ZrO_2及HfO_2低维纳米材料的合成、表征与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Zr02和Hf02纳米材料因其独特的物理化学性质在电学、光学以及耐温材料等诸多领域有广泛的应用前景。利用物理和化学的方法制备各种低维纳米材料,进而实现对其结构、形貌及物性的调控,对于深入研究纳米材料的形成过程以及生长机理,从而实现对纳米材料的结构设计以及功能调控具有重要的意义。本论文在Zr02和Hf02低维纳米材料的合成、形成机制以及物性等方面进行了系统的研究。
     创新性地建立了一种制备纳米带的简易方法。采用自行搭制的静电纺丝装置制备了Zr02和Hf02纳米线、纳米带。系统地研究了电纺丝的基本控制参量如溶液浓度、电压、固化距离、环境温度对纳米带形貌的影响。实验发现,通过控制溶液的浓度可以得到高宽比可控的纳米带。此外,高温环境对纳米带的形成十分有利,在环境温度为70℃时能得到厚度为5nm的超薄纳米带。在此基础上,提出了纳米带的生长机理:相分离效应是纳米带形成的主要因素,而溶剂的快速挥发对纳米带的形成至关重要。采用此项技术,实现了其他材料(ZnO、SnO2、PAN)纳米带的可控制备。初步探讨了稀土掺杂HfO2纳米带在发光器件中的潜在应用。
     为了增强纳米颗粒的发光效率,在稀土掺杂的ZrO2纳米颗粒表面包覆惰性和活性外壳。研究了壳层厚度和外壳掺杂对纳米材料结构和发光性能的影响,从实验和理论上揭示了包覆纳米材料发光强度提高的机制。发现活性外壳同时具有保护内核中发光离子和吸收紫外光并将能量传递给内核中的发光离子两方面的作用。
     HfO2薄膜作为一种重要的高介电常数材料在MOS型器件中有潜在的应用。本论文采用反应溅射法在Si衬底上制备了Hf02薄膜。研究了薄膜的生长参数和后处理对薄膜结构和电学性能的影响。得到了性能最优异的Hf02薄膜的制备参数。同时对各种缺陷的形成机理以及缺陷对薄膜电学性能的影响也进行了研究。
Owing to unique physical and chemical properties, nanostructured zirconium oxide and hafnium oxide have exhibited promising applications in electrics, optics, temperature-resistant and other fields. Preparing low-dimensional nanostructures by phycal and chemical methods and investigating their general formation mechanism may be a solution to the precise control of their structure, morphology and properties. In this dissertation, systematic explorations have been carried out on synsthetic strategies of zirconium oxide and hafnium oxide, their formation mechanisms and properties.
     A simple synthetic method for nanobelts has been developed. ZrO2and HfO2nanowires, nanobelts were prepared in homemade electrospinning setup. The effects of electrospinning parameters such as solution concentration, the voltage and the distance between the cathode and the anode, ambient temperature on the morphology of nanobelts were systematic investigated. We found that the aspect ratio of nanobelts could be adjusted by controlling the polymer solution concentration. In addition, elevated ambient temperature is favorable to the formation of the nanobelts and ultra-thin nanobelts (-5nm) could be obtained at70℃. On this basis, the growth mechanism of nanobelts was discussed. It was found that phase separation effect is the main factor in the formation process of nanobelts and the rapid evaporation of solvent played an important role. Several polymer solutions with different solvent have been electrospun and corresponding nanobelts were fabricated by this method. The potential application of rare-earth-doped HfO2nanobelts in the light emitting devices was explored.
     To enhance the intensity of luminescence in nanoparticles, rare earth doped ZrO2nanoparticles coated with inert and active shells have been synthesized. The effects of the shell thickness and rare earth doped active shell on the luminescence of the nanoparticles have been demonstrated. The active-shell serves two purposes:one is to protect the luminescing rare earth ions from the non-radiative decay and the other is to transfer UV absorbed radiation to the luminescing core.
     HfO2has emerged as the most promising high dielectric for MOS devices. In this dissertation, HfO2thin films were prepared by reactive sputtering at silicon substrate. The impact of the deposition parameters and post-treatment on the structure and electrical property of HfO2films was analysed to explore the best preparation condition of HfO2film. Moreover, the formation mechanism of various defects was indicated and the defects effect on the electrical properties of the films was suggested.
引文
[1]张立德,牟季美.纳米材料和纳米结构[M].科学出版社.2001.
    [2]张志焜,崔作林.纳米技术与纳米材料[M].国防工业出版社.2000.
    [3]朱静.纳米材料和器件[M].清华大学出版社.2003.
    [4]Lieber, C.M. One-dimensional nanostructures:Chemistry, physics & applications[J]. Solid state communications.1998,107 (11):607-616.
    [5]El-Sayed, M.A. Some interesting properties of metals confined in time and nanometer space of different shapes[J]. Accounts of Chemical Research.2001,34 (4):257-264.
    [6]Templeton, A.C., Wuelfing, W.P., Murray, R.W. Monolayer-protected cluster moleculesfJ]. Accounts of Chemical Research.2000,33 (1):27-36.
    [7]Duan, X., Lieber, C.M. General synthesis of compound semiconductor nanowires[J]. Advanced Materials.2000,12 (4):298-302.
    [8]Pan, Z.W., Wang, Z.L. Nanobelts of semiconducting oxides[J]. Science.2001,291 (5510): 1947-1949.
    [9]Caruso, F. Hollow inorganic capsules via colloid-templated layer-by-layer electrostatic assembly[J]. Colloid Chemistry II.2003,145-168.
    [10]Li, Y., Li, X., Deng, Z.X., Zhou, B., Fan, S., Wang, J., Sun, X. From Surfactant-Inorganic Mesostructures to Tungsten Nanowires[J]. Angewandte Chemie.2002,114 (2):343-345.
    [11]Xia, Y., Yang, P., Sun, Y., Wu, Y., Mayers, B., Gates, B., Yin, Y., Kim, F., Yan, H. One-Dimensional Nanostructures:Synthesis, Characterization, and Applications[J]. Advanced Materials.2003,15 (5):353-389.
    [12]刘英才,陈守刚,尹衍升.氧化锆陶瓷的掺杂稳定及生长动力学[M].化学工业出版社.2004.
    [13]Evans, A.G., Cannon, R. Overview no.48:Toughening of brittle solids by martensitic transformations[J]. Acta metallurgica.1986,34 (5):761-800.
    [14]Porter, D., Evans, A., Heuer, A. Transformation-toughening in partially-stabilized zirconia (PSZ)[J]. Acta metallurgica.1979,27(10):1649-1654.
    [15]Rhodes, W. Agglomerate and Particle Size Effects on Sintering Yttria-Stabilized Zirconia[J]. Journal of the American Ceramic Society.1981,64 (1):19-22.
    [16]Clarke, D., Levi, C. Materials design for the next generation thermal barrier coatings[J]. Annual review of materials research.2003,33 (1):383-417.
    [17]Minh, N.Q. Ceramic fuel cells[J]. Journal of the American Ceramic Society.1993,76 (3): 563-588.
    [18]Tanabe, K., Yamaguchi, T. Acid-base bifunctional catalysis by ZrO2 and its mixed oxides[J]. Catalysis today.1994,20(2):185-197.
    [19]Garvie, R., Hannink, R., Pascoe, R. Ceramic steel?[J]. Nature.1975,258:703-704.
    [20]Fergus, J. Doping and defect association in oxides for use in oxygen sensors[J], Journal of materials science.2003,38 (21):4259-4270.
    [21]Copel, M., Gribelyuk, M., Gusev, E. Structure and stability of ultrathin zirconium oxide layers on Si (001)[J]. Applied Physics Letters.2000,76:436.
    [22]Chang, J., Lin, Y.S. Dielectric property and conduction mechanism of ultrathin zirconium oxide films[J]. Applied Physics Letters.2001,79:3666.
    [23]Wiemer, C, Debernardi, A., Lamperti, A., Molle, A., Salicio, O., Lamagna, L., Fanciulli, M. Influence of lattice parameters on the dielectric constant of tetragonal ZrO2 and La-doped ZrO2 crystals in thin films deposited by atomic layer deposition on Ge (001)[J]. Applied Physics Letters.2011,99 (23):232907.
    [24]Abermann, S., Henkel, C, Bethge, O., Bertagnolli, E. Electrical characteristics of atomic layer deposited aluminium oxide and lanthanum-zirconium oxide high-k Dielectric stacks[A], Ultimate integration of silicon.2009:209-212.
    [25]Mondal, A., Ram, S. Enhanced Phase Stability and Photoluminescence of Eu3+Modified t-ZrO2 Nanoparticles[J]. Journal of the American Ceramic Society.2008,91 (1):329-332.
    [26]Gomez, L.A., Menezes, L.S., de Araujo, C.B., Goncalves, R.R., Ribeiro, S.J.L., Messaddeq, Y. Upconversion luminescence in Er3+doped and Er3+/Yb3+codoped zirconia and hafnia nanocrystals excited at 980 nm[J]. Journal of Applied Physics.2010,107 (11):113508.
    [27]Lange, S., Sildos, I., Hartmanova, M., Aarik, J., Kiisk, V. Luminescence properties of Sm3+ doped polycrystalline ZrO2[J]. Journal of Non-Crystalline Solids.2008,354 (35):4380-4382.
    [28]Cabello, G., Lillo, L., Caro, C, Buono-Core, G.E., Chornik, B., Soto, M. Structure and optical characterization of photochemically prepared ZrO2 thin films doped with erbium and europium[J]. Journal of Non-Crystalline Solids.2008,354 (33):3919-3928.
    [29]Xie, Y, Ma, Z., Liu, L., Su, Y, Zhao, H., Liu, Y, Zhang, Z., Duan, H., Li, J., Xie, E. Oxygen defects-modulated green photoluminescence of Tb-doped ZrO2 nanofibers[J]. Applied Physics Letters.2010,97:141916.
    [30]Lange, F.F. Powder processing science and technology for increased reliability[J]. Journal of the American Ceramic Society.1989,72 (1):3-15.
    [31]Tsukada, T., Venigalla, S., Morrone, A.A., Adair, J.H. Low-Temperature Hydrothermal Synthesis of Yttrium-Doped Zirconia Powders[J]. Journal of the American Ceramic Society. 1999,82(5):1169-1174.
    [32]Chuah, G. An investigation into the preparation of high surface area zirconia[J]. Catalysis today.1999,49(1-3):131-139.
    [33]Hu, M.Z.C., Harris, M.T., Byers, C.H. Nucleation and growth for synthesis of nanometric zirconia particles by forced hydrolysis[J]. Journal of colloid and interface science.1998,198 (1):87-99.
    [34]DellAgli, G., Mascolo, G. Low temperature hydrothermal synthesis of ZrO2-CaO solid solutions[J]. Journal of materials science.2000,35 (3):661-665.
    [35]Somiya, S., Akiba, T. Hydrothermal zirconia powders:a bibliography[J]. Journal of the European Ceramic Society.1999,19(1):81-87.
    [36]Noh, H.J., Seo, D.S., Kim, H., Lee, J.K.. Synthesis and crystallization of anisotropic shaped ZrO2 nanocrystalline powders by hydrothermal process[J]. Materials Letters.2003,57 (16-17):2425-2431.
    [37]DellAgli, G., Mascolo, G. Hydrothermal synthesis of ZrO2-Y2O3 solid solutions at low temperature[J]. Journal of the European Ceramic Society.2000,20 (2):139-145.
    [38]Tani, E., YOSHIMURA, M., SOMIYA, S. Formation of ultrafine tetragonal ZrO2 powder under hydrothermal conditions[J]. Journal of the American Ceramic Society.1983,66 (1): 11-14.
    [39]Tani, E., Yoshimura, M., Somiya, S. Hydrothermal Preparation of Ultrafme Monoclinic ZrO2 Powder[J]. Journal of the American Ceramic Society.1981,64 (12):C-181.
    [40]Yoshimura, M., Somiya, S. Hydrothermal synthesis of crystallized nano-particles of rare earth-doped zirconia and hafnia[J]. Materials chemistry and physics.1999,61 (1):1-8.
    [41]Kumar, A., Roy, R. Reactive-Electrode Submerged-Arc Process for Producing Fine Non-Oxide Powders[J]. Journal of the American Ceramic Society.1989,72 (2):354-356.
    [42]Komarneni, S., Roy, R., Li, Q. Microwave-hydrothermal synthesis of ceramic powders[J]. Materials research bulletin.1992,27 (12):1393-1405.
    [43]Komarneni, S., Li, Q., Stefansson, K.M., Roy, R. Microwave-hydrothermal processing for synthesis of electroceramic powders[J]. Journal of materials research.1993,8 (12): 3176-3183.
    [44]Kolen'ko, Y.V., Maximov, V., Burukhin, A., Muhanov, V., Churagulov, B. Synthesis of ZrO2 and TiO2 nanocrystalline powders by hydrothermal process[J]. Materials Science and Engineering:C.2003,23 (6):1033-1038.
    [45]Nubian, K., Saruhan, B., Kanka, B., Schmucker, M., Schneider, H., Wahl, G. Chemical vapor deposition of ZrO2 and C/ZrO2 on mullite fibers for interfaces in mullite/aluminosilicate fiber-reinforced composites[J]. Journal of the European Ceramic Society.2000,20 (5): 537-544.
    [46]Srdic, V.V., Winterer, M., Hahn, H. Sintering behavior of nanocrystalline zirconia prepared by chemical vapor synthesis[J]. Journal of the American Ceramic Society.2000,83 (4): 729-736.
    [47]Xia, B., Duan, L., Xie, Y. ZrO2 Nanopowders Prepared by Low-Temperature Vapor-Phase Hydrolysis[J]. Journal of the American Ceramic Society.2000,83 (5):1077-1080.
    [48]Khor, K. The effect of plasma spraying conditions on the spheroidization of zircon and alumina mixtures[J]. Journal of Materials Processing Technology(Netherlands).1999,89: 532-537.
    [49]Takatori, K., Tani, T., Watanabe, N., Kamiya, N. Preparation and characterization of nano-structured ceramic powders synthesized by emulsion combustion method[J]. Journal of Nanoparticle Research.1999,1 (2):197-204.
    [50]Berger, S., Faltenbacher, J., Bauer, S., Schmuki, P. Enhanced self-ordering of anodic ZrO2 nanotubes in inorganic and organic electrolytes using two-step anodization[J]. physica status solidi (RRL)-Rapid Research Letters.2008,2 (3):102-104.
    [51]Berger, S., Jakubka, F., Schmuki, P. Formation of hexagonally ordered nanoporous anodic zirconia[J]. Electrochemistry Communications.2008,10 (12):1916-1919.
    [52]Fang, D., Huang, K., Luo, Z., Wang, Y., Liu, S., Zhang, Q. Freestanding ZrO2 nanotube membranes made by anodic oxidation and effect of heat treatment on their morphology and crystalline structure[J]. J. Mater. Chem.2011,21 (13):4989-4994.
    [53]Guo, L., Zhao, J., Wang, X., Xu, R., Li, Y. Synthesis and growth mechanism of zirconia nanotubes by anodization in electrolyte containing CT[J]. Journal of Solid State Electrochemistry.2009,13 (9):1321-1326.
    [54]Ismail, S., Ahmad, Z.A., Berenov, A., Lockman, Z. Effect of applied voltage and fluoride ion content on the formation of zirconia nanotube arrays by anodic oxidation of zirconium[J]. Corrosion Science.2011,53 (4):1156-1164.
    [55]Ismail, S., Lockman, Z., Ahmad, Z.A., Berenov, A. Formation and Mechanistic Study of Self-Ordering ZrO2 Nanotubes by Anodic Oxidation[J]. Advanced Materials Research.2011, 173:173-177.
    [56]Lee, W.J., Smyrl, W.H. Zirconium oxide nanotubes synthesized via direct electrochemical anodization[J]. Electrochemical and solid-state letters.2005,8:B7.
    [57]Lee, W.J., Smyrl, W.H. Oxide nanotube arrays fabricated by anodizing processes for advanced material applicatio[J]. Current Applied Physics.2008,8 (6):818-821.
    [58]Shin, Y., Lee, S. A freestanding membrane of highly ordered anodic ZrO2 nanotube arrays[J]. Nanotechnology.2009,20:105301.
    [59]Tsuchiya, H., Macak, J.M., Taveira, L., Schmuki, P. Fabrication and characterization of smooth high aspect ratio zirconia nanotubes[J]. Chemical physics letters.2005,410 (4): 188-191.
    [60]Vacandio, F., Eyraud, M., Chassigneux, C, Knauth, P., Djenizian, T. Electrochemical Synthesis and Characterization of Zirconia Nanotubes Grown from Zr Thin Films[J]. Journal of the Electrochemical Society.2010,157:K279.
    [61]Wang, L.N., Luo, J.L. Fabrication and mechanical properties of anodized zirconium dioxide nanotubular arrays[J]. Journal of Physics D:Applied Physics.2011,44:075301.
    [62]Wang, L.N., Luo, J.L. Enhancing the bioactivity of zirconium with the coating of anodized ZrO2 nanotubular arrays prepared in phosphate containing electrolyte[J]. Electrochemistry Communications.2010,12(11):1559-1562.
    [63]Zhang, L., Shao, J., Han, Y. Enhanced anodization growth of self-organized ZrO2 nanotubes on nanostructured zirconium[J]. Surface and Coatings Technology.2011,205 (8):2876-2881.
    [64]Zhao, J., Wang, X., Xu, R., Meng, F., Guo, L., Li, Y. Fabrication of high aspect ratio zirconia nanotube arrays by anodization of zirconium foils[J]. Materials Letters.2008,62 (29): 4428-4430.
    [65]Zhao, J., Xu, R., Wang, X., Li, Y. In situ synthesis of zirconia nanotube crystallines by direct anodization[J]. Corrosion Science.2008,50 (6):1593-1597.
    [66]Xu, H., Qin, D.H., Yang, Z., Li, H.L. Fabrication and characterization of highly ordered zirconia nanowire arrays by sol-gel template method[J]. Materials chemistry and physics. 2003,80 (2):524-528.
    [67]Chen, C.C., Cheng, W.Y., Lu, S.Y., Lin, Y.F., Hsu, Y.J., Chang, K.S., Kang, C.H., Tung, K.L. Growth of zirconia and yttria-stabilized zirconia nanorod arrays assisted by phase transition[J]. CrystEngComm.2010,12 (11):3664-3669.
    [68]Jing, N., Wang, M., Kameoka, J. Fabrication of Ultrathin ZrO2 Nanofibers by Electrospinning[J]. Journal of Photopolymer Science and Technology.2005,18 (4):503-506.
    [69]Jiang, C, Wang, F., Wu, N., Liu, X. Up-and Down-Conversion Cubic Zirconia and Hafnia Nanobelts[J]. Advanced Materials.2008,20 (24):4826-4829.
    [70]Zhao, X., Vanderbilt, D. First-principles study of structural, vibrational, and lattice dielectric properties of hafnium oxide[J]. Physical Review B.2002,65 (23):233106.
    [71]Mukhopadhyay, A.B., Sanz, J.F., Musgrave, C.B. First-principles calculations of structural and electronic properties of monoclinic hafnia surfaces[J]. Physical Review B.2006,73 (11): 115330.
    [72]Nguyen, N., Davydov, A.V., Chandler-Horowitz, D., Frank, M.M. Sub-bandgap defect states in polycrystalline hafnium oxide and their suppression by admixture of silicon[J]. Applied Physics Letters.2005,87:192903.
    [73]Luo, X., Demkov, A., Triyoso, D., Fejes, P., Gregory, R., Zoliner, S. Combined experimental and theoretical study of thin hafnia films[J]. Physical Review B Condensed Matter And Materials Physics.2008,78 (24):245314.
    [74]Coutures, J.P., Coutures, J. The system HfO2-TiO2[J]. Journal of the American Ceramic Society.1987,70 (6):383-387.
    [75]Fujimori, H., Yashima, M., Kakihana, M., Yoshimura, M. In situ ultraviolet raman study on the phase transition of hafnia up to 2085 K[J]. Journal of the American Ceramic Society. 2001,84 (3):663-665.
    [76]Wang, C, Zinkevich, M., Aldinger, F. The Zirconia-Hafnia system:DTA measurements and thermodynamic calculations[J]. Journal of the American Ceramic Society.2006,89 (12): 3751-3758.
    [77]Yamada, T., Mizuno, M., Ishizuka, T., Noguchi, T. Liquidus-curve measurement in the system zirconia-hafnia[J]. Advances in Ceramics.1986,24:959-964.
    [78]Shevthenko, A., Lopato, L. DTA method applikation to the highest refractory oxide systems investigation[J]. Thermochimica acta.1985,93:537-540.
    [79]Kang, J., Lee, E.C., Chang, K. First-principles study of the structural phase transformation of hafnia under pressure[J]. Physical Review B.2003,68 (5):054106.
    [80]Ohtaka, O., Fukui, H., Kunisada, T., Fujisawa, T., Funakoshi, K., Utsumi, W., Irifune, T., Kuroda, K., Kikegawa, T. Phase relations and volume changes of hafnia under high pressure and high temperaturefJ]. Journal of the American Ceramic Society.2001,84 (6):1369-1373.
    [81]Jayaraman, A., Wang, S., Sharma, S., Ming, L. Pressure-induced phase transformations in HfO2 to 50 GPa studied by raman spectroscopyfJ]. Physical Review B.1993,48 (13):9205.
    [82]Wilk, G., Wallace, R., Anthony, J. High-K gate dielectrics:Current status and materials properties considerations[J]. Journal of Applied Physics.2001,89:5243.
    [83]Zhu, W., Ma, T., Zafar, S., Tamagawa, T. Charge trapping in ultrathin hafnium oxide[J]. Electron Device Letters, IEEE.2002,23 (10):597-599.
    [84]Zhu, W., Ma, T.P., Tamagawa, T., Kim, J., Di, Y. Current transport in metal/hafnium oxide/silicon structure[J]. Electron Device Letters, IEEE.2002,23 (2):97-99.
    [85]Callegari, A., Cartier, E., Gribelyuk, M., Okorn-Schmidt, H., Zabel, T. Physical and electrical characterization of Hafnium oxide and Hafnium silicate sputtered films[J]. Journal of Applied Physics.2001,90:6466.
    [86]Lee, B.H., Kang, L., Nieh, R., Qi, W.J., Lee, J.C. Thermal stability and electrical characteristics of ultrathin hafnium oxide gate dielectric reoxidized with rapid thermal annealing[J]. Applied Physics Letters.2000,76 1926.
    [87]Lee, S., Jeon, T., Kwong, D., Clark, R. Hafnium oxide gate stack prepared by in situ rapid thermal chemical vapor deposition process for advanced gate dielectrics[J]. Journal of Applied Physics.2002,92:2807.
    [88]Wong, H., Ng, K., Zhan, N., Poon, M., Kok, C. Interface bonding structure of hafnium oxide prepared by direct sputtering of hafnium in oxygen[J]. Journal of Vacuum Science & Technology B:Microelectronics and Nanometer Structures.2004,22 (3):1094-1100.
    [89]Perevalov, T., Gritsenko, V., Erenburg, S., Badalyan, A., Wong, H., Kim, C. Atomic and electronic structure of amorphous and crystalline hafnium oxide:X-ray photoelectron spectroscopy and density functional calculations[J]. Journal of Applied Physics.2007,101: 053704.
    [90]Panzer, M.A., Shandalov, M., Rowlette, J.A., Oshima, Y., Chen, Y.W., Mclntyre, P.C., Goodson, K.E. Thermal properties of ultrathin hafnium oxide gate dielectric films[J]. Electron Device Letters, IEEE.2009,30 (12):1269-1271.
    [91]Hu, H., Zhu, C, Lu, Y.F., Wu, Y., Liew, T., Li, M., Cho, B., Choi, W., Yakovlev, N. Physical and electrical characterization of HfO2 metal-insulator-metal capacitors for Si analog circuit applications[J]. Journal of Applied Physics.2003,94:551.
    [92]Khoshman, J.M., Kordesch, M.E. Optical properties of a-HfO2 thin films[J]. Surface and Coatings Technology.2006,201 (6):3530-3535.
    [93]Zhang, D., Fan, S., Zhao, Y, Gao, W., Shao, J., Fan, R., Wang, Y, Fan, Z. High laser-induced damage threshold HfO2 films prepared by ion-assisted electron beam evaporation[J]. Applied surface science.2005,243 (1):232-237.
    [94]Alvisi, M., De Tomasi, F., Perrone, M., Protopapa, M., Rizzo, A., Sarto, F., Scaglione, S. Laser damage dependence on structural and optical properties of ion-assisted HfO2 thin films[J]. Thin solid films.2001,396 (1):44-52.
    [95]Andre, B., Poupinet, L., Ravel, G. Evaporation and ion assisted deposition of HfO2 coatings: Some key points for high power laser applications[J]. Journal of Vacuum Science & Technology A:Vacuum, Surfaces, and Films.2000,18:2372.
    [96]Traylor Kruschwitz, J.D., Pawlewicz, W.T. Optical and durability properties of infrared transmitting thin films[J]. Applied optics.1997,36 (10):2157-2159.
    [97]Martinez, F., Toledano-Luque, M., Gandia, J., Carabe, J., Bohne, W, Rohrich, J., Strub, E., Martil, I. Optical properties and structure of HfO2 thin films grown by high pressure reactive sputtering[J]. Journal of Physics D:Applied Physics.2007,40:5256.
    [98]Chow, R., Falabella, S., Loomis, G.E., Rainer, F., Stolz, C.J., Kozlowski, M.R. Reactive evaporation of low-defect density hafnia[J]. Applied optics.1993,32 (28):5567-5574.
    [99]Grilli, M.L., Menchini, F., Piegari, A., Alderighi, D., Toci, G., Vannini, M. Al2O3/SiO2 and HfO2/SiO2 dichroic mirrors for UV solid-state lasers[J]. Thin solid films.2009,517 (5): 1731-1735.
    [100]Fadel, M., Azim M, O., Omer, O., Basily, R. A study of some optical properties of hafnium dioxide (HfO2) thin films and their applications[J]. Applied Physics A:Materials Science & Processing.1998,66 (3):335-343.
    [101]Lange, S., Kiisk, V., Reedo, V., Kirm, M., Aarik, J., Sildos, I. Luminescence of RE-ions in HfO2 thin films and some possible applications[J]. Optical Materials.2006,28 (11): 1238-1242.
    [102]Cho, D., Bae, W.J., Joo, Y.L., Ober, C.K., Frey, M.W. Properties of PVA/HfO2 Hybrid Electrospun Fibers and Calcined Inorganic HfO2 Fibers[J]. The Journal of Physical Chemistry C.2011,115 (13):5535-5544.
    [103]Perez, I., Robertson, E., Banerjee, P., Henn-Lecordier, L., Son, S.J., Lee, S.B., Rubloff, G.W. TEM-Based Metrology for HfO2 Layers and Nanotubes Formed in Anodic Aluminum Oxide Nanopore Structures[J]. small.2008,4 (8):1223-1232.
    [104]Gu, D., Baumgart, H., Namkoong, G., Abdel-Fattah, T.M. Atomic Layer Deposition of ZrO2 and HfO2 Nanotubes by Template Replication[J]. Electrochemical and solid-state letters. 2009,12:K25.
    [105]Liu, L., Ma, Z., Xie, Y., Su, Y., Zhao, H., Zhou, M., Zhou, J., Li, J., Xie, E. Photoluminescence of rare earth doped uniaxially aligned HfO2 nanotubes prepared by sputtering with electrospun polyvinylpyrolidone nanofibers as templates[J], Journal of Applied Physics.2010,107:024309.
    [106]Liu, L., Wang, Y., Su, Y, Ma, Z., Xie, Y., Zhao, H., Chen, C, Zhang, Z., Xie, E. Synthesis and White Light Emission of Rare Earth-Doped HfO2 Nanotubes[J]. Journal of the American Ceramic Society.2011,94 (7):2141-2145.
    [107]Liu, L., Zhang, H., Wang, Y, Su, Y, Ma, Z., Xie, Y, Zhao, H., Chen, C, Liu, Y, Guo, X. Synthesis and White-Light Emission of ZnO/HfO2:Eu Nanocables[J]. Nanoscale research letters.2010,5 (9):1418-1423.
    [108]Qiu, X., Howe, J.Y, Cardoso, M.B., Polat, O., Heller, W.T., Parans Paranthaman, M. Size control of highly ordered HfO2 nanotube arrays and a possible growth mechanism[J]. Nanotechnology.2009,20:455601.
    [109]Berger, S., Jakubka, F., Schmuki, P. Self-Ordered Hexagonal Nanoporous Hafnium Oxide and Transition to Aligned HfO2 Nanotube Layers[J]. Electrochemical and solid-state letters. 2009,12:K45.
    [110]Critchlow, D.L. Mosfet scaling-the Driver of VLSI Technology[J]. Proceedings of the IEEE. 1999,87 (4):659-667.
    [111]Baccarani, G., Wordeman, M., Dennard, R. Generalized scaling theory and its application to a 1/4 micrometer MOSFET design[J]. Electron Devices, IEEE Transactions on.1984,31 (4): 452-462.
    [112]Moore, G.E. Cramming more components onto integrated circuits[J]. Proceedings of the IEEE.1998,86(1):82-85.
    [113]Moore, G.E. Progress in digital integrated electronics[A].1975:11-13.
    [114]Kang, L., Lee, B.H., Qi, W.J., Jeon, Y, Nieh, R., Gopalan, S., Onishi, K., Lee, J.C. Electrical characteristics of highly reliable ultrathin hafnium oxide gate dielectric [J]. Electron Device Letters, IEEE.2000,21 (4):181-183.
    [115]Lee, B.H., Kang, L., Qi, W.J., Nieh, R., Jeon, Y, Onishi, K., Lee, J.C. Ultrathin hafnium oxide with low leakage and excellent reliability for alternative gate dielectric application[A]. 1999:133-136.
    [116]Ragnarsson, L.A., Guha, S., Bojarczuk, N., Cartier, E., Fischetti, M., Rim, K., Karasinski, J. Electrical characterization of A12O3 n-channel MOSFETs with aluminum gates[J]. Electron Device Letters, IEEE.2001,22 (10):490-492.
    [117]Lee, C, Luan, H., Bai, W., Lee, S., Jeon, T., Senzaki, Y, Roberts, D., Kwong, D. MOS characteristics of ultra thin rapid thermal CVD ZrO2 and Zr silicate gate dielectrics[A].2000: 27-30.
    [118]Stoneham, A. Why model high-k dielectrics?[J]. Journal of Non-Crystalline Solids.2002, 303(1):114-122.
    [119]Lysaght, P., Chen, P., Bergmann, R., Messina, T., Murto, R., Huff, H. Experimental observations of the thermal stability of high-k gate dielectric materials on silicon[J]. Journal of Non-Crystalline Solids.2002,303 (1):54-63.
    [120]Kuo, C, Kwor, R., Jones, K. Study of sputtered HfO2 thin films on silicon[J]. Thin solid films.1992,213 (2):257-264.
    [121]Nam, S.W., Yoo, J.H., Nam, S., Choi, H.J., Lee, D., Ko, D.H., Moon, J.H., Ku, J.H., Choi, S. Influence of annealing condition on the properties of sputtered hafnium oxide[J], Journal of Non-Crystalline Solids.2002,303 (1):139-143.
    [122]Lee, B.H., Choi, R., Kang, L., Gopalan, S., Nieh, R., Onishi, K., Jeon, Y., Qi, W.J., Kang, C, Lee, J. Characteristics of TaN gate MOSFET with ultrathin hafnium oxide (8 A-12 A)[A]. 2000:39-42.
    [123]Lee, S., Luan, H., Bai, W., Lee, C, Jeon, T., Senzaki, Y., Roberts, D., Kwong, D. High quality ultra thin CVD HfO2 gate stack with poly-Si gate electrode[A].2000:31-34.
    [124]Miao, B., Mahapatra, R., Wright, N., Horsfall, A. The role of carbon contamination in voltage linearity and leakage current in high-k metal-insulator-metal capacitors[J]. Journal of Applied Physics.2008,104 (5):054510.
    [125]Cherkaoui, K., Monaghan, S., Negara, M., Modreanu, M., Hurley, P., OConnell, D., McDonnell, S., Hughes, G., Wright, S., Barklie, R. Electrical, structural, and chemical properties of HfO2 films formed by electron beam evaporation[J]. Journal of Applied Physics. 2008,104 (6):064113.
    [126]Xu, R., Yan, Z., Chen, S., Fan, Y, Ding, X., Jiang, Z., Li, Z. In situ photoemission study on initial growth of HfO2 films on Si (100)[J]. Surface science.2005,581 (2):236-240.
    [127]McDonnell, S., Brennan, B., Hughes, G. High resolution photoemission study of SiOx/Si(111) interface disruption following in situ HfO2 deposition[J]. Applied Physics Letters.2009,95 (7):072903.
    [128]Seguini, G., Perego, M., Spiga, S., Fanciulli, M., Dimoulas, A. Conduction band offset of HfO2 on GaAs[J]. Applied Physics Letters.2007,91 (19):192902.
    [129]Liou, S., Chu, M.W., Chen, C, Lee, Y, Chang, P., Lee, W., Hong, M., Kwo, J. Transmission electron microscopy characterization of HfO2/GaAs (001) heterostructures grown by molecular beam epitaxy[J]. Applied Physics A:Materials Science & Processing.2008,91 (4): 585-589.
    [130]Hsu, C.H., Chang, P., Lee, W., Yang, Z., Lee, Y, Hong, M., Kwo, J., Huang, C, Lee, H. Structure of HfO2 films epitaxially grown on GaAs (001)[J], Applied Physics Letters.2006, 89:122907.
    [131]Hildebrandt, E., Kurian, J., Zimmermann, J., Fleissner, A., von Seggern, H., Alff, L. Hafnium oxide thin films:Effect of growth parameters on oxygen and hafnium vacancies[J]. Journal of Vacuum Science & Technology B:Microelectronics and Nanometer Structures.2009,27: 325.
    [132]Hullavarad, S., Pugel, D., Jones, E., Vispute, R., Venkatesan, T. Low Leakage Current Transport and High Breakdown Strength of Pulsed Laser Deposited HfO2/SiC Metal-lnsulator-Semiconductor Device Structures[J]. Journal of electronic materials.2007, 36 (6):648-653.
    [133]Wang, H., Wang, Y, Zhang, J., Ye, C, Wang, H.B., Feng, J., Wang, B.Y., Li, Q., Jiang, Y. Interface control and leakage current conduction mechanism in HfO2 film prepared by pulsed laser deposition[J]. Applied Physics Letters.2008,93 (20):202904.
    [134]Wang, Y., Wang, H., Zhang, J., Wang, H.B., Ye, C, Jiang, Y, Wang, Q. Improved thermal stability, interface, and electrical properties of HfO2 films prepared by pulsed laser deposition using in situ ionized nitrogen[J]. Applied Physics Letters.2009,95 (3):032905.
    [135]Curreem, K., Lee, P., Wong, K., Dai, J., Zhou, M., Wang, J., Li, Q. Comparison of interfacial and electrical characteristics of HfO2 and HfAlO high-k dielectrics on compressively strained Si1-xGex[J]. Applied Physics Letters.2006,88 (18):182905.
    [136]Huang, M., Chang, Y, Chang, Y, Lin, T., Kwo, J., Hong, M. Energy-band parameters of atomic layer deposited A12O3 and HfO2 on InxGa1-xAs[J]. Applied Physics Letters.2009, 94(5):052106.
    [137]McNeill, D., Bhattacharya, S., Wadsworth, H., Ruddell, R, Mitchell, S.J.N., Armstrong, B., Gamble, H. Atomic layer deposition of hafnium oxide dielectrics on silicon and germanium substrates[J]. Journal of Materials Science:Materials in Electronics.2008,19 (2):119-123.
    [138]Lao, S.X., Martin, R.M., Chang, J.P. Plasma enhanced atomic layer deposition of HfO2 and ZrO2 high-k thin films[J]. Journal of Vacuum Science & Technology A:Vacuum, Surfaces, and Films.2005,23 (3):488.
    [139]Seol, Y, Noh, H., Lee, S., Ahn, J., Lee, N.E. Mechanically flexible low-leakage multilayer gate dielectrics for flexible organic thin film transistors[J]. Applied Physics Letters.2008,93 (1):013305.
    [140]Negara, M., Cherkaoui, K., Hurley, P., Young, C, Majhi, P., Tsai, W., Bauza, D., Ghibaudo, G. Analysis of electron mobility in HfO2/TiN gate metal-oxide-semiconductor field effect transistors:The influence of HfO2 thickness, temperature, and oxide charge[J]. Journal of Applied Physics.2009,105 (2):024510.
    [141]Yu, J., Fang, Q., Zhang, J.Y, Wang, Z., Boyd, I. Hafnium oxide layers derived by photo-assisted sol-gel processing[J]. Applied surface science.2003,208:676-681.
    [142]Almeida, R.M., Marques, A.C. Rare-earth photoluminescence in sol-gel derived confined glass structures[J]. Journal of Non-Crystalline Solids.2006,352 (6-7):475-482.
    [143]Zampedri, L., Righini, G., Portales, H., Pelli, S., Nunzi Conti, G., Montagna, M., Mattarelli, M., Goncalves, R., Ferrari, M., Chiasera, A. Sol-gel-derived Er-activated SiO2-HfO2 planar waveguides for 15 μm application[J]. Journal of Non-Crystalline Solids.2004,345: 580-584.
    [144]Wang, Z., Kumagai, T., Kokawa, H., Ichiki, M., Maeda, R. Preparation of hafnium oxide thin films by sol-gel method[J]. Journal of Electroceramics.2008,21 (1):499-502.
    [145]He, J., Teren, A., Jia, C, Ehrhart, P., Urban, K., Waser, R., Wang, R. Microstructure and interfaces of HfO2 thin films grown on silicon substrates [J]. Journal of crystal growth.2004, 262(1):295-303.
    [146]Maunoury, C, Dabertrand, K., Martinez, E., Saadoune, M., Lafond, D., Pierre, F., Renault, O., Lhostis, S., Bailey, P., Noakes, T. Chemical interface analysis of as grown HfO2 ultrathin films on SiO2[J]. Journal of Applied Physics.2007,101 (3):034112.
    [147]Zheng, Y, Mizuta, H., Tsuchiya, Y, Endo, M., Sato, D., Oda, S. In situ real-time spectroscopic ellipsometry study of HfO2 thin films grown by using the pulsed-source metal-organic chemical-vapor deposition[J]. Journal of Applied Physics.2005,97 (2): 023527.
    [148]Oh, H., Lin, J., Lee, S., Dalapati, G., Sridhara, A., Chi, D., Chua, S., Lo, G., Kwong, D. Study on interfacial properties of InGaAs and GaAs integrated with chemical-vapor-deposited high-k gate dielectrics using x-ray photoelectron spectroscopy[J]. Applied Physics Letters.2008,93 (6):062107.
    [149]Rastorguev, A., Belyi, V., Smirnova, T., Yakovkina, L., Zamoryanskaya, M., Gritsenko, V, Wong, H. Luminescence of intrinsic and extrinsic defects in hafnium oxide films[J]. Physical Review B.2007,76 (23):235315.
    [150]Ito, T., Maeda, M., Nakamura, K., Kato, H., Ohki, Y. Similarities in photoluminescence in hafnia and zirconia induced by ultraviolet photons[J]. Journal of Applied Physics.2005,97 (5):054104.
    [151]Khoshman, J., Khan, A., Kordesch, M. Amorphous hafnium oxide thin films for antireflection optical coatings[J]. Surface and Coatings Technology.2008,202 (11): 2500-2502.
    [152]Toledano-Luque, M., San Andres, E., Olea, J., Del Prado, A., Martil, I., Bohne, W., Rohrich, J., Strub, E. Hafnium oxide thin films deposited by high pressure reactive sputtering in atmosphere formed with different Ar/O2 ratios[J]. Materials science in semiconductor processing.2006,9 (6):1020-1024.
    [153]Gruger, H., Kunath, C, Kurth, E., Sorge, S., Pufe, W., Pechstein, T. High quality rf sputtered metal oxides (Ta2O5, HfO2) and their properties after annealing[J]. Thin solid films.2004, 447:509-515.
    [154]Jones, M., Kwon, Y, Norton, D. Dielectric constant and current transport for HfO2 thin films on ITO[J]. Applied Physics A:Materials Science & Processing.2005,81 (2):285-288.
    [155]Ryan, J.T., Lenahan, P.M. Direct observation of electrically active interfacial layer defects which may cause threshold voltage instabilities in HfO2 based metal-oxide-silicon field-effect transistors[A]. Integrated reliability workshop final report.2007:107-110.
    [156]Rhee, S.J., Zhu, F., Kim, H.S., Kang, C.Y., Choi, C.H., Zhang, M.H., Lee, T., Ok, I., Krishnan, S.A., Lee, J.C. Systematic analysis of silicon oxynitride interfacial layer and its effects on electrical characteristics of high-k HfO2 transistor[J]. Applied Physics Letters. 2006,88(15):153515.
    [157]Ding, S.J., Xu, J., Huang, Y, Sun, Q.Q., Zhang, D.W., Li, M.F. Electrical characteristics and conduction mechanisms of metal-insulator-metal capacitors with nanolaminated Al2O3-HfO2 dielectrics[J]. Applied Physics Letters.2008,93 (9):092909.
    [158]Price, J., Lysaght, P.S., Song, S.C., Li, H.J., Diebold, A.C. Identification of sub-band-gap absorption features at the HfO2/Si(100) interface via spectroscopic ellipsometry[J]. Applied Physics Letters.2007,91 (6):061925.
    [159]Wong, H., Sen, B., Filip, V., Poon, M. Material properties of interfacial silicate layer and its influence on the electrical characteristics of MOS devices using hafnia as the gate dielectric[J]. Thin solid films.2006,504 (1):192-196.
    [160]Jud, E., Tang, M., Chiang, Y.M. Stability of HfO2/SiOx/Si surficial films at ultralow oxygen activity[J]. Journal of Applied Physics.2008,103 (11):114108.
    [161]Kim, I., Kuk, S., Kim, S., Kim, J., Jeon, H., Cho, M.H., Chung, K.B. Thermodynamic properties and interfacial layer characteristics of HfO2 thin films deposited by plasma-enhanced atomic layer deposition[J]. Applied Physics Letters.2007,90 (22):222101.
    [162]Tan, R., Azuma, Y, Kojima, I. Comparative study of the interfacial characteristics of sputter-deposited HfO2 on native SiO2/Si (100) using in situ XPS, AES and GIXR[J]. Surface and interface analysis.2006,38 (4):784-788.
    [163]Weier, D., Fluchter, C, de Siervo, A., Schurmann, M., Dreiner, S., Berges, U., Carazzolle, M., Pancotti, A., Landers, R., Kleiman, G. Photoelectron spectroscopy (XPS) and photoelectron diffraction (XPD) studies on the system hafnium silicide and hafnium oxide on Si (100)[J]. Materials science in semiconductor processing.2006,9 (6):1055-1060.
    [164]Jiang, R., Xie, E.Q., Wang, Z.F. Interfacial chemical structure of HfO2/Si film fabricated by sputtering[J]. Applied Physics Letters.2006,89 (14):142907.
    [165]Zhao, M., Nakajima, K., Suzuki, M., Kimura, K., Uematsu, M., Torii, K., Kamiyama, S., Nara, Y., Watanabe, H., Shiraishi, K. Isotopic labeling study of the oxygen diffusion in HfO2/SiO2/Si[J]. Applied Physics Letters.2007,90 (13):133510.
    [166]Nieminen, R., Hakala, M., Foster, A. Modeling the silicon-hafnia interface[J]. Materials science in semiconductor processing.2006,9 (6):928-933.
    [167]Hoshino, Y., Kido, Y., Yamamoto, K., Hayashi, S., Niwa, M. Characterization and control of the HfO2/Si(001) interfaces[J]. Applied Physics Letters.2002,81 (14):2650-2652.
    [168]Yamamoto, K., Hayashi, S., Kubota, M., Niwa, M. Effect of Hf metal predeposition on the properties of sputtered HfO2/Hf stacked gate dielectrics[J]. Applied Physics Letters.2002,81 (11):2053-2055.
    [169]O'Connor, E., Monaghan, S., Long, R.D., O'Mahony, A., Povey, I.M., Cherkaoui, K., Pemble, M.E., Brammertz, G., Heyns, M., Newcomb, S.B., Afanas'ev, V.V., Hurley, P.K. Temperature and frequency dependent electrical characterization of HfO2/InxGa1-xAs interfaces using capacitance-voltage and conductance methods[J]. Applied Physics Letters.2009,94 (10): 102902.
    [170]Liu, D., Robertson, J. Passivation of oxygen vacancy states and suppression of Fermi pinning in HfO2 by La addition[J]. Applied Physics Letters.2009,94 (4):042904.
    [171]Tong, K., Jelenkovic, E.V., Liu, W., Dai, J. Nitridation of hafnium oxide by reactive sputtering[J]. Microelectronic engineering.2006,83 (2):293-297.
    [172]Pereira, L., Barquinha, P., Fortunato, E., Martins, R. Low temperature processed hafnium oxide:Structural and electrical properties[J]. Materials science in semiconductor processing. 2006,9(6):1125-1132.
    [173]Kim, C.Y., Cho, S.W., Cho, M.H., Chung, K.B., Suh, D.C., Ko, D.H., An, C.H., Kim, H., Lee, H.J. Changes in the structure of an atomic-layer-deposited HfO2 film on a GaAs (100) substrate as a function of postannealing temperature[J]. Applied Physics Letters.2009,95 (4): 042903.
    [174]Park, T.J., Kim, J.H., Jang, J.H., Na, K.D., Hwang, C.S., Yoo, J.H. Dependences of nitrogen incorporation behaviors on the crystallinity and phase distribution of atomic layer deposited Hf-silicate films with various Si concentrations[J]. Journal of Applied Physics.2008,104 (5): 054101.
    [175]Ong, Y., Ang, D., OShea, S., Pey, K., Wang, S., Tung, C, Li, X. Scanning tunneling microscopy study of nitrogen incorporated HfO2[J]. Journal of Applied Physics.2008,104 (6):064119.
    [1]Alivisatos, A.P. Semiconductor clusters, nanocrystals, and quantum dots[J]. Science.1996,271 (5251):933.
    [2]Calvert, P. Nanotube composites-A recipe for strength[J]. Nature.1999,399 (6733):210.
    [3]Hu, J., Odom, T.W., Lieber, C.M. Chemistry and physics in one dimension:synthesis and properties of nanowires and nanotubes[J]. Accounts of Chemical Research.1999,32 (5): 435-445.
    [4]Bordwell, D., Thompson, K., Ashton, J. Film art:an introduction[M]. McGraw-Hill New York: 1997.
    [5]Iijima, S., Ichihashi, T. Single-shell carbon nanotubes of 1-nm diameter[J]. Nature.1993,363 (17):603-605.
    [6]Hannon, J., Kodambaka, S., Ross, F., Tromp, R. The influence of the surface migration of gold on the growth of silicon nanowires[J]. Nature.2006,440 (7080):69-71.
    [7]Hochbaum, A.I., Fan, R., He, R., Yang, P. Controlled growth of Si nanowire arrays for device integration[J]. Nano letters.2005,5 (3):457-460.
    [8]Xia, Y, Yang, P., Sun, Y, Wu, Y, Mayers, B., Gates, B., Yin, Y, Kim, F., Yan, H. One-Dimensional Nanostructures:Synthesis, Characterization, and Applications[J]. Advanced Materials.2003,15 (5):353-389.
    [9]Fan, Z., Wang, D., Chang, P.C., Tseng, W.Y., Lu, J.G. ZnO nanowire field-effect transistor and oxygen sensing property[J]. Applied Physics Letters.2004,85 (24):5923-5925.
    [10]Adhikari, H., Marshall, A.F., Goldthorpe, I.A., Chidsey, C.E.D., Mclntyre, P.C. Metastability of Au-Ge Liquid Nanocatalysts:Ge Vapor-Liquid-Solid Nanowire Growth Far below the Bulk Eutectic Temperature[J]. ACS nano.2007,1 (5):415-422.
    [11]Hayden, O., Greytak, A.B., Bell, D.C. Core-Shell Nanowire Light-Emitting Diodes[J]. Advanced Materials.2005,17 (6):701-704.
    [12]Ng, H.T., Han, J., Yamada, T, Nguyen, P., Chen, Y.P., Meyyappan, M. Single crystal nanowire vertical surround-gate field-effect transistor[J]. Nano letters.2004,4 (7): 1247-1252.
    [13]Seeger, T., Kohler-Redlich, P., Ruehle, M. Synthesis of nanometer-sized SiC whiskers in the arc-discharge[J]. Advanced Materials.2000,12 (4):279-282.
    [14]Doshi, J., Reneker, D.H. Electrospinning process and applications of electrospun fibers[J]. Journal of electrostatics.1995,35 (2-3):151-160.
    [15]Ramakrishna, S., Fujihara, K., Teo, W.E., Yong, T., Ma, Z., Ramaseshan, R. Electrospun nanofibers:solving global issues[J], Materials Today.2006,9 (3):40-50.
    [16]Li, D., Xia, Y Electrospinning of nanofibers:Reinventing the wheel?[J]. Advanced Materials. 2004,16(14):1151-1170.
    [17]Formhals, A. US Patents.1934,1975504.
    [18]Formhals, A. US Patents.1937,2077373.
    [19]Formhals, A. US Patents.1938,2123992.
    [20]Formhals, A. US Patents.1938,2116942.
    [21]Formhals, A. US Patents.1938,2109333.
    [22]Formhals, A. US Patents.1939,2160962.
    [23]Formhals, A. US Patents.1940,2187306.
    [24]Formhals, A. US Patents.1944,2349950.
    [25]Taylor, G. The force exerted by an electric field on a long cylindrical conductor[J]. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences. 1966,291 (1425):145.
    [26]Taylor, G. Electrically driven jets[J]. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.1969,313 (1515):453.
    [27]Deitzel, J., Kleinmeyer, J., Harris, D., Beck Tan, N. The effect of processing variables on the morphology of electrospun nanofibers and textiles[J]. Polymer.2001,42 (1):261-272.
    [28]Larrondo, L., Manley, R.S.J. Electrostatic fiber spinning from polymer melts. Pts.1-3[J]. J. Polym. Sci.:Polym. Phys.1981,19 (6):909-940.
    [29]Reneker, D.H., Yarin, A.L., Fong, H., Koombhongse, S. Bending instability of electrically charged liquid jets of polymer solutions in electrospinning[J]. Journal of Applied physics. 2000,87 (9):4531.
    [30]Reneker, D.H., Yarin, A.L. Electrospinning jets and polymer nanofibers[J]. Polymer.2008,49 (10):2387-2425.
    [31]Zussman, E., Theron, A., Yarin, A. Formation of nanofiber crossbars in electrospinning[J]. Applied Physics Letters.2003,82 (6):973-975.
    [32]Rutledge, G., Shin, M., Warner, S., Buer, A., Grimler, M., Ugbolue, S. National Textile Center Annual Report[J]. M98-D01, Nov.2000.
    [33]Shin, Y, Hohman, M., Brenner, M., Rutledge, G. Experimental characterization of electrospinning:the electrically forced jet and instabilities[J]. Polymer.2001,42 (25): 09955-09967.
    [34]Yarin, A., Kataphinan, W., Reneker, D. Branching in electrospinning of nanofibers[J]. Journal of Applied physics.2005,98 (6):064501.
    [35]Reneker, D.H., Chun, I. Nanometre diameter fibres of polymer, produced by electrospinning[J]. Nanotechnology.1996,7 (3):216.
    [36]Fong, H., Chun, I., Reneker, D. Beaded nanofibers formed during electrospinning[J]. Polymer.1999,40 (16):4585-4592.
    [37]Zhang, C, Yuan, X., Wu, L., Han, Y, Sheng, J. Study on morphology of electrospun poly (vinyl alcohol) mats[J]. European Polymer Journal.2005,41 (3):423-432.
    [38]Bergshoef, M.M., Vancso, G.J. Transparent nanocomposites with ultrathin, electrospun nylon-4,6 fiber reinforcement[J]. Advanced Materials.1999,11 (16):1362-1365.
    [39]Jacobs, V., Anandjiwala, R.D., Maaza, M. The influence of electrospinning parameters on the structural morphology and diameter of electrospun nanofibers[J]. Journal of Applied Polymer Science.2010,115 (5):3130-3136.
    [40]Tan, S., Inai, R., Kotaki, M., Ramakrishna, S. Systematic parameter study for ultra-fine fiber fabrication via electrospinning process[J]. Polymer.2005,46 (16):6128-6134.
    [41]Huang, C, Chen, S., Lai, C, Reneker, D.H., Qiu, H., Ye, Y, Hou, H. Electrospun polymer nanofibres with small diametersfJ]. Nanotechnology.2006,17 (6):1558.
    [42]Kameoka, J., Orth, R., Yang, Y, Czaplewski, D., Mathers, R., Coates, G.W., Craighead, H. A scanning tip electrospinning source for deposition of oriented nanofibres[J]. Nanotechnology. 2003,14(10):1124.
    [43]Niu, D., Ashcraft, R., Kelly, M., Chambers, J., Klein, T., Parsons, G. Elementary reaction schemes for physical and chemical vapor deposition of transition metal oxides on silicon for high-k gate dielectric applications[J]. Journal of Applied physics.2002,91 (9):6173.
    [44]Mattox, D. The foundations of vacuum coating technology[M]. William Andrew:2003.
    [45]郑伟涛.薄膜材料与薄膜技术[M].化学工业出版社.2008.
    [46]陈光华,邓金祥.新型电子薄膜材料[M].化学工业出版社材料科学与工程出版中心.2002.
    [47]李学丹.真空沉积技术[M].浙江大学出版社.1994.
    [48]Mattox, D.M. Handbook of physical vapor deposition (PVD) processing[M]. William Andrew Pub:2010.
    [49]Liu, F., Fu, L., Wang, J., Liu, Z., Li, H., Zhang, H. Luminescent hybrid films obtained by covalent grafting of terbium complex to silica network[J]. Thin Solid Films.2002,419 (1-2): 178-182.
    [50]何宇亮,陈光华,张仿清.非晶态半导体物理学[M].高等教育出版社.1989.
    [51]Maniv, S., Westwood, W.D., Colombini, E. Pressure and angle of incidence effects in reactive planar magnetron sputtered ZnO layers[J]. Journal of Vacuum Science and Technology.1982, 20(2):162-170.
    [52]杨于兴,化工教授,漆璇.X射线衍射分析[M].上海交通大学出版社.1994.
    [53]郭素枝.扫描电镜技术及其应用[M].厦门大学出版社.2006.
    [54]常铁军,刘喜军.材料近代分析测试方法[M].哈尔滨工业大学出版社.2005.
    [55]叶恒强,王元明.透射电子显微学进展[M].科学出版社.2003.
    [56]周玉.武高辉[J].材料分析测试技术.哈尔滨:哈尔滨工业大学出版社.1997,286.
    [57]沈学础.半导体光学性质[M].科学出版社.1992.
    [58]陈国珍,黄贤智.郑朱梓.荧光分析法[M].科学出版社.1990.
    [59]Wilk, G., Wallace, R., Anthony, J. High-K gate dielectrics:Current status and materials properties considerations[J]. Journal of Applied Physics.2001,89 (10):5243.
    [60]Craft, H., Collazo, R., Sitar, Z., Maria, J. Molecular beam epitaxy of Sm2O3, Dy2O3, and HO2O3 on Si (111)[J]. Journal of Vacuum Science & Technology B:Microelectronics and Nanometer Structures.2006,24 (4):2105.
    [61]Wong, H., Iwai, H. On the scaling issues and high-K replacement of ultrathin gate dielectrics for nanoscale MOS transistors[J]. Microelectronic Engineering.2006,83 (10):1867-1904.
    [1]Wilk, G., Wallace, R., Anthony, J. High-K gate dielectrics:Current status and materials properties considerations[J]. Journal of Applied Physics.2001,89 (10):5243.
    [2]Tan, G.L., Wu, X.J. Electronic conductivity of a ZrO2 thin film as an oxygen sensor[J]. Thin solid films.1998,330 (2):59-61.
    [3]Hino, M, Arata, K. Synthesis of solid superacid of tungsten oxide supported on zirconia and its catalytic action for reactions of butane and pentane[J]. J. Chem. Soc, Chem. Commun. 1988,(18):1259-1260.
    [4]Patra, A., Friend, C.S., Kapoor, R., Prasad, P.N. Upconversion in Er3+:ZrO2 nanocrystals[J]. The Journal of Physical Chemistry B.2002,106 (8):1909-1912.
    [5]Li, Y., He, D., Zhu, Q., Zhang, X., Xu, B. Effects of redox properties and acid-base properties on isosynthesis over ZrO2-based catalysts[J]. Journal of Catalysis.2004,221 (2):584-593.
    [6]Chow, R, Falabella, S., Loomis, G.E., Rainer, F, Stolz, C.J., Kozlowski, M.R. Reactive evaporation of low-defect density hafnia[J]. Applied optics.1993,32 (28):5567-5574.
    [7]Capone, S., Leo, G., Rella, R., Siciliano, P., Vasanelli, L., Alvisi, M., Mirenghi, L., Rizzo, A. Physical characterization of hafnium oxide thin films and their application as gas sensing devices[J]. Journal of Vacuum Science & Technology A:Vacuum, Surfaces, and Films.1998, 16 (6):3564-3568.
    [8]Liu, L., Ma, Z., Xie, Y., Su, Y., Zhao, H., Zhou, M., Zhou, J., Li, J., Xie, E. Photoluminescence of rare earth3+ doped uniaxially aligned HfO2 nanotubes prepared by sputtering with electrospun polyvinylpyrolidone nanofibers as templates[J]. Journal of Applied Physics.2010, 107 (2):024309.
    [9]Xie, Y, Ma, Z., Liu, L., Su, Y, Zhao, H., Liu, Y, Zhang, Z., Duan, H., Li, J., Xie, E. Oxygen defects-modulated green photoluminescence of Tb-doped ZrO2 nanofibers [J]. Applied Physics Letters.2010,97(14):141916.
    [10]Liu, C, Chor, E.F., Tan, L.S. Enhanced device performance of AlGaN/GaN HEMTs using HfO2 high-k dielectric for surface passivation and gate oxide[J], Semiconductor science and technology.2007,22 (5):522.
    [11]Zhu, W., Ma, T.P., Tamagawa, T., Kim, J., Di, Y. Current transport in metal/hafnium oxide/silicon structure[J]. Electron Device Letters, IEEE.2002,23 (2):97-99.
    [12]Khoshman, J., Khan, A., Kordesch, M. Amorphous hafnium oxide thin films for antireflection optical coatings[J]. Surface and Coatings Technology.2008,202 (11): 2500-2502.
    [13]Zhang, D., Fan, S., Zhao, Y, Gao, W., Shao, J., Fan, R., Wang, Y, Fan, Z. High laser-induced damage threshold HfO2 films prepared by ion-assisted electron beam evaporation[J]. Applied surface science.2005,243 (1-4):232-237.
    [14]Dekker, C. Carbon nanotubes as molecular quantum wires[J]. Physics today.1999,52 (5): 22-28.
    [15]Sun, Y, Khang, D.Y., Hua, F., Hurley, K., Nuzzo, R.G., Rogers, J.A. Photolithographic route to the fabrication of micro/nanowires of III-V semiconductors[J]. Advanced Functional Materials.2005,15 (1):30-40.
    [16]Johnson, J.C., Knutsen, K.P., Yan, H., Law, M., Zhang, Y., Yang, P., Saykally, R.J. Ultrafast carrier dynamics in single ZnO nanowire and nanoribbon lasers[J]. Nano letters.2004,4 (2): 197-204.
    [17]Menard, E., Nuzzo, R.G., Rogers, J.A. Bendable single crystal silicon thin film transistors formed by printing on plastic substrates[J]. Applied Physics Letters.2005,86 (9):093507.
    [18]Li, D., Xia, Y. Electrospinning of nanofibers:Reinventing the wheel?[J]. Advanced Materials. 2004,16(14):1151-1170.
    [19]Li, D., Wang, Y., Xia, Y. Electrospinning of polymeric and ceramic nanofibers as uniaxially aligned arrays[J]. Nano letters.2003,3 (8):1167-1171.
    [20]Li, D., McCann, J.T., Xia, Y., Marquez, M. Electrospinning:a simple and versatile technique for producing ceramic nanofibers and nanotubes[J]. Journal of the American Ceramic Society. 2006,89(6):1861-1869.
    [21]Ramaseshan, R., Sundarrajan, S., Jose, R., Ramakrishna, S. Nanostructured ceramics by electrospinning[J]. Journal of Applied Physics.2007,102 (11):111101.
    [22]Koombhongse, S., Liu, W., Reneker, D.H. Flat polymer ribbons and other shapes by electrospinning[J]. Journal of Polymer Science Part B:Polymer Physics.2001,39 (21): 2598-2606.
    [23]Larsen, G., Noriega, S., Spretz, R., Velarde-Ortiz, R. Electrohydrodynamics and hierarchical structure control:submicron-thick silica ribbons with an ordered hexagonal mesoporous structure[J]. Journal of Materials Chemistry.2004,14 (15):2372-2373.
    [24]Yang, A., Tao, X., Pang, G.K.H., Siu, K.G.G. Preparation of porous tin oxide nanobelts using the electrospinning technique[J]. Journal of the American Ceramic Society.2008,91 (1): 257-262.
    [25]Li, Z., Fan, Y., Zhan, J. In2O3 Nanofibers and Nanoribbons:Preparation by Electrospinning and Their Formaldehyde Gas-Sensing Properties[J]. European Journal of Inorganic Chemistry.2010,2010 (21):3348-3353.
    [26]McCann, J.T., Chen, J.I.L., Li, D., Ye, Z.G., Xia, Y. Electrospinning of polycrystalline barium titanate nanofibers with controllable morphology and alignment[J]. Chemical physics letters. 2006,424(1-3):162-166.
    [27]Lu, X., Zhao, Y., Wang, C., Wei, Y. Fabrication of CdS nanorods in PVP fiber matrices by electrospinning[J]. Macromolecular rapid communications.2005,26 (16):1325-1329.
    [28]Yang, Q., Li, Z., Hong, Y., Zhao, Y., Qiu, S., Wang, C., Wei, Y. Influence of solvents on the formation of ultrathin uniform poly (vinyl pyrrolidone) nanofibers with electrospinning[J]. Journal of Polymer Science Part B:Polymer Physics.2004,42 (20):3721-3726.
    [29]Son, W.K., Youk, J.H., Lee, T.S., Park, W.H. The effects of solution properties and polyelectrolyte on electrospinning of ultrafine poly (ethylene oxide) fibers[J]. Polymer.2004, 45 (9):2959-2966.
    [30]Koski, A., Yim, K., Shivkumar, S. Effect of molecular weight on fibrous PVA produced by electrospinning[J]. Materials Letters.2004,58 (3-4):493-497.
    [31]Kenawy, E.R., Bowlin, G.L., Mansfield, K., Layman, J., Simpson, D.G., Sanders, E.H., Wnek, G.E. Release of tetracycline hydrochloride from electrospun poly (ethylene-co-vinylacetate), poly (lactic acid), and a blend[J]. Journal of controlled release. 2002,81 (1-2):57-64.
    [32]Jacobs, V., Anandjiwala, R.D., Maaza, M. The influence of electrospinning parameters on the structural morphology and diameter of electrospun nanofibers[J]. Journal of Applied Polymer Science.2010,115 (5):3130-3136.
    [33]Fong, H., Chun, I., Reneker, D. Beaded nanofibers formed during electrospinning[J]. Polymer.1999,40 (16):4585-4592.
    [34]Deitzel, J., Kleinmeyer, J., Harris, D., Beck Tan, N. The effect of processing variables on the morphology of electrospun nanofibers and textiles[J]. Polymer.2001,42 (1):261-272.
    [35]Yordem, O., Papila, M., Menceloglu, Y. Effects of electrospinning parameters on polyacrylonitrile nanofiber diameter:An investigation by response surface methodology[J]. Materials & design.2008,29 (1):34-44.
    [36]Wang, Z., Liu, X., Lv, M., Chai, P., Liu, Y., Meng, J. Preparation of ferrite MFe2O4 (M= Co, Ni) ribbons with nanoporous structure and their magnetic properties[J]. The Journal of Physical Chemistry B.2008,112 (36):11292-11297.
    [37]Shin, Y., Hohman, M., Brenner, M., Rutledge, G. Experimental characterization of electrospinning:the electrically forced jet and instabilities[J]. Polymer.2001,42 (25): 09955-09967.
    [38]Yarin, A., Koombhongse, S., Reneker, D. Taylor cone and jetting from liquid droplets in electrospinning of nanofibers[J]. Journal of Applied Physics.2001,90 (9):4836.
    [39]Tsapis, N., Dufresne, E., Sinha, S., Riera, C, Hutchinson, J., Mahadevan, L., Weitz, D. Onset of buckling in drying droplets of colloidal suspensions[J]. Physical review letters.2005,94 (1):18302.
    [40]Jing, Z., Zhan, J. Fabrication and Gas-Sensing Properties of Porous ZnO Nanoplates[J]. Advanced Materials.2008,20 (23):4547-4551.
    [41]Guo, B., Liu, Z., Hong, L., Jiang, H. Sol gel derived photocatalytic porous TiO2 thin films[J]. Surface and Coatings Technology.2005,198 (1-3):24-29.
    [42]Rajesh, K., Mukundan, P., Pillai, P.K., Nair, V., Warrier, K. High-surface-area nanocrystalline cerium phosphate through aqueous sol-gel route[J]. Chemistry of materials.2004,16 (14): 2700-2705.
    [43]Reneker, D.H., Yarin, A.L., Fong, H., Koombhongse, S. Bending instability of electrically charged liquid jets of polymer solutions in electrospinning[J]. Journal of Applied Physics. 2000,87 (9):4531.
    [44]Tajmar, M. Influence of Taylor cone size on droplet generation in an indium liquid metal ion source[J]. Applied Physics A:Materials Science & Processing.2005,81 (7):1447-1450.
    [45]Buchko, C.J., Chen, L.C., Shen, Y., Martin, D.C. Processing and microstructural characterization of porous biocompatible protein polymer thin films[J]. Polymer.1999,40 (26):7397-7407.
    [46]Siddheswaran, R., Sankar, R., Ramesh Babu, M., Rathnakumari, M., Jayavel, R., Murugakoothan, P., Sureshkumar, P. Preparation and characterization of ZnO nanofibers by electrospinning[J]. Crystal Research and Technology.2006,41 (5):446-449.
    [47]Lin, T, Wang, H., Wang, X. Self-Crimping Bicomponent Nanofibers Electrospun from Polyacrylonitrile and Elastomeric Polyurethane[J]. Advanced Materials.2005,17 (22): 2699-2703.
    [48]Yu, X., Xiang, H., Long, Y., Zhao, N., Zhang, X., Xu, J. Preparation of porous polyacrylonitrile fibers by electrospinning a ternary system of PAN/DMF/H2O[J]. Materials Letters.2010,64 (22):2407-2409.
    [49]Dayal, P., Kyu, T. Porous fiber formation in polymer-solvent system undergoing solvent evaporation[J]. Journal of Applied Physics.2006,100 (4):043512.
    [50]Dayal, P., Liu, J., Kumar, S., Kyu, T. Experimental and theoretical investigations of porous structure formation in electrospun fibers[J]. Macromolecules.2007,40 (21):7689-7694.
    [51]Guenthner, A.J., Khombhongse, S., Liu, W., Dayal, P., Reneker, D.H., Kyu, T. Dynamics of hollow nanofiber formation during solidification subjected to solvent evaporation[J]. Macromolecular theory and simulations.2006,15 (1):87-93.
    [52]Dayal, P., Kyu, T. Dynamics and morphology development in electrospun fibers driven by concentration sweeps[J]. Physics of Fluids.2007,19 (10):107106.
    [53]Hota, G., Sundarrajan, S., Ramakrishna, S., WunJern, N. One Step Fabrication of MgO Solid and Hollow Submicrometer Fibers Via Electrospinning Method[J]. Journal of the American Ceramic Society.2009,92 (10):2429-2433.
    [54]Lange, S., Kiisk, V., Aarik, J., Kirm, M., Sildos, I. Luminescence of ZrO2 and HfO2 thin films implanted with Eu and Er ions[J]. physica status solidi (c).2007,4 (3):938-941.
    [55]Zych, E., Wojtowicz, M., Dobrowolska, A., Kepinski, L. Radioluminescence and photoluminescence of hafnia-based Eu-doped phosphors[J]. Optical Materials.2009,31 (12): 1764-1767.
    [56]Monteil, A., El-Jouad, M., Alombert-Goget, G., Chaussedent, S., Gaumer, N., Mahot, A., Chiasera, A., Jestin, Y., Ferrari, M. Relationship between structure and optical properties in rare earth-doped hafnium and silicon oxides:Modeling and spectroscopic measurements[J]. Journal of Non-Crystalline Solids.2008,354 (42-44):4719-4722.
    [1]Zawadzki, M., Hreniak, D., Wrzyszcz, J., Mista, W., Grabowska, H., Malta, O., Strek, W. Photoluminescence and cathodoluminescence of Tb-doped Al2O3-ZrO2 nanostructures obtained by sol-gel method[J]. Chemical physics.2003,291 (3):275-285.
    [2]Pei, L., Li, M, Liu, J., Yu, B., Wang, J., Zhao, X. Improvements of the ferroelectric properties of high-valence Tb-doped Bi4Ti3O12 thin film grown by sol-gel method[J]. Materials Letters. 2010,64(3):364-366.
    [3]Zhu, C, Liang, X., Yang, Y, Chen, G. Luminescence properties of Tb doped and Tm/Tb/Sm co-doped glasses for LED applications[J]. Journal of Luminescence.2010,130 (1):74-77.
    [4]Peng, H., Song, H., Chen, B., Lu, S., Huang, S. Spectral difference between nanocrystalline and bulk Y2O3:Eu3+[J]. Chemical physics letters.2003,370 (3):485-489.
    [5]Yan, C.H., Sun, L.D., Liao, C.S., Zhang, Y.X., Lu, Y.Q., Huang, S.H., Lu, S.Z. Eu3+ion as fluorescent probe for detecting the surface effect in nanocrystals[J]. Applied physics letters. 2003,82 (20):3511-3513.
    [6]Liu, C, Liu, J., Dou, K. Judd-Ofelt Intensity Parameters and Spectral Properties of Gd2O3: Eu3+Nanocrystals[J]. The Journal of Physical Chemistry B.2006,110 (41):20277-20281.
    [7]Kompe, K., Borchert, H., Storz, J., Lobo, A., Adam, S., Moller, T, Haase, M. Green-Emitting CePO4:Tb/LaPO4 Core-Shell Nanoparticles with 70%Photoluminescence Quantum Yield[J]. Angewandte Chemie International Edition.2003,42 (44):5513-5516.
    [8]Zhang, Q., Zhang, Q.M. Synthesis and photoluminescent properties of α-NaYF4:Nd/a-NaYF4 core/shell nanostructure with enhanced near infrared (NIR) emission[J]. Materials Letters. 2009,63 (3-4):376-378.
    [9]Zhu, H., Ou, G., Gao, L. Hydrothermal synthesis of LaPO4:Ce3+, Tb3+@ LaPO4 core/shell nanostructures with enhanced thermal stability[J]. Materials Chemistry and Physics.2010,121 (3):414-418.
    [10]Sun, H.T., Yang, J., Fujii, M., Sakka, Y, Zhu, Y, Asahara, T., Shirahata, N., Ii, M., Bai, Z., Li, J.G. Highly Fluorescent Silica-Coated Bismuth-Doped Aluminosilicate Nanoparticles for Near-Infrared Bioimaging[J]. small.2011,7 (2):199-203.
    [11]Bai, X., Song, H., Pan, G., Liu, Z., Lu, S., Di, W., Ren, X., Lei, Y, Dai, Q., Fan, L. Luminescent enhancement in europium-doped yttria nanotubes coated with yttria[J]. Applied physics letters.2006,88 (14):143104.
    [12]Luwang, M.N., Ningthoujam, R.S., Srivastava, S.K., Vatsa, R.K. Preparation of white light emitting YVO4:Ln3+and silica-coated YVO4:Ln3+(Ln3+= Eu3+, Dy3+, Tm3+) nanoparticles by CTAB/n-butanol/hexane/water microemulsion route:Energy transfer and site symmetry studies[J]. J. Mater. Chem.2011,21 (14):5326-5337.
    [13]Choi, J., Tseng, T.K., Davidson, M., Holloway, P.H. Enhanced photoluminescence from Gd2O3:Eu3+nanocores with a Y2O3 thin shell[J]. J. Mater. Chem.2011,21 (9):3113-3118.
    [14]Lehmann, O., Kompe, K., Haase, M. Synthesis of Eu3+-doped core and core/shell nanoparticles and direct spectroscopic identification of dopant sites at the surface and in the interior of the particles[J]. Journal of the American Chemical Society.2004,126 (45): 14935-14942.
    [15]Yan, W., Weiping, Q., Jisen, Z., Chunyan, C, Jishuang, Z., Ye, J. Synthesis and Upconversion Luminescence of LaF3:Yb3+, Er3+/SiO2 Core/Shell Microcrystals[J]. Journal of Rare Earths. 2007,25 (5):605-608.
    [16]Kwon, S.H., Hong, B.J., Park, H.Y., Knoll, W., Park, J.W. DNA-DNA interaction on dendron-functionalized sol-gel silica films followed with surface plasmon fluorescence spectroscopy[J]. Journal of colloid and interface science.2007,308 (2):325-331.
    [17]Qi, Y., Chen, M, Liang, S., Zhao, J., Yang, W. Hydrophobation and self-assembly of core-shell Au@SiO2 nanoparticles[J], Colloids and Surfaces A:Physicochemical and Engineering Aspects.2007,302 (1):383-387.
    [18]Teo, B.K., Sun, X. Silicon-Based Low-Dimensional Nanomaterials and Nanodevices[J]. Chemical Reviews.2007,107 (5):1454-1532.
    [19]Schroedter, A., Weller, H., Eritja, R., Ford, W.E., Wessels, J.M. Biofunctionalization of silica-coated CdTe and gold nanocrystals[J]. Nano Letters.2002,2 (12):1363-1367.
    [20]Mondal, A., Ram, S. Enhanced Phase Stability and Photoluminescence of Eu3+Modified t-ZrO2 Nanoparticles[J]. Journal of the American Ceramic Society.2008,91 (1):329-332.
    [21]Gomez, L.A., Menezes, L.S., de Araujo, C.B., Goncalves, R.R., Ribeiro, S.J.L., Messaddeq, Y. Upconversion luminescence in Er3+doped and Er3+/Yb3+codoped zirconia and hafnia nanocrystals excited at 980 nm[J]. Journal of Applied Physics.2010,107 (11):113508.
    [22]Lange, S., Sildos, I., Hartmanova, M., Aarik, J., Kiisk, V. Luminescence properties of Sm3+-doped polycrystalline ZrO2[J]. Journal of Non-Crystalline Solids.2008,354 (35): 4380-4382.
    [23]Cabello, G., Lillo, L., Caro, C, Buono-Core, G.E., Chomik, B., Soto, M. Structure and optical characterization of photochemically prepared ZrO2 thin films doped with erbium and europium[J]. Journal of Non-Crystalline Solids.2008,354 (33):3919-3928.
    [24]Lii, Q., Guo, F.Y., Sun, L., Li, A., Zhao, L.C. Surface modification of ZrO2:Er3+ nanoparticles to attenuate aggregation and enhance upconversion fluorescence[J]. The Journal of Physical Chemistry C.2008,112 (8):2836-2844.
    [25]Tsukada, T., Venigalla, S., Morrone, A.A., Adair, J.H. Low-Temperature Hydrothermal Synthesis of Yttrium-Doped Zirconia Powders[J]. Journal of the American Ceramic Society. 1999,82(5):1169-1174.
    [26]Stober, W., Fink, A., Bohn, E. Controlled growth of monodisperse silica spheres in the micron size range[J]. Journal of colloid and interface science.1968,26 (1):62-69.
    [27]Flachsbart, H., Stober, W. Preparation of radioactively labeled monodisperse silica spheres of colloidal size[J]. Journal of colloid and interface science.1969,30 (4):568-573.
    [28]Wang, H., Yu, M., Lin, C, Liu, X., Lin, J. Synthesis and luminescence properties of monodisperse spherical Y2C>3:Eu3+@ SiO2 particles with core-shell structure[J]. The Journal of Physical Chemistry C.2007,111 (30):11223-11230.
    [29]Lin, C, Kong, D., Liu, X., Wang, H., Yu, M., Lin, J. Monodisperse and core-shell-structured SiO2@ YBO3:Eu3+spherical particles:Synthesis and characterization[J]. Inorganic chemistry. 2007,46 (7):2674-2681.
    [30]Jiao, X., Chen, D., Xiao, L. Effects of organic additives on hydrothermal zirconia nanocrystallites[J]. Journal of crystal growth.2003,258 (1):158-162.
    [31]Wakefield, G., Keron, H.A., Dobson, P.J., Hutchison, J.L. Structural and optical properties of terbium oxide nanoparticles[J]. Journal of Physics and Chemistry of Solids.1999,60 (4): 503-508.
    [32]Jung, K.Y., Lee, H.W. Enhanced luminescent properties of Y3A15O12:Tb3+, Ce3+phosphor prepared by spray pyrolysis[J]. Journal of Luminescence.2007,126 (2):469-474.
    [33]张中太,张俊英.无机光致发光材料及应用[M].化学工业出版社.2005.
    [34]Wang, Y., Qin, W., Zhang, J., Cao, C, Lu, S., Ren, X. Photoluminescence of colloidal YVO4: Eu/SiO2 core/shell nanocrystals [J]. Optics Communications.2009,282 (6):1148-1153.
    [35]Okamoto, K., Niki, I., Scherer, A,, Narukawa, Y., Mukai, T., Kawakami, Y. Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy[J]. Applied physics letters.2005,87 (7):071102.
    [36]Lee, S.M., Choi, K.C. Enhanced emission from BaMgAl10O17:Eu2+by localized surface plasmon resonance of silver particles[J]. Optics Express.2010,18 (12):12144-12152.
    [37]Wang, Z., Quan, Z., Jia, P., Lin, C, Luo, Y, Chen, Y, Fang, J., Zhou, W., O'Connor, C, Lin, J. A facile synthesis and photoluminescent properties of redispersible CeF3, CeF3:Tb+, and CeFj:Tb3+/LaF3 (core/shell) nanoparticles[J]. Chemistry of materials.2006,18 (8): 2030-2037.
    [38]Talapin, D.V., Mekis, I., Goetzinger, S., Kornowski, A., Benson, O., Weller, H. CdSe/CdS/ZnS and CdSe/ZnSe/ZnS core-shell-shell nanocrystals[J]. The Journal of Physical Chemistry B.2004,108(49):18826-18831.
    [39]Fang, Y.P., Xu, A.W., Dong, W.F. Highly improved green photoluminescence from CePO4 Tb/LaPO4 core/shell nanowires[J]. small.2005,1 (10):967-971.
    [40]Vetrone, F., Naccache, R., Mahalingam, V, Morgan, C.G., Capobianco, J.A. The Active-Core/Active-Shell Approach:A Strategy to Enhance the Upconversion Luminescence in Lanthanide-Doped Nanoparticles[J]. Advanced Functional Materials.2009,19 (18): 2924-2929.
    [41]Yang, D., Li, C, Li, G., Shang, M., Kang, X., Lin, J. Colloidal synthesis and remarkable enhancement of the upconversion luminescence of BaGdF5:Yb3+/Er3+nanoparticles by active-shell modification[J]. J. Mater. Chem.2011,21 (16):5923-5927.
    [42]Chen, D., Yu, Y, Huang, F., Lin, H., Huang, P., Yang, A., Wang, Z., Wang, Y. Lanthanide dopant-induced formation of uniform sub-10 nm active-core/active-shell nanocrystals with near-infrared to near-infrared dual-modal luminescence[J]. J. Mater. Chem.2012,22 (6): 2632-2640.
    [43]Li, Y.C., Chang, Y.H., Chang, Y.S., Lin, Y.J., Laing, C.H. Luminescence and energy transfer properties of Gd3+and Tb3+in LaAlGe2O7[J]. The Journal of Physical Chemistry C.2007, 111 (28):10682-10688.
    [44]Zhang, X., Zhang, J., Liang, L., Su, Q. Luminescence of SrGdGa3O7:RE3+(RE= Eu, Tb) phosphors and energy transfer from Gd3+to RE3+[J]. Materials research bulletin.2005,40 (2): 281-288.
    [1]Wilk, G., Wallace, R., Anthony, J. High-K gate dielectrics:Current status and materials properties considerations[J]. Journal of Applied Physics.2001,89 (10):5243.
    [2]Zhou, Y., Kelly, P., Postill, A., Abu-Zeid, O., Alnajjar, A. The characteristics of aluminium-doped zinc oxide films prepared by pulsed magnetron sputtering from powder targets[J]. Thin Solid Films.2004,447:33-39.
    [3]Zywitzki, O., Klostermann, H., Fietzke, F., Modes, T. Structure of superhard nanocrystalline (Ti, Al) N layers deposited by reactive pulsed magnetron sputtering[J]. Surface and Coatings Technology.2006,200 (22):6522-6526.
    [4]Audronis, M, Kelly, P., Leyland, A., Matthews, A. Microstructure of direct current and pulse magnetron sputtered Cr-B coatings[J]. Thin Solid Films.2006,515 (4):1511-1516.
    [5]Audronis, M., Leyland, A., Kelly, P., Matthews, A. The effect of pulsed magnetron sputtering on the structure and mechanical properties of CrB2 coatings[J]. Surface and Coatings Technology.2006,201 (7):3970-3976.
    [6]Zhou, Y., Kelly, P. The properties of tin-doped indium oxide films prepared by pulsed magnetron sputtering from powder targets [J]. Thin Solid Films.2004,469:18-23.
    [7]Arnell, R., Kelly, P., Bradley, J. Recent developments in pulsed magnetron sputtering[J]. Surface and Coatings Technology.2004,188:158-163.
    [8]Modreanu, M., Sancho-Parramon, J., O'Connell, D., Justice, J., Durand, O., Servet, B. Solid phase crystallisation of HfO2 thin films[J]. Materials Science and Engineering B.2005,118 (1-3):127-131.
    [9]He, G., Zhang, L., Li, G., Liu, M., Zhu, L., Pan, S., Fang, Q. Spectroscopic ellipsometry characterization of nitrogen-incorporated HfO2 gate dielectrics grown by radio-frequency reactive sputtering[J]. Applied Physics Letters.2005,86 (23) 232901.
    [10]Sancho-Parramon, J., Modreanu, M., Bosch, S., Stchakovsky, M. Optical characterization of HfO2 by spectroscopic ellipsometry:Dispersion models and direct data inversion[J]. Thin Solid Films.2008,516 (22):7990-7995.
    [11]Ng, K., Zhan, N., Kok, C, Poon, M., Wong, H. Electrical characterization of the hafnium oxide prepared by direct sputtering of Hf in oxygen with rapid thermal annealing[J]. Microelectronics Reliability.2003,43 (8):1289-1293.
    [12]Wong, H., Zhan, N., Ng, K., Poon, M., Kok, C. Interface and oxide traps in high-K hafnium oxide fiIms[J]. Thin Solid Films.2004,462:96-100.
    [13]Wong, H., Cheng, Y. Electronic conduction mechanisms in thin oxynitride films[J]. Journal of Applied Physics.1991,70(2):1078-1080.
    [14]Mukhopadhyay, A.B., Sanz, J.F., Musgrave, C.B. First-principles calculations of structural and electronic properties of monoclinic hafnia surfaces[J]. Physical Review B.2006,73 (11): 115330.
    [15]Zhao, X., Vanderbilt, D. First-principles study of structural, vibrational, and lattice dielectric properties of hafnium oxidefJ]. Physical Review B.2002,65 (23):233106.
    [16]Toledano-Luque, M., San Andres, E., Olea, J., Del Prado, A., Martil,1., Bohne, W., Rohrich, J., Strub, E. Hafnium oxide thin films deposited by high pressure reactive sputtering in atmosphere formed with different Ar/O2 ratios[J]. Materials science in semiconductor processing.2006,9 (6):1020-1024.
    [17]He, Z., Wu, W., Xu, H., Zhang, J., Tang, Y. The effects of O2/Ar ratio on the structure and properties of hafnium dioxide (HfO2) films[J]. Vacuum.2006,81 (3):211-214.
    [18]Pereira, L., Barquinha, P., Fortunato, E., Martins, R. Influence of the oxygen/argon ratio on the properties of sputtered hafnium oxide[J]. Materials Science and Engineering B.2005,118 (1-3):210-213.
    [19]Hohnke, D., Schmatz, D., Hurley, M. Reactive sputter deposition:A quantitative analysis[J]. Thin Solid Films.1984,118 (3):301-310.
    [20]Krause, U., List, M., Fuchs, H. Requirements of power supply parameters for high-power pulsed magnetron sputtering[J]. Thin Solid Films.2001,392 (2):196-200.
    [21]Bohlmark, J., Alami, J., Christou, C, Ehiasarian, A.P., Helmersson, U. Ionization of sputtered metals in high power pulsed magnetron sputtering[J]. Journal of Vacuum Science & Technology A:Vacuum, Surfaces, and Films.2005,23 (1):18-22.
    [22]Kolev, I., Bogaerts, A. Calculation of gas heating in a dc sputter magnetron[J]. Journal of Applied Physics.2008,104 (9):093301.
    [23]Lee, B.H., Kang, L., Qi, W.J., Nieh, R., Jeon, Y., Onishi, K., Lee, J.C. Ultrathin hafnium oxide with low leakage and excellent reliability for alternative gate dielectric application[A]. 1999,133-136.
    [24]Nam, S.W., Yoo, J.H., Nam, S., Choi, H.J., Lee, D., Ko, D.H., Moon, J.H., Ku, J.H., Choi, S. Influence of annealing condition on the properties of sputtered hafnium oxide[J]. Journal of Non-Crystalline Solids.2002,303 (1):139-143.
    [25]Martinez, F., Toledano-Luque, M., Gandia, J., Carabe, J., Bohne, W., Rohrich, J., Strub, E., Martil,1. Optical properties and structure of HfO2 thin films grown by high pressure reactive sputtering[J]. Journal of Physics D:Applied Physics.2007,40 (17):5256-5265.
    [26]Sze, S.M. Semiconductor devices:physics and technology[M]. John Wiley & Sons.2008.
    [27]Nicollian, E.H., Brews, J.R. MOS/metal oxide semiconductor/physics and technology[M]. New York, Wiley-Interscience.1982.
    [28]Hou, Y, Yen, F., Hsu, P., Chang, V., Lim, P., Hung, C, Yao, L., Jiang, J., Lin, H., Jin, Y. High performance tantalum carbide metal gate stacks for nMOSFET application[A].2005, 31-34.
    [29]Chen, W., Liu, W.J., Zhang, M., Ding, S.J., Zhang, D.W., Li, M.F. Multistacked Al2O3/HfO2/SiO2 tunnel layer for high-density nonvolatile memory application[J]. Applied Physics Letters.2007,91 (2):022908.
    [30]Punchaipetch, P., Uraoka, Y, Fuyuki, T, Tomyo, A., Takahashi, E., Hayashi, T., Sano, A., Horii, S. Enhancing memory efficiency of Si nanocrystal floating gate memories with high-K gate oxides[J]. Applied Physics Letters.2006,89 (9):093502.
    [31]Abe, Y, Miyata, N., Shiraki, Y, Yasuda, T. Dipole formation at direct-contact HfO2/Si interface[J]. Applied Physics Letters.2007,90 (17):172906.
    [32]Cortes, A., Gomez, H., Marotti, R., Riveros, G., Dalchiele, E. Grain size dependence of the bandgap in chemical bath deposited CdS thin films[J]. Solar energy materials and solar cells. 2004,82(1):21-34.
    [33]Tyagi, P., Vedeshwar, A. Grain size dependent optical band gap of Cdl2 films[J]. Bulletin of Materials Science.2001,24 (3):297-300.
    [34]He, G., Liu, M, Zhu, L., Chang, M., Fang, Q., Zhang, L. Effect of postdeposition annealing on the thermal stability and structural characteristics of sputtered HfO2 films on Si (100)[J]. Surface science.2005,576 (1):67-75.
    [35]Cho, Y.J., Nguyen, N., Richter, C, Ehrstein, J., Lee, B.H., Lee, J.C. Spectroscopic ellipsometry characterization of high-k dielectric HfO2 thin films and the high-temperature annealing effects on their optical properties[J]. Applied Physics Letters.2002,80 (7): 1249-1251.
    [36]Gruger, H., Kunath, C, Kurth, E., Sorge, S., Pufe, W., Pechstein, T. High quality rf sputtered metal oxides (Ta2O5, HfO2) and their properties after annealing[J]. Thin solid films.2004, 447:509-515.
    [37]Ohring, M. The materials science of thin films[M]. Academic Pr.1992.
    [38]Atanassova, E., Novkovski, N., Paskaleva, A., Pecovska-Gjorgjevich, M. Oxygen annealing modification of conduction mechanism in thin rf sputtered Ta2O5 on Si[J]. Solid-State Electronics.2002,46(11):1887-1898.
    [39]Zhu, W., Ma, T.P., Tamagawa, T., Kim, J., Di, Y. Current transport in metal/hafnium oxide/silicon structure[J]. Electron Device Letters, IEEE.2002,23 (2):97-99.
    [40]Hung, C.H., Shiau, T.H., Cheng, Y.W., Lee, I.L., Shone, F., Wan, R.L. Fowler-Nordheim (FN) tunneling for pre-programming in a floating gate memory device. US Patents.1999.
    [41]Simmons, J.G. Poole-Frenkel effect and Schottky effect in metal-insulator-metal systems[J]. Physical Review.1967,155 (3):657.
    [42]Ranjan, R., Pey, K., Tung, C, Tang, L., Groeseneken, G., Bera, L., De Gendt, S. A comprehensive model for breakdown mechanism in HfO2 high-k gate stacks[A].2004, 725-728.
    [43]Kim, H., Mclntyre, P.C., Saraswat, K.C. Effects of crystallization on the electrical properties of ultrathin HfO2 dielectrics grown by atomic layer deposition[J]. Applied Physics Letters. 2003,82(1):106-108.
    [44]Yanev, V., Rommel, M., Lemberger, M., Petersen, S., Amon, B., Erlbacher, T., Bauer, A.J., Ryssel, H., Paskaleva, A., Weinreich, W. Tunneling atomic-force microscopy as a highly sensitive mapping tool for the characterization of film morphology in thin high-k dielectrics[J]. Applied Physics Letters.2008,92 (25):252910.
    [45]Sen, B., Sarkar, C, Wong, H., Chan, M., Kok, C. Electrical characteristics of high-K dielectric film grown by direct sputtering method[J]. Solid-State Electronics.2006,50 (2): 237-240.
    [46]Ma, T. Making silicon nitride film a viable gate dielectric[J]. Electron Devices, IEEE Transactions on.1998,45 (3):680-690.
    [47]Chen, Q., Wang, Y, Zhou, X., Zhang, Q., Zhang, S. High field tunneling as a limiting factor of maximum energy density in dielectric energy storage capacitors [J]. Applied Physics Letters.2008,92(14):142909.
    [48]Robertson, J. Band offsets of wide-band-gap oxides and implications for future electronic devices[J]. Journal of Vacuum Science & Technology B:Microelectronics and Nanometer Structures.2000,18 (3):1785.
    [49]Chiu, F.C., Lin, S.A., Lee, J.Y. Electrical properties of metal-HfO2-silicon system measured from metal-insulator-semiconductor capacitors and metal-insulator-semiconductor field-effect transistors using HfO2 gate dielectric[J]. Microelectronics and reliability.2005,45 (5-6):961-964.
    [50]Tsui, B.-Y., Chang, H.-W. Formation of interfacial layer during reactive sputtering of hafnium oxide[J]. Journal of Applied Physics.2003,93 (12):10119.
    [51]Sen, B., Wong, H., Filip, V., Choi, H., Sarkar, C, Chan, M., Kok, C, Poon, M. Current transport and high-field reliability of aluminum/hafnium oxide/silicon structure[J]. Thin Solid Films.2006,504(1):312-316.
    [52]Toledano-Luque, M., San Andres, E., Olea, J., Del Prado, A., Martil, I., Bohne, W., Rohrich, J., Strub, E. Hafnium oxide thin films deposited by high pressure reactive sputtering in atmosphere formed with different Ar/O2 ratios[J]. Materials science in semiconductor processing.2006,9 (6):1020-1024.
    [53]Suzuki, K., Kato, K. Characterization of high-k HfO2 films prepared using chemically modified alkoxy-derived solutions[J]. Journal of Applied Physics.2009,105 (6):061631.
    [54]Wang, L., Chu, P.K., Anders, A., Cheung, N.W. Effects of ozone oxidation on interfacial and dielectric properties of thin HfO2 films[J]. Journal of Applied Physics.2008,104 (5):054117.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700