光纤过程层析成像技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光纤过程层析成像是光纤传感领域的一门新型技术,具有光纤传感器的测量低浓度物质分辨率高、体积小、抗电磁干扰以及可以进行分布式测量的共同优点和可以同时测量物质截面内部结构的独特优点,在多相流动广泛存在的石油、化工、能源等工业部门和医疗、卫生、食品等领域具有广泛的应用前景,对监控产品质量、降低成本以及保证生产安全具有非常重要的意义。
    本论文在总结前人工作的前提下,充分兼顾了工业中具有圆形截面的圆柱形容器或管道普遍存在的事实,提出了一种新型的光纤过程层析成像结构,并从理论设计方法,具体结构仿真,平面结构实验系统设计,初步实验以及空间结构实用化设计、理论分析等方面进行了研究,主要的创新点在于:⑴提出了一种用于工业过程监测与控制的新型光纤过程层析成像结构设计方法,并推导了该方法的经验公式,该方法主要包括像素分配和平面光路结构设计,可以根据工程应用中图像重建的分辨率和圆形截面非测量区域所占比例的要求,设计所需传感单元的数目和传感单元发射光线的数目;⑵ 设计了一种新型的光纤过程层析成像结构,并对该结构进行了可行性分析和数值仿真。该结构的主要特征为:8个光纤传感单元均匀分布于截面圆周,每单元收发各3条光线,覆盖具有60个象素的环形测量区域,中心圆形非测量区域放置系统的支撑结构;⑶ 完成了平面结构的实验系统,通过设计其中的关键元件-光学窗口,成功解决了光路通光、容器壁反射以及容器内外密封的实际问题,并在此基础上对光纤准直器、光电探测器以及光学窗口在容器壁的定位进行了计算,所有24路光通道由于精确计算和加工一次调试成功;⑷ 对新型结构进行了初步实验研究,实验结果表明该结构能对气-固两相物质分布进行测量和图像重建。⑸ 设计了实用化的新型空间光路结构,经过详细的理论分析与计算,给出了该结构的定位精度,结果表明整个系统对结构各部分的定位精度不高,为新型光纤过程层析成像结构的实用化提供了理论依据。
Optical fiber process tomography (OFPT) is a new technology in the field of optical fiber sensor (OFS). The probe of OFPT is small, safe, free of electromagnetic interference and has high sensitivity in low-density medium case same as OFS, more important and different is that it can detect the medium distribution and contents of the cross-section to be investigated simultaneously, which makes OFPT show potential and extensive applications in petroleum, chemical, energy, medicine, food and sanitation fields to control product quality, realize safe production and reduce the cost.
    On the premise of summarizing former contributions in the field, and considering the universality of the cylindrical space with circular cross-section in industry, the author develop a novel OFPT structure, on which the design theories, numerical simulation, design of experimental system for plane structure, preliminary experiment and design of applied space structure are presented. The main contents of the thesis are that:
    Put forward the novel OFPT pixel distribution and plane-light-path design theories and their empirical formulae. The numbers of the OFS units and their emitting rays can be decided by the requirements of image-reconstructed resolution and the size of the center unmeasured region.
    Develop a novel OFPT structure by the theories and simulate it by algebraic iterative reconstruction algorithm (ART). The structure includes eight OFS units uniformly distributed around the circle, where each unit emits three rays to the clockwise adjacent three units and receives three rays from counterclockwise adjacent three units. Rays cover all sixty pixels of the measured ring region. The center circular region belongs to unmeasured part for the back-up structure of the system.
    Design and manufacture the OFPT experimental system. Many practical problems such as waterproof, light passing and wall optical reflection are successfully solved
    
    by specially designing an optical window, thus the positions of all optical devices such as optical fiber collimators, detectors and the windows are calculated accurately to make the collimation of all optical channels simply and easily.
    Take the elementary experiments and use genetic algorithm in the image reconstruction. The results show that the novel OFPT system can measure and reoccur some gas-solid two-component distributions.
    Design and analysis the applied space OFPT structure. The positioning accuracies of all devices and the whole system are figured out. The results show that processing and positioning requirements to optical devices in the space structure are not too high.
引文
[1] 林宗虎, 等. 近期多相流基础理论研究综述. 西安交通大学学报. 2001, 35, 9: 881-885
    [2] 林宗虎,等.多相流的近期工程应用趋向. 西安交通大学学报. 2001, 35, 9:886-890
    [3] Buehler P J, Franchek M A and Makki I. Mass air flow sensor diagnostics for adaptive fueling control of internal combustion engines. American Control Conference. 2002, 3:2064 -2069
    [4] Betta G, Pietrosanto A and Scaglione A. An enhanced fiber-optic temperature sensor system for power transformer monitoring, Instrumentation and Measurement. IEEE Transactions on. 2001, 50 (5): 1138 -1143
    [5] Soeda M, Kataoka T, Ishikura Y, et al. Sapphire-based capacitive pressure sensor for high temperature and harsh environment application, Sensors, 2002. Proceedings of IEEE. 2002, 2: 950 -953
    [6] Hauptmann P, Hoppe N and Uttmer A P. Application of ultrasonic sensors in the process industry. Meas. Sci. Technol. 2002, 13: R73-R83
    [7] Ramos1 R T, Holmes1 A, Xu W and Dussan E. A local optical probe using fluorescence and reflectance for measurement of volume fractions in multi-phase flows. Meas. Sci. Technol. 2001, 12: 871-876
    [8] Fordham E J, Holmes A, Ramos R T, et al. Multi-phase-fluid discrimination with local fibre-optical probes: I. Liquid/liquid flows. Meas. Sci. Technol. 1999, 10 : 1329-1337
    [9] Fordham E J, Simonian S, Ramos R T, et al. A Holmes, S-M Huang and C P Lenn, Multi-phase-fluid discrimination with local fibre-optical probes: II. Gas/liquid flows. Meas. Sci. Technol. 1999, 10: 1338-1346.
    [10] Fordham E J, Ramos R T, Holmes A, et al. S-M Huang and C P Lenn, Multi-phase-fluid discrimination with local fibre-optical probes: III. Three-phase flows. Meas. Sci. Technol. 1999, 10: 1347-1352
    [11] Huang S M, Plaskowski A B, Xie C G, et al. Capacitance-based tomographic flow imaging system. Electronics Letters. 1988, 24(7): 418 -419
    [12] Xie C G, Plaskowski A and Beck M S. 8-electrode capacitance system for two-component flow identification. Science, Measurement and Technology, IEE Proceedings A. 1989, 136(4): 173 -183
    [13] Darton R C, Thomas P D and Whalley P B. "Optical Tomography" Frontiers in Industrial Process Tomography, Proceedings of the Engineering Foundation Conference. 1995, 2: 73-84
    
    
    [14] 廖延彪. 光纤光学. 北京: 清华大学出版社. 1986: 161-213
    [15] 周光湖. 计算机断层摄影原理及应用. 成都: 成都电讯工程学院出版社. 1986: 1-10
    [16] Cormack A M. Representation of a function by its line integrals, with some radiological applications. J. Appl. Phy. 1963, 34:2722-2727
    [17] Hounsfield G N. Computerized transverse axial scanning (tomography) I. Description of system, Br. J. Radiol. 1973, 46:1016-1022
    [18] Grassler T and Wirth K -E. X-ray computer tomography - potential and limitation for the measurement of local solids distribution in circulating fluidized beds. Chemical Engineering Journal. 2000, 77:65-72
    [19] Hay G A. X-ray imaging. J. Phys. E: Sci. Instrum. 1978, 11:377-385
    [20] Nakashima Y. The use of X-ray CT to measure diVusion coeYcients of heavy ions in water-saturated porous media. Engineering Geology. 2000, 56:11-17
    [21] Geet M V, Swennen R and Wevers M. Quantitative analysis of reservoir rocks by microfocus X-ray computerised tomography. Sedimentary Geology. 2000, 132:25-36
    [22] WeiB D, Schneider G, Niemann B, et al. Computed tomography of cryogenic biological specimens based on X-ray microscopic images. Ultramicroscopy. 2000, 84:185-197
    [23] WeiB D, G.Schneider, B.Niemann, et al. Computed tomography of cryogenic biological specimens based on X-ray microscopic images. Ultramicroscopy. 2000, 84:185-197
    [24] Cooper M J, Rollason A J and R W Tuxworth. Gamma-ray scattering studies of composition variations in alloys. J. Phys. E: Sci. Instrum. 1982, 15(5):568-572
    [25] Veera U P. Gamma ray tomography design for the measurement of hold-up profiles in two-phase bubble columns. Chemical Engineering Journal. 2001, 81:251-260
    [26] George D L, Shollenberger K A, Torczynski J R, et al. Three-phase material distribution measurements in a vertical flow using gamma-densitometry tomography and electrical-impedance tomography. International Journal of Multiphase Flow. 2001, 27(11):1903-1930
    [27] Treimer W, Feye-Treimer U and Herzig C. On neutron tomography. Physica B.1998, 241-243:1197-1203
    [28] Schillinger B, Lehmann E and Vontobel P. 3D neutron computed tomography: requirements and applications. Physica B. 2000, 276-278:59-62
    [29] Lopes R T, Bessa A P, Braz D, et al. Neutron computerized tomography in compacted soil. Applied Radiation and Isotopoes. 1999, 50:451-458
    [30] Vining B A., Li G Z and Alan G. Marshall. Laser-Induced Fluorescence for Ion Tomography in a Penning Trap. J. Am. Soc. Mass Spectrom. 1998, 9:925-930
    
    
    [31] Hensel F. Investigation of a density measurement technique using positron radiation. Applied Radiation and Isotopes. 2000, 53:617-624
    [32] Ernest V G, Tracy L F, James R G, et al. Advances in Nuclear Emission PET and SPECT Imaging. IEEE Engineering in Medicine and Biology Magazine. 2000, 19(5): 21-33
    [33] Adriaan A L. PET/SPECT: functional imaging beyond flow. Vision Research. 2001, 41: 1277-1281
    [34] Okamoto I, Hirai S and Ogawa K. MRI velocity measurements of water flow in porous media containing a stagnant immiscible liquid. Meas. Sci. Technol. 2001, 12:1465-1472
    [35] Huang S M, Plaskowski A B, Xie C G, et al. Capacitance-based tomographic flow imaging system. Electronics Letters. 1988, 24(7):418-419
    [36] Xie C G, Plaskowski A B and Beck M S. 8-electrode capacitance system for two-component flow identification part 1: tomographic flow imaging. IEE Proceedings. 1989, 136(part A, 4): 173-183
    [37] Huang S M, Xie C G, Thorn R, et al. Design of sensor electronics for electrical capacitance tomography. IEE Proceedings-G. 1992, 139(1):83-88
    [38] Ostrowski K L, Luke S P and Williams R A. Simulation of performance of electrical capacitance tomography for measurement of dense phase pneumatic conveying. Chemical Engineering Journal. 1997, 68:197-205
    [39] Waterfall R C. Imaging Combustion Using capacitance Tomography",Advanced Sensors and Instrumentation Systems for Combustion Processes. IEE Seminar. 2000:12/1 -12/4
    [40] Jaworski A J and Dyakowski T. Application of electrical capacitance tomography for measurement of gas-solids flow characteristics in a pneumatic conveying system. Meas. Sci. Technol. 2001, 12:1109-1119
    [41] Angel R Z-F, et al. Electrical Impedance Tomography: An Electronic Design, With Adaptive Voltage Measurements and A Phantom Circuit for Research in the Epilepsy Field. Proceedings-19th international conference-IEEE/EMBS. Chicago, IL. USA. 1997:867-868
    [42] Yu Z Z, Peyton A J and Xu L A, et al. Electromagnetic inductance tomography(EMT): sensors, electronics and image construction algorithm for a system with a rotatable parallel excitation field. IEE Proc.-Sci. Meas. Technol. 1998, 145(1): 20-25
    [43] Cho K H, Kim S and Li Y J. A fast EIT image reconstruction method for the two phase flow visualization. Int. Comm. Heat Mass Transfer. 1999, 26(5):637-646
    [44] Angel R Z, et al. Electrical Impedance Tomography: An Electronic Design, With Adaptive Voltage Measurements and A Phantom Circuit for Research in the Epilepsy Field. Proceedings-19th international conference-IEEE/EMBS. Chicago, IL. USA. 1997:867-868
    
    
    [45] Wang M, Yin W and Holliday N. A highly adaptive electrical impedance sensing system for flow measurement. Meas. Sci. Technol. 2002, 13:1884-1889
    [46] Levy S, Adam D and Bresler Y. Electromagnetic Impedance Tomography (EMIT): A New Method for Impedance Imaging. IEEE TRANSACTIONS ON MEDICAL IMAGING. 2002, 21(6):676-687
    [47] Yu Z Z, Peyton A J, Xu L A, et al. Electromagnetic inductance tomography(EMT): sensors, electronics and image construction algorithm for a system with a rotatable parallel excitation field. IEE Proc.-Sci. Meas. Technol. 1998, 145(1):20-25
    [48] Yu Z Z, Peyton A T, Beck M S, et al. Imaging system based on electromagnetic tomography (EMT) Electronics Letters. 1993, 29(7):625 -626
    [49] Semenov S Y, Svenson R H, Boulyshev A E, et al. Microwave tomography: two-dimensional system for biological imaging. Biomedical Engineering. IEEE Transactions on. 1996, 43(9):869-877
    [50] Serguei Y S, Alexander E B, Alexander E S, et al. Microwave Tomography: Theoretical and Experimental Investigation of the Iteration Reconstruction Algorithm. IEEE Trans. Microwave Theory Tech. 1998, 46:133-141
    [51] Brown G J, Reilly D and Mills D. Development of an ultrasonic tomography system for application in pneumatic conveying. Meas. Sci. Technol. 1996, 7(3): 396-405
    [52] liang H D, Halliwell M and Peter Wells N T. Continuous Wave Ultrasonic Tomography. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL. 2001, 48(1): 285-292
    [53] 郑勇, 傅容珊, 李祖宁, 等. 利用地震层析成像研究地幔非对称结构. 大地测量与地球动力学. 2002, 22(1):87-91
    [54] Kissling E, Husen S and Haslinger F. Model parametrization in seismic tomography: a choice of consequence for the solution quality. Physics of the Earth and Planetary Interiors. 2001, 123:89-101
    [55] Schmitt J M. Optical Coherence Tomography (OCT): A Review. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS. 1999, 5(4): 1205-1215
    [56] Johannes F de B, et al. Polarization effects in optical coherence tomography of various biological tissues. IEEE Journal on Selected Topics in Quantum Electronics. 1999, 5(4):1200-1204
    [57] Chen Z P, Zhao Y H, Shyam M S, et al. Optical Doppler tomography. IEEE Journal on Selected Topics in Quantum Electronics. 1999, 5(4): 1134-1141
    Fuji T, Miyata M, Kawato S, et al. Linear propagation of light investigated with a white-light
    
    [58] interferometer. J. Opt. Soc. Amer. B. 1997, 14:1074-1078
    [59] Schmitt J M. OCT elastography: Imaging microscopic deformation and strain of tissue. Opt. Express: 1998, 3:199-211, 1998.
    [60] He Z and Kazuo H. High resolution tomography for scattering media by synthesis of optical coherence function. Proceedings of SPIE - The International Society for Optical Engineering. 1999, 3823:152-159
    [61] Hee M R, et al. Optical coherence tomography for ophthalmic imaging. IEEE ENGINEERING IN MEDICINE AND BIOLOGY. 1995:67-76
    [62] Knuettel A, et al. Spatially confined and temporally resolved refractive index and scattering evaluation in human skin performed with optical coherence tomography. Journal of biological optics. 2000, 5(1): 83-92
    [63] Boas D A, Brooks D H, Miller E L, et al. Imaging the body with diffuse optical tomography. IEEE Signal Processing Magazine. 2001, 18(6): 57 -75
    [64] Santoro R J, Semerjian H G, Emmerman P J, et al. OPTICAL TOMOGRAPHY FOR FLOW FIELD DIAGNOSTICS. International Journal of Heat and Mass Transfer. 1981, 24(7): 1139-1150
    [65] Snyder R and Hesselink L. High speed optical tomography for flow visualization. Applied Optics. 1985, 24(23): 4046-4051
    [66] Snyder R and Hesselink L. Measurement of mixing fluid flows with optical tomography. Optical Letters. 1988, 13(2): 87-89
    [67] Faris G W and Byer R L. Three-dimentional beam-deflection optical tomography of a supersonic jet. Applied Optics. 1988, 27(24): 5202-5212
    [68] Faris G W and Hertz H M. Tunable differential interferometer for optical tomography. Applied Optics. 1989, 28(21): 4662-4667
    [69] Fischer W and Burkhardt H. Three-dimensional temperature measurement in flames by multipectral tomographic image analysis. Proceedings of SPIE - The International Society for Optical Engineering. 1990, 1349:96-105
    [70] Darton R C, Thomas P D and Whalley P B. Optical Tomography" Frontiers in Industrial Process Tomography. Proceedings of the Engineering Foundation Conference. 1995: 73-84
    [71] Pierson R E, Olson D F and Chen E Y. Comparison of reconstruction-algorithm performance for optical-phase tomography of a heated air flow. Opt. Eng. 2000, 39 (3): 838-846
    [72] Green R G, Horbury N M, Rahim R A, et al. Optical fiber sensors for process tomography. Meas. Sci. Technol. 1995, 6: 1699-1704
    Kulchim Y, Vitrik O, Kirichenko O, et al. Fiber Optics Tomography Measuring Network for
    
    [73] Investigation of Vector Deformation Fields of Earth Surface. OCEANS'96. MTS/IEEE. Prospects for the 21st Century Conference Proceedings. 1996, 3: 1143-1147
    [74] Ibrahim S, Green R G, Dutton K and Rahim R A. Application of Optics Tomography in Industrial Process Control System. TENCON 2000. Proceedings. 2000, 1: 493-498
    [75] Ibrahim S, Green R G, Dutton K, et al. An integrated optical fiber and lens system for tomography. Measurement + Control. 2000, 33: 109-112
    [76] Yan C S, Lai S R, Liao Y B, et al. Optical Tomography Realized by Optical Fiber Sensors. Optical Diagnostics for Fluids Solids and Combustion Proceedings of the Society of Photo-Optical Instrumentation Engineers (SPIE) 4448. 2001: 295-300
    [77] Yan C S, Lai S R, Liao Y B, et al. A novel optical fibre process tomography structure for industry process control. Meas. Sci. Technol. 2002, 13: 1898-1902
    [78] Yan C S, Lai S R, Liao Y B, et al. Design of a novel optical tomography sensor array. Meas. Sci. Technol. 2003, 14: 164-171
    [79] Ibrahim S, Green R G, Dutton K, et al. Optical sensor configurations for process tomography. Meas. Sci. Technol. 1999, 10: 1079-1086
    [80] Rovati L and Docchio F. Self-mixing super luminescent diode optical tomography. Part of the 18th Congress of the International Commission for Optics: Optics for the Next Millennium San Francisco, California. August 1999 SPIE. 1999, 3749: 790-791
    [81] Jenner R P and Vaezi-Nejad S M. Application off amorphous semiconductors for optical tomography. Measurement + Control. 2000, 33: 175-180
    [82] 廖延彪. 物理光学. 北京: 电子工业出版社. 1986:32-35
    [83] 王楚, 汤俊雄. 光学. 北京: 北京大学出版社,2001:28-50
    [84] 余虹, 姜东光, 张殿风, 等. 大学物理学. 北京:科学出版社. 2001: 310-314
    [85] Cheong W F, Prahl S A and Welch A J. A review of the optical properties of biological tissues. IEEE Journal of Quantum Electronics. 1990, 26(12): 2166-2185
    [86] 张智星, 等译, (日) 水谷英二, 著. 神经-模糊和软设计. 西安: 西安交通大学出版社. 2000. 122-126

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700