Growth mechanism and diameter control of well-aligned small-diameter ZnO nanowire arrays synthesized by a catalyst-free thermal evaporation method, Nanotechnology 2009,20 (49):495604.
    [22]Q. Zhao, J. Gao, R. Zhu, T. Cai, S. Wang, X. Song, Z. Liao, X. Chen and D. Yu, Ultrahigh field emission current density from nitrogen-implanted ZnO nanowires, Nanotechnology 2010,21 (9):095701.
    [23]Y. J. Zeng, S. S. Lin, A. Volodin, Y. F. Lu, Z. Z. Ye and C. V. Haesendonck, Zero-dimensional field emitter based on ZnO quantum dots, Appl. Phys. Lett.2010,97 (14):143102.
    [24]G. Z. Xing and et al., Ultrathin single-crystal ZnO nanobelts:Ag-catalyzed growth and field emission property, Nanotechnology 2010,21 (25):255701.
    [25]Q. Zhao, X. Y. Xu, X. F. Song, X. Z. Zhang, D. P. Yu, C. P. Li and L. Guo, Enhanced field emission from ZnO nanorods via thermal annealing in oxygen, Appl. Phys. Lett.2006,88 (3):033102.
    [26]P. K. Ghosh, U. N. Maiti, S. Jana and K. K. Chattopadhyay, Field emission from ZnS nanorods synthesized by radio frequency magnetron sputtering technique, Appl. Surf. Sci. 2006,253 (3):1544-1550.
    [27]H. J. Xu, Y. F. Chan, L. Su, D. Y. Li and X. M. Sun, Enhanced field emission from ZnO nanowires grown on a silicon nanoporous pillar array, J. Appl. Phys.2010,108 (11):114301.
    [28]B. K. Gupta, D. Haranath, S. Chawla, H. Chander, V. N. Singh and V. Shanker, Self-catalytic synthesis, structure and properties of ultra-fine luminescent ZnO nanostructures for field emission applications, Nanotechnology 2010,21 (22):225709.
    [29]H. Zeng, X. Xu, Y. Bando, U. K. Gautam, T. Zhai, X. Fang, B. Liu and D. Golberg, Template Deformation-Tailored ZnO Nanorod/Nanowire Arrays:Full Growth Control and Optimization of Field-Emission, Adv. Funct. Mater.2009,19 3165-3172.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700