新型有机多胺配合物的合成、结构及抗微生物活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
配位化合物在金属酶的模拟,新材料的开发等方面具有重要的研究价值,近年来得到了长足的发展。本文以新型有机多胺配体为基础,合成了系列双核Cd(Ⅱ)穴合物、带羟乙基手臂的双核Cd(Ⅱ)环合物、一种新型三足式的Zn(Ⅱ)配合物及自组装有机多胺Cu(Ⅱ)配合物;采用元素分析、红外光谱、电喷雾质谱等分析手段对产物进行了谱学表征;通过X-射线衍射解析了八种化合物的单晶结构;通过琼脂扩散抑菌法测定了Cd(Ⅱ)配合物的毒性及其它配合物的抑菌性能;研究了两种Cu(Ⅱ)配合物的磁学性质及电化学性质。全文的主要内容如下:
     利用氨基乙腈及丙烯腈的亲核加成、氢化反应合成了不等臂有机多胺化合物2-氨基乙基-二(3-氨基丙基)胺,两步反应的收率分别为82%、71%;产物经多种谱学手段表征确证。通过X-射线衍射首次得到了中间产物二(2-氰基乙基)氨基乙腈的晶体结构。
     在高氯酸镉存在下,通过2-氨基乙基-二(3-氨基丙基)胺与2,6-二甲酰基-4-R-苯酚的[2+3]席夫碱缩合反应获得了六种穴合物[Cd_2L~n](当R=CH_3,CH_3O,C(CH_3)_3,F,Cl,Br,n=1,2,3,4,5,6),并通过元素分析、红外光谱、电子光谱、电喷雾质谱等分析手段对产物进行了谱学表征;实验中发现[Cd_2L~1]是不稳定的,在甲醇溶液中缓慢水解,经历了两个月的放置后,其中的一个Schiff碱C=N键的双键打开,并与一个甲醇分子发生加成反应,产生了一个新的双核Cd(Ⅱ)穴合物[Cd_2L~h]。X-射线衍射表明该晶体属三斜晶系,空间群P-1,Cd(1)周围有六个配位原子,构成了扭曲八面体的配位构型,Cd(2)处于七配位环境中,形成了带帽的八面体构型。利用细菌作为指示生物测定了以上七种Cd(Ⅱ)穴合物的毒性。
     通过2-[二(2-氨基乙基)氨基]乙醇和2,6-二甲酰基-4-R-苯酚钠的缩合得到了四种带羟乙基手臂的双核Cd(Ⅱ)环合物(当R=CH_3,CH_3O,F,Cl,n=7,8,9,10),通过元素分析、红外光谱、电子光谱、电喷雾质谱等分析手段对产物进行了谱学表征和研究。通过X-射线衍射解析了三种双核Cd(Ⅱ)环合物的结构。[Cd_2L~9]晶体属单斜晶系,空间群P2_1/c,两个Cd(Ⅱ)原子都处于七配位的带帽八面体构型中。[Cd_2L~7]和[Cd_2L~(10)]皆属三斜晶系,空间群P-1,晶体内皆存在着配位异构现象,是一类新型的配位复晶。这两个晶体分子中都包含了两个具有不同配位构型的阳离子,其中一个阳离子单元中两个Cd(Ⅱ)离子的配位环境与[Cd_2L~9]非常相似;而另一个阳离子单元,一个Cd(Ⅱ)原子处于七配位的带帽八面体构型中,另一个Cd(Ⅱ)原子处于六配位的八面体构型。利用细菌作为指示生物研究了双核Cd(Ⅱ)环合物的毒性。
     通过2-氨基乙基-二(3-氨基丙基)胺与吡啶-2-醛的缩合反应制备了一种新型三足式席夫碱单核Zn(Ⅱ)配合物[ZnL](ClO_4)_2,进行了谱学表征、晶体结构解析和抑菌活性
    
    中文摘要
    博士论文
    测定。Zn处于三个亚胺氮原子N(2)、N(4)、N(6)及三个毗睫环上的氮原子N(3)、N(5)、
    N(7)的六配位环境中,形成了扭曲的三角反棱柱(TAp)配位构型。琼脂扩散抑菌实验结
    果表明该配合物对四种对受试微生物都表现了较强的抑菌性能。
     通过分子自组装合成了一种桥联的双核铜配合物,该配合物的结构由元素分析、
    红外光谱、电喷雾质谱、热重分析和单晶X一射线衍射所确证。两个铜离子由一个4,4’-
    联毗咤分子桥联,每个Cu(II)离子处于N4O的五配位环境,并形成了两个扭曲的三角
    双锥配位构型。琼脂扩散抑菌实验结果表明该配合物对五种对受试微生物都表现了一
    定的抑菌性能。变温ESR及变温磁化率结果表明该配合物内存在着弱的铁磁相互作用。
    循环伏安测定显示了两个准可逆的氧化还原波。
     合成了一种新型的单核Cu(II)配合物,并通过元素分析、红外光谱、电喷雾质谱、
    热重分析和单晶X一射线衍射确证其结构。Cual)离子处于N4O的五配位环境,并形成
    扭曲的三角双锥配位构型。该配合物对五种对受试微生物都表现了一定的抑菌性能。
    变温ESR及变温磁化率结果表明该配合物内存在着弱的反铁磁相互作用。循环伏安测
    定显示了一个准可逆的氧化还原波。
    关键词:有机多胺,大环配合物,Schiff碱,自组装,晶体结构,配位异构,抑菌性能
Mimic study and new material exploitation of metal complexes have, for many years, been an active area of research, growing interest in which continues to expand. Based on new organic polyamine, a series of bicadmium (II) cryptates [Cd2Ln] (n = 1, 2, 3, 4, 5, 6), bicadmium (II) complexes [Cd2Ln] (n = 7, 8, 9, 10) with hydroxyethyl pendants, a new tripodal complex [ZnL](ClO4)2, and two self-assembly Cu(II) compounds were synthesized and characterized by spectral characterization such as elemental analysis, IR, ES-MS. A total of eight crystal structures of these compounds were determined by X-ray single crystal diffraction. The toxicity of [Cd2Ln] and the antimicrobial activity of other complexes were evaluated though agar diffusion method. Magnetism and electrochemical properties of the two Cu(II) complexes were also studied.A new inequilateral organic polyamine 2-aminoethyl-bi(3-aminopropyl)amine was synthesized by addition and hydrogenation reactions of aminoacetonitrile with acrylonitrile for the first time. The yields of the production in the two-step reactions are 82% and 71%, respectively. The structure of the title compound was confirmed by spectral characterization. The crystal structure of intermediate bi(2-nitrilethyl)aminoacetonitrile has been determined by single-crystal X-ray diffraction.Six bicadmium (II) cryptates [Cd2Ln] were synthesized by [2+3] Schiff base condensation of 2-aminoethyl-bi(3-aminopropyl)amine with sodium2,6-diformyl-4-R-phenolate (when R = CH3, CH3O, C(CH3)3, F, Cl, Br, n = 1, 2, 3, 4, 5, 6, respectively) in the presence of Cd2+. The structures were confirmed by spectral characterization such as elemental analysis, IR, ES-MS, electronic spectrum and electrical conductivity. However, [Cd2L1] were found not stable, its hydrolysis proceeds more slowly in the methanol solution. Two months later just one imine function was hydrolyzed and solvent addition, and no ring opening to yield cryptate [Cd2Lh], which crystallizes in the triclinic system, space group P-I. Cd(l) locates in a N4O2 coordination environment and forms a distorted tetragonal bipyramid, Cd(2) lies in a N4O3 coordination environment and possesses a monocapped-octahedral geometry. The toxicity of complexes was evaluated by testing antimicrobial activity against bacterial strands.Four bicadmium (II) complexes [Cd2Ln] with hydroxyethyl pendants were synthesized by [2+2] Schiff base condensation of 2-[bis(2-aminoethy)amino]ethanol with sodium 2,6-diformyl-4-R-phenolate (when R = CH3, CH3O, F, Cl, n = 7, 8, 9, 10, respectively) in the presence of Cd2+. The structures of them were confirmed by spectral characterization such as
    
    elemental analysis, IR, ES-MS, electronic spectrum and electrical conductivity. Crystals of complex [Cd2L9] were monoclinic, space group P21/c. Both Cd (II) atoms were hepta-coordinated with the coordination surrounding of monocapped-octahedral geometry. While [Cd2L7] and [CdaL10] crystals were isolated as triclinic, space group P-1. Coordination isomerism was found in the crystal structure. Coordination number and coordination geometry of Cd ions in one cationic unit of [Cd2L7] and [Cd2L10] are much similar to that of [Cd2L9], while in another cationic unit, one Cd atom is N3O4 hepta-coordinated, and another Cd atom lies in an N3O3 coordination environment and possesses a distorted octahedral geometry. The toxicity of complexes was evaluated by testing antimicrobial activity against bacterial strands.A new tripodal complex [ZnL](ClO4)2 was synthesized by Schiff base condensation of 2-aminoethyl-bi(3-aminopropyl)amine with 2-pyridinecarbaldehyde in the presence of Zn2+ and characterized by X-ray diffraction and spectral analysis. Zn atom rendered six-coordinate in a trigonal "antiprism geometry. The complex was valued for its antimicrobial activity against bacterial strands using the agar diffusion method. It was found to be active against the four test bacterial organisms.A bridged dinuclear Cu(II) complex was synthesized by molecular assembly method, the structure was confirmed by elemental analysis, IR, ES-
引文
1 游效曾,孟庆金,韩万书编.配位化学进展.第一版.北京:高等教育出版社,1998
    2 Li R, Mulder T A, Beckmann U, Boyd P D W, Brooker S. Dicopper(Ⅱ) and dinickel(Ⅱ) complexes of Schiff-base macrocycles derived from 5,5-dimethyl-1,9-diformyldipyrromethane. Inorg. Chim. Acta. 2004, 357 (11), 3360-3369
    3 Masoud S-N. Zeolite-encapsulation copper(Ⅱ) complexes with 14-membered hexaaza macrocycles: synthesis, characterization and catalytic activity. J. Molecular Catalysis A: Chemistry, 2004, 217, 87-92
    4 Masa M S, Mirkin C A, Stern C L, Zakharov L N, Rheingold A L. Binuclear Copper(Ⅰ) Macrocycles Synthesized via the Weak-Link Approach. Inorg. Chem. 2004, 43(15), 4693-4691
    5 Siegfried L, McMahon C N, Thomas A K, Palivan C, Gescheidt G. Tren centered tris-macrocycles as polytopic ligands for Cu(ⅱ) and Ni(ⅱ). J. Chem. Soc., Dalton Trans. 2004, 14, 2115-2514
    6 Kang S-G; Choi J-S, Nam K, Chun H, Kim K. Synthesis and characterization of new adjacent-bridged tetraaza macrocyclic compounds with C-alkyl groups: crystal structure and spectral properties of a copper(Ⅱ) complex. Inorg. Chim. Acta. 2004, 357 (9), 2783-2790
    7 Synthesis and biological activity of macrocyclic taxane analogues. Tarrant J G, Cook D, Fairchild C, Kadow J F, Long B H, Rose W C. Bioorganic & Medicinal Chemistry Letters. 2004, 14(10), 2555-2558
    8 Pedersen C J. Cyclic polyethers and their complexes with metal salts. J. Am. Chem. Soc. 1967, 89:7017-7018
    9 Pedersen C J. Cyclic polyethers and their complexes with metal salts. J. Am. Chem. Soc. 1967, 89:2495-2496
    10 Dietrich B, Lehn J M and Sauvage J P. Diaza-polyoxa-macrocycles et macrobicycles Tetrahedron Lett. 1969, 10:2885-2888
    11 Gokel G W, Dishong D M and Diamond C J. Lariat ethers. Synthesis and cation binding of macrocyclic polyethers possessing axially disposed secondary donor groups. J. Am. Chem. Soc. Chem. Commun. 1980:1053-1054
    12 Cram D J, Kaneda T, Lein G M and Helgeson R C. A spherand containing an enforced cavity that selectively binds lithium and sodium ions. J. Am. Chem. Soc. Chem. Commun. 1979: 948-949
    
    13 Cram D J, Kaneda T, Helgeson R C, Lein G M. Spherands - ligands whose binding of cations relieves enforced electron-electron repulsions. J. Am. Chem. Soc. 1979, 101: 6752 - 6754
    14 Pedersen C J. The Discovery of Crown Ethers (Noble Lecture). J. Angew. Chem. Int. Ed. Engl. 1988,27: 1021-1027
    15 Cram D J. The Design of Molecular Hosts, Guests, and Their Complexes (Nobel Lecture). J. Angew. Chem. Int. Ed. Engl. 1988,27: 1009-1020
    16 Lehn J-M. Supramolecular Chemistry - Scope and Perspectives Molecules, Supermolecules, and Molecular Devices (Nobel Lecture). J. Angew. Chem. Int. Ed. Engl. 1988,27: 89-112
    17 Adam K R, Lindoy L F, Smith R J, Anderegg G, Henrick K, McPartlin M and Tasker P A. Macrocyclic ligand control of the thermodynamic stabilities of nickel complexes containing 14- to 17-membered macrocyclic rings. X-Ray crystal structure of the trans nickel(II) bromide complex of the 16-membered ring. J. Am. Chem. Soc. Chem. Commun. 1979,812-813
    18 Armstrong L G, Grimsley P G, Lindoy L F, Lip H C, Norris V A, and Smith R J. Studies involving nitrogen-oxygen-donor macrocyclic ligands. 4. Interaction of nickel(II) with new 14- and 17-membered crown macrocycles. Inorg. Chem. 1978,17, 2350 - 2352
    19 King R B and Heckley P R. Lanthanide nitrate complexes of some macrocyclic polyethers. J. Am. Chem. Soc. 1974, 96, 3118 - 3123
    20 Coughlin P K, Lippard S J, Martin A E, and Bulkowski J E. Enhanced stability of the imidazolate-bridged dicopper(II) ion in a binucleating macrocycle. J. Am. Chem. Soc. 1980,102,7616-7617
    21 Pierre J -L, Chautemps P, Refaif S, Beguin C, Marzouki A E, Serratrice G, Saint-Aman E, and Rey P. Imidazolate-bridged dicopper(II) and copper-zinc complexes of a macrobicyclic ligand (cryptand). A possible model for the chemistry of Cu-Zn superoxide dismutase. J. Am. Chem. Soc. 1995, 117, 1965 - 1973
    22 Coughlin P K and Lippard S J. Magnetic, ESR, electrochemical, and potentiometric titration studies of the imidazolate-bridged dicopper(II) ion in a binucleating macrocycle. Inorg. Chem. 1984, 23, 1446 - 1451
    23 Drew M G B, Cairns C, Lavery A and Nelson S M. Binuclear copper(II) complexes of a 24-membered macrocyclic Schiff base ligand containing intramolecularly bound substrate molecules and ions: X-ray structure of a imidazolate complex. J. Am. Chem. Soc. Chem. Commun. 1980, 1122-1124
    
    24 Drew M G B, McCann M and Nelson S M. Bi-copper(I) and bi-copper(II) complexes of a 30-membered macrocyclic ligand: the inclusion of substrate molecules and the crystal and molecular structures of a hydroxo- and a imidazolato-complex. J. Chem. Soc, Dalton Trans. 1981: 1868-187 9
    25 Drew M G B, Hunter J, Marrs D J, Nelson J and Harding C. Cascade complexes of an octaaza cryptand: co-ordinated azide with linear geometry. J. Chem. Soc. Dalton Trans. 1992,3235-3243
    26 Inoue M B, Santacruz H, Inoue M, and Fernando Q. Binuclear Gd3+ Complex of a 34-Membered Macrocycle with Six Carboxymethyl Arms: X-ray Structures, Formation Constants, NMR, EPR, and 1H NMR Relaxivities. Inorg. Chem. 1999, 14: 1596 - 1602
    27 Ragunathan K G and Bharadwaj P K. Synthesis and characterisation of an octaazamacrobicyclic ligand using alkali-metal ions as templates; characterisation of a dicopper complex as the perchlorate salt. J. Chem. Soc. Dalton Trans. 1992: 1653-1657
    28 Chakraborty P and Chandra S K. Synthesis, structure, EPR and electrochemical studies of a μ2-phenoxo bridged manganese(II) dimer afforded by a binucleating macrocylic ligand . Polyhedron. 1994,13: 683-687
    29 Timken M D, Marritt W A, Hendrickson D N, Gagne R A, and Sinn E. Magnetic exchange interactions in binuclear transition-metal complexes of a binucleating clathrochelate ligand. Inorg. Chem. 1985,24: 4202 - 4208
    30 Nanda K K, Majumdar D, and Nag K. Synthesis of a Novel Octaamino Tetraphenol Macrocyclic Ligand and Structure of a Tetranuclear Nickel(II) Complex. Inorg Chem. 1994,33: 1581-1582
    31 Adam K R, Arshad S P H, Baldwin D S, Duckworth P A, Leong A J, Lindoy L F, McCool B J, McPartlin M, Tailor B A, and Tasker P A. Structure-Function Relationships in the Interaction of Zinc(II) and Cadmium(II) with an Extended Range of 16- to 19-Membered Macrocycles Incorporating Oxygen, Nitrogen, and Sulfur Donor Atoms. Inorg Chem. 1994, 33: 1194- 1200
    32 Branco L, Costa J, Delgado R, Drew M G B, Felix V, Goodfellow B J. Metal complexes of dipyridine hexaaza macrocycles. Structural differences between 18- and 20-membered macrocycles on complexation, J. Chem. Soc. Dalton Trans. 2002: 3539-3550
    33 Bernhardt P V and Lawrance G A. Complexes of polyaza macrocycles bearing pendent coordinating groups. Coord. Chem. Rev. 1990, 104,297-343
    34 Kimura E, Shiota T, Koike T, Shiro M, and Kodama M. A zinc(II) complex of 1,5,9-triazacyclododecane ([12]aneN3) as a model for carbonic anhydrase. J. Am. Chem. Soc. 1990, 112, 5805-5811
    
    35 Lehn J-M and Ziesse R. Polybipyridine ligands derived from acyclic and macrocyclic polyamines; synthesis and metal binding studies. J. Am. Chem. Soc. Chem. Commun. 1987,1292-1293
    36 Menif R and Martell A E. Oxygen insertion by a new tyrosinase model binuclear Cu1 macrocyclic complex. J. Am. Chem. Soc. Chem. Commun. 1989, 1521-1522
    37 Fenton D E and Lintvedt R L. Binuclear copper(II) complexes as mimics for type 3 coppers in metalloenzymes. 1. The importance of cooperative interactions between metals in the reversible multielectron transfer in bis(l,3,5-triketonato)dicopper(II) complexes. J. Am. Chem. Soc. 1978, 100, 6367 - 6375
    38 Echegoyen L, DeCian A, Fischer J, Lehn J-M. Cryptatium: A Species of Expanded Atom/Radical Ion Pair Type from Electroreductive Crystallization of the Macrobicyclic Sodium Tris(Bipyridine) Cryptate. J. Angew. Chem. Int. Ed. Engl. 1988, 30: 838-840
    39 Balzani V, Ballardini R, Bolletta F, Gandolfi M T, Juris A, Maestri M, Manfrin M F, Moggi L and Sabbatini N. From a molecular to a supramolecular photochemistry. Coord. Chem.Rew. 1993,125:75-88
    40 Sabbatini N and Guardigli M. Lehn J-M. Luminescent lanthanide complexes as photochemical supramolecular devices. Coord. Chem. Rew. 1993, 125: 201-228
    41 Fainerman-Melnikova M, Nezhadali A, Rounaghi G, McMurtrie J C, Kim J, Gloe K, Langer M, Lee S S, Lindoy L F, Nishimura T, Park K-M, Seo J. Metal ion recognition via selective detuning. The interaction of selected transition and post-transition metal ions with a mono-N-benzylated O2N3-donor macrocycle and its xylyl-bridged ring analogue. J. Chem. Soc. Dalton Trans. 2004: 122-128
    42 Larsen J, Rasmussen B S, Hazell R G, Skrydstrup T. Preparation of a novel diphosphine palladium macrocyclic complex possessing a molecular recognition site. Oxidative addition studies. Chem. Commun. 2004: 202-203
    43 Gao J, Reibenspies J H, Martell A E. Selective recognition of thymidylylthymidine (TpT) and antitumor effects of a macrocyclic dizinc(II) complex. Org. Biomol. Chem. 2003: 4242-4247
    44 Gao J, Martell A E. Self-assembly of achiral and chiral macrocyclic ligands: synthesis, protonation constants, conformation and asymmetric catalysis. Org. Biomol. Chem. 2003: 2795-2800
    45 Sabbatini N, Dellonte S, Ciano M, Bonazzi A and Balzani V. Spectroscopic and photophysical properties of the Europium (III) Cryptate [Eu3+ 2.2.1]. Chem. Phys. Lett. 1984,107:212-216
    
    46 Comparone A, Kaden T A. Metal Complexes of Macrocyclic Ligands, Part XLVII Copper(II) and Nickel(II) Complexes of 'trans'-Difunctionalized Tetraaza Macrocycles. Helv. Chim. Acta. 1998, 81: 1765-1772
    47 Aime S, Gianolio E, Corpillo D, Cavallotti C, Palmisano G, Sisti M, Giovenzana G B, Pagliarin R. Designing Novel Contrast Agents for Magnetic Resonance Imaging. Synthesis and Relaxometric Characterization of three Gadolinium(III) Complexes Based on Functionalized Pyridine-Containing Macrocyclic Ligands. Helv. Chim. Acta. 2003, 86: 615-632
    48 Gao J, Martell A E, Reibenspies J. Molecular Recognition of an Amino Acid by a Novel Macrocyclic Monoxo-tetraamine and Its Znll Complex. Org. Biomol. Chem. 2003, 86: 196-203
    49 Cole E, Copley R C B, Howard J A K, Parker D, Ferguson G, Gallagher J F, Kaitner B, Harrison A and Royle L. 1,4,7-Triazacyclononane-1,4,7-triyltrimethylenetris-(phenylphosphinate) enforces octahedral geometry: crystal and solution structures of its metal complexes and comparative biodistribution studies of radiolabelled indium and gallium complexes. J. Chem. Soc. Dalton Trans. 1994: 1619-1631
    50 Parker D. Tumour targeting with radiolabelled macrocycle antibody conjugates. Chem. Soc. Rev. 1990,19: 271-293
    51 Ballardini R, Balzani V, Fabio A D, Gandolfi M T, Becher J, Lau J, Nielsen M B, Stoddart J F. Macrocycles, pseudorotaxanes and catenanes containing a pyrrolo-tetrathiafulvalene unit: absorption spectra, luminescence properties and redox behavior. New J. Chem. 2001: 293-298
    52 Gao E-Q, Yang G-M, Liao D-Z, Jiang Z-H, Yan S-P, Wang G-L. Synthesis and Magnetic Properties of New Tetranuclear Copper(II)-Nickel(II) Complexes of Macrocyclic Oxamides. Journal of Chemical Research. 1999: 278-279
    53 Altuntas Z , Hamuryudan B E, Bekaroglu Ozer. Synthesis and Characterization of Phthalocyanines Containing Four 11-Membered Triaza Macrocycles, Journal of Chemical Research, 1999,702-703
    54 Wolcan E, Villata L, Capparelli A L, Feliz M R. Temperature effects on the quenching of the 5D0→7F2 emission of Eu(6,6,7,7,8,8,8-heptafluoro-2,2-dimethyl-3,5-octanedionate)3 by a Cu(II) macrocycle. Photochemical & Photobiological Sciences. 2004: 322-327
    
    55 Botta M, Quici S, Pozzi G, Marzanni G, Pagliarin R, Barra S, Crich S G. NMR relaxometric study of new GdIII macrocyclic complexes and their interaction with human serum albumin. Org. Biomol. Chem. 2004: 570-577
    56 Ma C, Han Y, Zhang R, Wang D. Self-assembly of diorganotin(IV) moieties and 2-pyrazinecarboxylic acid: syntheses, characterizations and crystal structures of monomeric, polymeric or trinuclear macrocyclic compounds. J. Chem. Soc. Dalton Trans. 2004: 1832-1840
    57 Yoon I, Goto M, Shimizu T, Lee S S, Asakawa M. Synthesis and characterisation of macrocyclic palladium(II) sodium(I) complexes: generation of an unusual metal-mediated electron delocalisation. J. Chem. Soc, Dalton Trans. 2004: 1513-1515
    58 Siegfried L, McMahon C N, Kaden T A, Palivan C, Gescheidt G. Tren centered tris-macrocycles as polytopic ligands for Cu(II) and Ni(II). J. Chem. Soc, Dalton Trans. 2004:2115-2124
    59 Bernhardt P V, Creevey N L. Electrochemical anion recognition with ferrocene functionalised macrocycles, J. Chem. Soc, Dalton Trans. 2004: 914-920,
    60 Bazzicalupi C, Bencini A, Berni E, Bianchi A, Borsari L, Giorgi C, Valtancoli B, Lodeiro C, Lima J C, Parola A J, Pina F. Protonation and coordination properties towards Zn(II), Cd(II) and Hg(II) of a phenanthroline-containing macrocycle with an ethylamino pendant arm. J. Chem. Soc, Dalton Trans. 2004: 591-597
    61 Pope S J A, Kenwright A M, Boote V A, Faulkner S. Synthesis and luminescence properties of dinuclear lanthanide complexes derived from covalently linked macrocyclic ligands. J. Chem. Soc, Dalton Trans. 2003: 3780-3784
    62 Ma C, Jiang Q, Zhang R, Wang D. Synthesis and crystal structure characterization of a novel eighteen-tin-nuclear macrocyclic complex. J. Chem. Soc. Dalton Trans., 2003: 2975-2978
    63 Funston A M, Ghiggino K P, Grannas M J, McFadyen W D, Tregloan P A. Synthesis, structural studies and photochemistry of cobalt(III) complexes of anthracenylcyclam macrocycles. J. Chem. Soc, Dalton Trans. 2003: 3704-3712
    64 Beckmann U, Brooker S, Depree C V, Ewing J D, Moubaraki B, Murray K S. Dicobalt(II) complexes of a triazolate-containing Schiff-base macrocycle: synthesis, structure and magnetism. J. Chem. Soc, Dalton Trans. 2003: 1308-1313
    65 Stability and structure of mono- and dinuclear Cu(II), Ni(II) and Zn(II) complexes of pyrazole and triazole bridged bis-macrocycles. Raid M, Neuburger M, Kaden T A. J. Chem. Soc, Dalton Trans. 2003: 1292-1298
    
    66 Anda C, Bazzicalupi C, Bencini A, Bianchi A, Fomasari P, Giorgi C, Valtancoli B, Lodeiro C, Parola A J, Pina F. Cu(II) and Ni(II) complexes with dipyridine-containing macrocyclic polyamines with different binding units. J. Chem. Soc, Dalton Trans. 2003: 1299-1307
    67 Herrera A M, Staples R J, Kryatov S V, Nazarenko A Y, Rybak-Akimova E V. Nickel(II) and copper(II) complexes with pyridine-containing macrocycles bearing an aminopropyl pendant arm: synthesis, characterization, and modifications of the pendant amino group. J. Chem. Soc, Dalton Trans. 2003: 846-856
    68 Atkins A J, Black D, Finn R L, Marin-Becerra A, Blake A J, Ruiz-Ramirez L, Li W-S, Schroeder M. Synthesis and structure of mononuclear and binuclear zinc(II) compartmental macrocyclic complexes. J. Chem. Soc, Dalton Trans. 2003: 1730-1737
    69 Liu J, Zhang H, Chen C, Deng H, Lu T, Ji L. Interaction of macrocyclic copper(II) complexes with calf thymus DNA: effects of the side chains of the ligands on the DNA-binding behaviors. J. Chem. Soc, Dalton Trans. 2003: 114-119
    70 Depree C V, Beckmann U, Heslop K, Brooker S. Monomeric, trimeric and polymeric assemblies of dicopper(II) complexes of a triazolate-containing Schiff-base macrocycle. J. Chem. Soc, Dalton Trans. 2003: 3071-3081
    71 Li S-A, Li D-F, Yang D-X, Li Y-Z, Huang J, Yu K-B, Tang W-X. A novel imidazolate-bridged heterodinuclear Cu(II)Zn(II) complex derived from a unique macrocyclic ligand with two hydroxyethyl pendants. J. Chem. Soc, Chem. Commun. 2003:880-881
    72 Wang R, Hong M, Luo J, Cao R, Weng J. A new type of three-dimensional framework constructed from dodecanuclear cadmium(II) macrocycles. Chem. Commun. 2003: 1018-1019
    73 Menif R, Reibenspies J and Martell A E. Synthesis, protonation constants, and copper(II) and cobalt(II) binding constants of a new octaaza macrobicyclic cryptand: (MX)3(TREN)2. Hydroxide and carbonate binding of the dicopper(II) cryptate and crystal structures of the cryptand and of the carbonato-bridged dinuclear copper(II) cryptate. Inorg. Chem. 1991, 30: 3446 - 3454
    74 鲁天保,胡宏纹.[2+2]大环Schiff碱的非模板法合成.南京大学学报,自然科学版.1989,25(1):64-67
    75 Hurley T J, Robinson M A, and Trotz S I. Complexes derived from 1,3-diiminoisoindoline-containing ligands. II. Stepwise formation of nickel phthalocyanine. Inorg. Chem. 1967, 6: 389 - 392
    
    76 Lindiy L F, Bush D H. Preparative Inorganic Reactions, Wiley - Intersciencs. New York. 1971
    77 Nelson S M, Knox C V, McCann M and Drew M G B. Metal-ion-controlled transamination in the synthesis of macrocyclic Schiff-base ligands. Part 1. Reactions of 2,6-diacetylpyridine and dicarbonyl compounds with 3,6-dioxaoctane-l,8-diamine. J. Chem. Soc, Dalton Trans. 1981: 1669-1678
    78 Adams H, Bailey N A, Fenton D E, Good R J, Moody R and Barbarin COR. Complexes of ligands providing endogenous bridges. Part 1. The syntheses and crystal structures of barium and lead(II) complexes of macrocyclic Schiff bases derived from heterocyclic dicarbonyls and 1, n-diamino-n'-hydroxyalkanes (n,n'= 3,2; 4,2; or 5,3). J. Chem. Soc, Dalton Trans. 1987: 207-219
    79 Adams H, Bailey N A, Bertrand P, Collinson S R, Fenton D E and Kitchen S J. Unexpected ring contraction in the barium-assisted cyclocondensation of 2,6-diformylpyridine and N,N-bis(2-aminoethyl)-2-phenylethylamine. J. Chem. Soc, Dalton Trans. 1996: 1181-1189
    80 Wu M, Fu E and Wu C. Barium complexes of Schiff base macrocycles incorporating a difurylpropane unit and bearing a pendant arm. Inorg. Chem. Acta. 1995, 231: 217-219
    81 Pedersen C J, Frensdorff H K. Macrocyclic Polyethers and Their Complexes. Angew. Chem. Int. Ed. 1972,11:16-25
    82 Gou S and Fenton D E. Novel sodium template approach for preparing tetraimine macrocyles of 2,6-diformyl-4-methylphenol and diamino derivatives . Inorg. Chim. Acta. 1994,223: 169-172
    83 Gou S, Zhou K, Zheng Q, Fang J. Electrospray ionization mass spectral investigations on multi-nuclear complexes of an azacryptand. J. Coord. Chem. 1996, 40, 103-108
    84 Curry J D and Busch D H. The Reactions of Coordinated Ligands. VII. Metal Ion Control in the Synthesis of Chelate Compounds Containing Pentadentate and Sexadentate Macrocyclic Ligands. J. Am. Chem. Soc. 1964: 592 - 594
    85 Creaser I I, Harrowfield J M, Herlt A J, Sargeson A M, Springborg J, Geue R J, and Snow M R. Sepulchrate: a macrobicyclic nitrogen cage for metal ions. J. Am. Chem. Soc. 1977,99:3181-3182
    86 Dietrich-Buchecker C O and Sauvage J P. Interlocking of molecular threads: from the statistical approach to the templated synthesis of catenands. Chem. Rev. 1987, 87: 795 -810
    87 Chave P and Honeybourne C L. A template synthesis of metal complexes of macrocyclic ligands. Chem. Commun. 1969:279-280
    88
    
    88 Becket M, Schindler S, Eldik R. Dioxygen Binding to a Macrocyclic Dinuclear Copper(Ⅰ) Monooxygenase Model System. Ambient and High Pressure Kinetics. Inorg. Chem. 1994, 33:5370-5371
    89 Ngwenya M P, Martell A E and Reibenspies J. Template synthesis of a novel macrobicyclic ligand and the crystal structure of its unique dinuclear copper(Ⅰ) complex. J. Chem. Soc., Chem. Commun. 1990:1207-1208
    90 Fenton D E and Vigato P A. Macrocyclic Schiff base complexes of lanthanides and actinides. Chem. Soc. Rev. 1988, 17:69-91
    91 罗勤慧.铜锌超氧化物歧化酶的模拟化学研究.高等学校化学学报.1997,18:1012-1018
    92 陈忠宁,毛宗万,唐雯霞.铜锌超氧化物歧化酶的结构、机理及其模拟研究进展.化学通报.1993,(6):1-8
    93 石双群,刘志贤.超氧化物歧化酶及其模型配合物.河北师范大学学报(自然科学版).1999,23(1):102-105
    94 McCord J M and Fridovich I. Superoxide Dismutase. An enzymatic function for erythocuprein (hemocuprein). J. Biol. Chem. 1969, 244:6049-6055
    95 Tainer I A, Getzoff E D, Richardon J S. Structure and mechanism of copper, zinc superoxide dismutase. Nature. 1983, 306:284
    96 Bertini I, Banci L and Luchinat M P. Spectroscopic studies on Cu_2Zn_2SOD: a continuous advancement of investigation tools. Coord. Chem. Rev. 1990, 100: 67-103
    97 Rabani J, Klug-Roth D, and Lilie J. Pulse radiolytic investigations of the catalyzed disproportionation of peroxy radicals. Aqueous cupric ions. J. Phys. Chem. 1973, 77: 1169-1175
    98 Klug-Roth D and Rabani J. Pulse radiolytic studies on reactions of aqueous superoxide radicals with copper(Ⅱ) complexes. J. Phys. Chem. 1976, 80:588-591
    99 Klug-Roth D, Fridovich I, and Rabani J. Pulse radiolytic investigations of superoxide catalyzed disproportionation. Mechanism for bovine superoxide dismutase. J. Am. Chem. Soc. 1973, 95:2786-2790
    100 Goldstein S, Czapski G, and Meyerstein D. A mechanistic study of the copper(Ⅱ)-peptide-catalyzed superoxide dismutation. A pulse radiolysis study. J. Am. Chem. Soc. 1990, 112: 6489-6492
    101 Amar C and Foos E V. Catalytic activity studies of some copper(Ⅱ)-histidine-containing dipeptide complexes on aqueous superoxide ion dismutation. J. Inorg. Biochem. 1982, 17:313-323
    10
    
    102 沈孟长,陈哓青,罗勤慧.若干铜配合物歧化超氧离子的活性.生物化学与生物物理进展.1987,(4):39-46
    103 Davis W M, Dewan J C, and Lippard S J. Synthesis, structure, and properties of an imidazolate-bridged copper(Ⅱ)-cobalt(Ⅲ) complex. Inorg. Chem. 1981, 20:2928-2932
    104 Lu Q, Luo Q H, Dai A B, Zhou Z Y and Hu G Z. The synthesis and crystal structure of imidazolate-bridged [Cu(tern)(im)Zn(tren)] (ClO_4)_3MeOH (tren=tris(2-aminoethyl)amine; im=imidazolate). J. Am. Chem. Soc. Chem. Commun. 1990: 1429-1430
    105 Young C-L, Dewan J C, Lilenthal H R, and Lippard S J. Electron spin resonance, magnetic, and x-ray crystallographic studies of a binuclear, imidazolate bridged copper(Ⅱ) complex, [(TMDT)2Cu2(im)(ClO4)2](ClO4). J. Am. Chem. Soc. 1978, 100: 7291-7300
    106 Coughlin P K, Lippard S J, Martin A E, and Bulkowski J E. Enhanced stability of the imidazolate-bridged dicopper(Ⅱ) ion in a binucleating macrocycle. J. Am. Chem. Soc. 1980, 102: 7616-7617
    107 Sato M, Ikeda M, Fukuda M, Ikeda T and Nakaya J-I. Formation and scission of the imidazolate-bridge linkage in binuclear copper(Ⅱ) complex with glycylglycine as a function of pH in aqueous solution. Inorg. Chim. Acta. 1987, 136:47-52
    108 Sato M, Nagae S, Uehara M and Nakaya J. Properties of imidzolate bridged copper(Ⅱ) Zinc(Ⅱ) complexes. J. Am. Chem. Soc. Chem. Commun. 1984:1661-1662
    109 Pierre J-L, Chautemps P, Refaif S, Beguin C, Marzouki A E, Serratrice G, Saint-Aman E, and Rey R Imidazolate-bridged dicopper(Ⅱ) and copper-zinc complexes of a macrobicyclic ligand (cryptand). A possible model for the chemistry of Cu-Zn superoxide dismutase. J. Am. Chem. Soc. 1995, 117:1965-1973
    110 刘杰.镉的毒性和毒理学研究进展.中华劳动卫生职业病杂志,1998,16(1),2-4
    111 李德发,张丽英,任继平.镉毒性研究进展.动物营养学报,2003,15(1),1-6
    112 刘爱萍.镉的毒性损伤作用与自由基.中国工业医学杂志,1998,11(4),221-223
    113 王俊,张义生.化学污染物与生态效应.北京:中国环境科学出版社,1993
    114 谢黎虹,许梓.重金属镉对动物及人类的毒性研究进展.浙江农业学报,2003,15(6),376-381
    115 Lucis O J, Aterman K. Tumorigenesis by cadmium. Ontology. 1972, 53-61
    116 Prozialeck W C. Evidence That E-Cadherin May Be a Target for Cadmium Toxicity in Epithelial Cells. Toxicology and Applied Pharmacology. 2000, 164:231-249
    11
    
    117 Powlin S S, Keng P C, Miller R K. Toxicity of Cadmium in Human Trophoblast Cells (JAr Choriocarcinoma): Role of Calmodulin and the Calmodulin Inhibitor, Zaldaride Maleate. Toxicology and Applied Pharmacology. 1997, 144, 225-234
    118 Aoke A, Hoffer A. Reexamination of the lesion in rat testes caused by cadmium. Biol. Reprod. 1978, 579-591
    119 Mason K, Brown J, Young J, Nesbit R. Cadmium-induced injury of the rat testis. Anat. Res. 1964, 135-148
    120 Ismail K M F,Yusof N,Khan A P M,Majid G.铜及其配合物在生物体系中的作用.无机化学学报.1998,14(1):29-39
    121 王兴坡,赵全芹,王德凤,席延伟.缩氨基硫脲衍生物与Cu~(2+)、Co~(2+)、Ni~(2+)配合物的制备、表征及抑菌活性.中国药科大学学报.1997,28(3):180-182
    122 王兴坡,赵全芹,柳翠英,席延伟,王德风,袁琳.苄胺衍生物的Cu(Ⅱ)配合物研究.华西药学杂志.1997,12(1):1-3
    123 Patel K N, Patel N H, Patel K M, Patel C R, Patel M N. Synthesis, characterization and antimicrobial activities of some mixed_ligand complexes. Synth. React. Inorg. Met._Org. Chem. 2000, 30 (8): 1617-1627
    124 Dholakiya P P, Patel M N. Preparation, magnetic, spectral and biocidal studies of some transition metal complexes with 3,5_dibromosalicylideneaniline and neutral bidentate ligands. Synth. React. Inorg. Met. Org. Chem. 2002, 32 (4): 819-829
    125 West D X, Ahrweiler P M, Ertem G, Scovill J P, Klayman D L, Flippen-Anderson J L, Gilardi R, George C, Pannell L K. Iron(Ⅲ) complexes of some. Thiosemicarbazones derived from 2-acetylpyridine. Its 6-methyl derivative and its N-oxide. Transit. Met. Chem. 1985, 10:264-270
    126 Chattopadhyay S K, Hossain M, Ghosh S, Guha A K. Ligational behaviour of two biologically active N-S donors towards cobalt(Ⅲ), iron(Ⅲ), iron(Ⅱ) and rhodium(Ⅲ), Transit. Met. Chem. 1990, 15:470-473
    127 Scovill J P, Klayman D L, Franchino C F. Acetylpyridine thiosemicarbazones. 4. Complexes with transition metals as antimalarial and antileukemie agents. J. Med. Chem. 1982, 25:1261-1264
    128 Anjaneyulu Y and Rao R P. Synthesis, characterization and antimicrobial activities of some ternary complexes of Cu(Ⅱ) with acetylacetone and various salicyclic acids. Synth. React. Inorg. Met._Org. Chem. 1986, 16(2): 257-272
    129 Hodnett E M, Drnn W J. Structure-antiturnor activity correlation of some Schiff base. J. Med. Chem. 1970, 13(4): 768-770
    13
    
    130 Raman N, Kulandaisamy A, Jeyasubramanian K. Synthesis, spectral, redox, and antimicrobial activities of Schiff base transition metal(Ⅱ) complexes derived from 4-aminoantipyrine and benzil. Synth. React. Inorg. Met._Org. Chem. 2002, 32(9): 1583-1610
    131 张建民,李瑞芳,刘树祥.过渡金属席夫碱配合物的稳定性及其杀菌活性.无机化学学报.1999,15(4):493-496
    132 柳翠英,赵全芹,李忠,于爱华,刘雪英.Cu(Ⅱ)的水杨醛及其衍生物缩乙醇胺的合成与抑菌活性.中国现代应用药学.1997,14(2):24-27
    133 赵全芹,孙中矾,柳翠英,王德凤.新型抑菌剂3,5-二溴,N(2-羟基乙基)水杨醛亚胺Schiff碱的合成.中国新药杂志.1998,793):236
    134 柳翠英,李忠,赵全芹.铜(Ⅱ)的5-氯 N-亚水杨基乙醇胺螯合物的合成与抑菌活性.华西药学杂志,1997,12(3):1744
    135 Hodnett E M, Drnn W J. Cobalet derivatives of Schiff base of aliphatic amines as antitumor agents. J. Med. Chem. 1972, 15(3): 339-341
    136 赵全芹,柳翠英,孟凡德.3,5-二溴水杨醛Schiff碱及其铜(Ⅱ)配合物的合成和抑菌活性.化学试剂.2001,23(1):30-31
    137 杨频.生物无机化学导论.北京,科学出版社.1991
    138 徐延瓞.配位化学在工业中的应用.北京:高等教育出版社.1989
    139 许兴友.若干多氮穴合物和环合物的研究.南京大学,博士论文,1996
    140 Fanshawe R L and Blackman A G. Synthesis of the New Asymmetric Tripodal Amine Ligand abap: Crystal Structure of [Co(abap)(O_2NO)](ClO_4)_2 and Stability and Reactivity of [Co(abap)(OH_2)_2]~(3+) toward Phosphate Esters. Inorg. Chem. 1995, 34: 421-423
    141 Dittler-Klingemann A M and and Hahn F E. Trigonal-Bipyramidal Copper(Ⅱ) Complexes with Symmetric and Unsyrnmetric Tripodal Tetramine Ligands. Inorg Chem. 1996, 35: 1996-1999
    142 Software Packages SMART and SAINT, Siemens Analytical X-ray Instrument Inc., Madison, WI, 1996.
    143 Xu A W, Cai Y P, Su C Y, Liu H K. Tris(2-cyanoethyl)amine. Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 2000, C56, e262.
    144 Garcia-Espana E, Micheloni M, Paoletti P, Bianchi A. Thermodynamic studies on equilibria between the branched hexaamine N,N,N',N'-tetrakis(3-aminopropyl)ethylenediamine (tapen) and hydrogen manganese(II), iron(II), cobalt(II), nickel(II), copper(II), and zinc(II) ions. Inorg. Chem. 1986,25: 1435-1438
    
    145 Song B, Reuber J, Ochs C, Hahn F E, Lugger T, and Orvig C. Effects of Sequential Replacement of -NH2 by -OH in the Tripodal Tetraamine Tren on Its Acidity and Metal Ion Coordinating Properties. Inorg. Chem. 2001, 40: 1527 - 1535
    146 Mosch-Zanetti N C, Kopke S, Herbst-Irmer R, and Hewitt M. Unsymmetrical Tren-Based Ligands: Synthesis and Reactivity of Rhenium Complexes. Inorg. Chem. 2002,41:3513-3520
    147 姚蒙正,程侣柏,王家儒编.精细化工产品合成原理.北京,中国石化出版社.2000
    148 Pilkington N H, Roson R. Complexes of binucleating ligands III. Novel complexes of a macrocyclic binucleating ligand. Aust. J. Chem. 1970,23: 2225-2236
    149 Zanello P, Tamburini S and Alessandro P, Mazzocchin V A. Syntheses, structure and electrochemical characterization of homo- and heterodinuclear copper complexes with compartmental ligands. Coord. Chem. Rev. 1987, 77: 165-273
    150 Vigato P A, Tamburini S and Fenton D E. The activation of small molecules by dinuclear complexes of copper and other metals. Coord. Chem. Rev. 1990, 106: 25-170
    151 Menif R, Martell A E, Squattrito P J, and Clearfield A. New hexaaza macrocyclic binucleating ligands. Oxygen insertion with a dicopper(I) Schiff base macrocyclic complex. Inorg. Chem. 1990,29: 4723 - 4729
    152 McKee V and Tandon S S. X-Ray crystal structure and some properties of a tetranuclear, mixed-valence manganese complex of a macrocyclic ligand. J. Chem. Soc. Chem. Commun. 1988,1334
    153 Timken M D, Marritt W A, Hendrickson D N, Gagne R A, and Sinn E. Magnetic exchange interactions in binuclear transition-metal complexes of a binucleating clathrochelate ligand. Inorg. Chem. 1985, 24: 4202 - 4208
    154 Drew M G B, Howarth O W, Morgan G G and Nelson J. Proton transfer in a phenol-based compartmental cryptate; solution and solid-state structural studies. J. Chem. Soc. Dalton Trans, 1994: 3149
    155 Chakraborty P and ChandraS K. Synthesis, structure, EPR and electrochemical studies of a μ2-phenoxo bridged manganese(II) dimer afforded by a binucleating macrocylic ligand. Polyhedron. 1994, 13: 683-687
    156 Xin-You Xu, Jian-Ling Chen, Qin-Hui Luo, Meng-Chang Shen, Xiao-Yun Huang and Quiang-Jin Wu. Synthesis and crystal structure of a new phenoxy oxygen bridged binuclear cadmium(Ⅱ) polyaza cryptate. Polyhedron. 1997, 16:223-227
    15
    
    157 Xu X Y, Luo Q H, Shen M C, Huang X Y, Wu Q J. Synthesis of μ2-Phenoxy-Bridged Binuclear Cadmium(Ⅱ) Cryptates and X-ray Cryatal Structure of One of Them. Polyhedron. 1997, 16(8): 1301-1305
    158 Xu X Y, Wang Z L, Luo Q H, Shen M C, Zhang N X, Zhou X G, Zhou Z Y. Synthesis and X-ray Cryatal Structure of a New μ2-Phenoxy Oxygen Binuclear Cadmium(Ⅱ) Cryptate. J. Coor. Chem. 1998, 43:81-88
    159 Xu X Y, Ma W X, Chen H, Liu W W, Zhang M X, Liu Q L, Zhang Z D. Synthesis and structure of a new binuclear cadminum(Ⅱ) cryptate. J. Coor. Chem 2000, 50:43-50
    160 Gagne R R, Spiro C L, Smith T J, Hamann C A, Thies W R, and Shiernke A D. The synthesis, redox properties, and ligand binding of heterobinuclear transition-metal macrocyclic ligand complexes. Measurement of an apparent delocalization energy in a mixed-valent copper(Ⅰ)copper(Ⅱ) complex. J. Am. Chem. Soc. 1981, 103:4073-4081
    161 胡跃飞,胡宏纹.4-取代-2,6-二羟甲基苯酚的选择氧化.化学学报.1987,45:613-615
    162 张江润.含氮、硫杂环配体及其配合物的合成及结构研究.南京理工大学,博士论文.2002
    163 Geary W J. The use of conductivity measurements in organic solvents for the characterization of coordination compounds. Coord. Chem. Rev. 1971, 7:81-122
    164 Yu S Y, Luo Q H, Shen M C, Huang X Y, Yang W H and Zhang Z. Syntheses, spectroscopy and crystal structure of several binuclear silver(Ⅰ) cryptates. Inorg. Chim. Acta. 1994, 223:181-186
    165 Dole M, Mack L L, and Hines R L, Mobley R C, Ferguson L D, Alice M B. Molecular Beams of Macroions. J. Chem. Phys. 1968, 49, 2240-2249
    166 Mack L L, Kralik P, Rheude A, and Dole M. Molecular Beams of Macroions. Ⅱ J. Chem. Phys. 1970, 52:4977-4986
    167 Yamashita M and Fenn J B. Electrospray ion source. Another variation on the free-jet theme. J. Phys. Chem. 1984, 88:4451-4459
    168 魏先文,徐正.电喷雾电离质谱在化学中应用新进展.有机化学.1999,19:97-103
    169 Fenn J B, Mann M. Electrospray ionization for mass spectrometry of large biomolecules. Science, 1989, 246:64-72
    170 Smith R D, Loo J A, Edmonds C G, Barinaga C J, and Udseth H R. New developments in biochemical mass spectrometry: electrospray ionization. Anal. Chem. 1990, 62: 882 - 899
    
    171 Loo J A, Loo R R O, Light K J, Edmonds C G, and Smith R D. Multiply charged negative ions by electrospray ionization of polypeptides and proteins. Anal. Chem. 1992,64:81-88
    172 Dupont A, Gisselbrecht J-P, Leize E, Wagner L and Dorsselaer A V. Electrospray mass spectrometry of electrochemically ionized molecules: Application to the study of fullerenes. Tetrahedron Lett. 1994, 35: 6083-6086
    173 Wilson S R, and Lu Q. Electrospray MS studies of C60 Diels-Alder chemistry: Characterization of a C60 Adduct with the Danishefsky Diene. Tetrahedron Lett. 1993, 34: 8043-8046
    174 Wang Y, Cao J, Schuster D I, Wilson S R. A Superior Synthesis of [6,6]-Methanofullerenes: The Reaction of Sulfonium Ylides with C60. Tetrahedron Lett. 1995,36:6843-6846
    175 Katta V, Chowdhury S K, and Chait B T. Electrospray ionization: a new tool for the analysis of ionic transition-metal complexes. J. Am. Chem. Soc. 1990, 112: 5348 -5349
    176 Sam J W, Tang X-J, and Peisach J. Electrospray Mass Spectrometry of Iron Bleomycin: Demonstration That Activated Bleomycin Is a Ferric Peroxide Complex. J. Am. Chem. Soc. 1994,116: 5250-5256
    177 Lipshutz B H, Stevens K L, James B, Pavlovich J G, and Snyder J P. Analyses of Anionic Cu(I) Complexes via Electrospray Mass Spectrometry. J. Am. Chem. Soc. 1996,118:6796-6797
    178 Arakawa R, Matsuo T, Nozaki K, Ohno T, and Haga M. Analysis of Multiply Charged Ions of Ruthenium(II) Tetranuclear Complexes by Electrospray Ionization Mass Spectrometry. Inorg. Chem. 1995, 34: 2464-2467
    179 Henderson W, Miles C O and Nicholson B K. Identification of zinc and cadmium complexes of the mycotoxin sporidesmin A by electrospray mass spectrometry. J. Chem. Soc, Chem. Commun. 1995: 889-891
    180 Lau T-C, Wang J, Siu K W M and Guevremont R. Electrospray tandem mass spectrometry of oxo complexes of chromium, manganese and tuthenium. J. Chem. Soc, Chem. Commun. 1994: 1489-1489
    181 Lipshutz B H, Stevens K L, James B, Pavlovich J G, and Snyder J P. Analyses of Anionic Cu(I) Complexes via Electrospray Mass Spectrometry. J. Am. Chem. Soc. 1996,118:6796-6797
    
    182 Baca M and Kent S B H. Direct observation of a ternary complex between the dimeric enzyme HIV-1 protease and a substrate-based inhibitor. J. Am. Chem. Soc. 1992, 112: 3992 - 3993
    183 Aplin R T, Robinson C V, Schofield C J and Westwood N J. Does the observation of noncovalent complexes between biomolecules by electrospray ionisation mass spectrometry necessarily reflect specific solution interactions? J. Chem. Soc, Chem. Commun. 1994:2415-2418
    184 Bates P S, Parker D and Green B N. Characterisation of the complexation behaviour of lipophilic cyclodextrins by electrospray mass spectrometry. J. Chem. Soc, Chem. Commun. 1993:693-695
    185 Marquis-Rigault A, Dupont-Gervais A, Baxter P N W, Dorsselaer A V, and Lehn J-M. Self-Assembly of an 11-Component Cylindrical Inorganic Architecture: Electrospray Mass Spectrometry and Thermodynamic Studies. Inorg. Chem. 1996, 35: 2307-2310
    186 Colton R, Mitchell S, Traeger J C. Interactions of some crown ethers, cyclam and its tetrathia analogue with alkali, alkali earth and other metal ions: an electrospray mass spectrometric study. Inorg. Chim. Acta. 1995,231, 87-93
    187 Stephen F R, Margaret M S, Larry A H, Rodney J G and Alan M S. An electrospray mass spectrometry study of some metal-ion cage complexes. J. Chem. Soc. Dalton Trans., 1996, 4417-4424
    188 Zhang J-J, Zhang W, Luo Q-H, Mei Y-H. Non-template synthesis and electrospray mass spectrometric study of some lanthanide(III) complexes. Polyhedron. 1999, 18: 3637-3642
    189 Chen Q-Y, Feng C-J, Luo Q-H, Duan C-Y, Yu X-S, Liu D-J. The Syntheses and Luminescent Properties of EuIII and TbIII Cryptates in Solution. Eur. J. Inorg. Chem. 2001: 1063-1069
    190 He W, Liu F, Mei Y, Guo Z, Zhu L. Synthesis and electrospray mass spectrometry study of Pd(II) complexes of low-rim amino acid substituted calix[4]arenas. New J. Chem. 2001, 25: 1330-1336
    191 潘志权,罗勤慧.几种多氮环合物的合成及质谱裂解.武汉化工学院学报.2000,22(2):1-5
    192 Eichhorn G L and Bailar J C. Metal Ion Catalysis in the Hydrolysis of Schiff Bases. J. Am. Chem. Soc. 1953, 75: 2905 - 2907
    193 Busch D H and Bailar J C. The Iron(II)-Methine Chromophore. J. Am. Chem. Soc. 1956,78: 1137-1142
    
    194 Taylor L T, Urbach F L, Busch D H, α-Amino ether and carbinolamine derivatives of the nickel(Ⅱ) complex of the cyclotetrameric Schiff base of o-aminobenzaldehyde. J. Am. Chem. Soc. 1969,91: 1072-1075
    195 Blake A B, Sinn E, Yavari A, Moubaraki B and Murray K S. Magnetic properties of binuclear manganese(Ⅱ), cobalt(Ⅱ), nickel(Ⅱ) and copper(Ⅱ) complexes of a macrocyclic ligand derived from pyridine-N-oxide, and crystal structure of the nickel complex. Inorg. Chim. Acta. 1995, 229:281-290
    196 Harding C J, Lu Q, Malone J F, Marrs D J, Martin N, McKee V and Nelson J. Hydrolytically-sensitive hexaimino and hydrolytically-inert octaamino-cryptand hosts for dicopper. J. Chem Soc., Dalton Trans. 1995:1739-1747
    197 Wang J, Xu X, Chen J, Luo Q, Shen M, Huang X and Wu Q. Synthesis and X-ray crystal structure of a macrocyclic binuclear cadmium(Ⅱ) complex with side chain. Inorg. Chim. Acta. 1997, 256:121-124
    198 G.M. Sheldrick, SHELXL-97, University of Gttingen, Germany 1997.
    199 Drew M G B, Howarth O W, Morgan G G and Nelson J. Proton transfer in a phenol-based compartmental cryptate; solution and solid-state structural studies. J. Chem Soc., Dalton Trans. 1995:3149-3158
    200 杨立辉.环境毒物对金黄色葡萄球菌毒性影响的研究.激光生物学报.2003,12(2):117-120
    201 吕奎山,徐远春,于宏,史彦.使用大肠杆菌快速测定污水毒性方法的研究.中国环境监测.1991,7(5):9-14
    202 张强华,纪丽莲.四种席夫碱抑菌性能的对比研究.淮阴工学院学报.2001,10:30-32
    203 Wainwright K P. Synthetic and structural aspects of the chemistry of saturated polyaza macrocyclic ligands bearing pendant coordinating groups attached to nitrogen. Coord. Chem. Rev. 1997, 166:35-90
    204 Mclachlan G A, Brudenell S J, Fallon G D, Martin R L, Spiccia L and Tiekink E R T. Synthesis, structure and properties of cobalt(Ⅲ) complexes of pentadentate ligands with pyridyl pendant arms. J. Chem. Soc., Dalton Trans. 1995, 439-448
    205 Li S-A, Li D-F, Yang D-X, Huang J, Xu Y and Tang W-X. The crystal structure of a new double hydroxyethyl-bridged dizinc(Ⅱ) complex with macrocyclic ligand. Inorg. Chem. Commun. 2003, 6(2): 221-224
    206 Li S-A, Li D-F, Duan C-Y, Xia J, Yang D-X and Tang W-X. A new dicopper(Ⅱ) complex with macrocyclic hexaaza bearing hydroxyethyl pendants. Inorg. Chem. Commun. 2001, 4(11): 651-655
    
    207 Huang J , Li D-F, Li S-A, Yang D-X , Sun W-Y and Tang W-X. Kinetic analysis of carboxy ester hydrolysis by a dinuclear Zn(II) complex. J. Inorg. Biochem. 2004, 98: 502-509
    208 Adams H, Bailey N A, Collinson S R, Fenton D E, Harding C J and Kitchen S J. The mononuclear barium and dinuclear copper(II) complexes of a 24-membered bibracchial tetraimine schiff base macrocycle derived from tris(2-arninoethyl)amine and 2,5-diformylfuran. Inorg. Chim. Acta. 1996, 246: 81-88
    209 Xu X-Y, Zhang J-J, Luo Q-H, Shen M-C. The Synthesis of Three μ2-Phenoxy Oxygen Bridged 24-Membered Macrocyclic Binuclear Cadmium(II) Complexes and the X-ray Crystal Structure of One of Them. Synth. React. Inorg. Met.-Org. Chem. 1997, 27(3): 377-390
    210 Xu X-Y, Meng Q-G, Luo Q-H, Shen M-C. Synthesis and Crystal Structure of Four μ2-Phenoxy Oxygen Bridged Macrocyclic Binuclear Cadmium(II) Complexes with Pendant Arms. Synth. React. Inorg. Met.-Org. Chem. 1997,27(1): 103-117
    211 Xu X-Y, Zhang J-J, Luo Q-H, Shen M-C, Huang X-Y, Wu Q-J. Preparation and X-ray Structure of a New μ2-Oxo Bridged Macrocyclic Binuclear Cadmium(II) Complex. J. Coor. Chem. 1997,42: 25-32
    212 Xu X-Y, Wang Z-L, Luo Q-H, Shen M-C, Zhang N-X, Zhou X-G, Zhou Z-Y Synthesis and X-ray Cryatal Structure of a 24-Membered Macrocyclic Binuclear Cadmium(II) Complexes with Pendant Arms. J. Coor. Chem. 1998, 43: 281-288
    213 Dayan I, Libman J, Agi Y, Shanzer A. Chiral siderophore analogs: ferrichrome. Inorg. Chem. 1993,32:1467-1475
    214 Ecker D J, Loomis L D, Cass M E, Raymond K N. Substituted complexes of enterobactin and synthetic analogs as probes of the ferric-enterobactin receptor in Escherichia coli. J. Am. Chem. Soc. 1988,110: 2457 - 2464
    215 Brunsveld L, Schenning A P H J, Broeren MAC, Janssen H M, Vekemans J A J M, and Meijer E W. Chiral Amplification in Columns of Self-Assembled N,N',N"-Tris((S)-3,7-dimethyloctyl)benzene-l,3,5-tricarboxamide in Dilute Solution. Chem. Lett. 2000, 339: 292-293
    216 Claudio B, Andrea M, Simonetta M, Werner O, Francesco V, Veronica H, Alberto F, and Roberto A. S -D. Mimicking the HDS Activity of Ruthenium-Based Catalysts 2: The Hydrogenation of Benzo[b]thiophene to 2,3-Dihydrobenzo[b]thiophene. J. Am. Chem. Soc. 1999,121: 7071-7080
    
    217 Liu W-S, Tan M-Y, Fan X-J. Symposium of the Macrocyclic Chenistry Meeting, Studies of the Rare Earth Supramolecular Functional Complexes of the Compounds with Novel Structures. 1997
    218 Wilson L J and Rose N J. Geometrically specific multidentate ligands and their complexes. I. Anickel(II) complex of the potentially heptadentate Schiff base derived from 2,2'2"-triaminotriethylamine and 2-pyridinecarboxaldehyde. J. Am. Chem. Soc. 1968,90:6041-6045
    219 Sim P G and Sinn E. Synthesis and crystal structure of tris[l-(2-azolyl)-2-azabuten-4-yl]amineiron(III), [Fe((pyrol)3tren)]. Inorg. Chem. 1978,17:1288-1290
    220 Gou S-H, You X-Z, Yu K-B, and Lu J-P. Synthesis and characterization of a series of tripodal transition metal complexes with the Schiff base of 2,2',2"-triaminoethylamine and 2-pyridinecarboxaldehyde N-oxide. Crystal structures of heptacoordinate manganese(II) and cobalt(II) complexes of a seven-coordinate ligand. Inorg. Chem. 1993,32:1883-1887
    221 Jantti A, Wagner M, Wagner M, Suontamo R, Kolehmainen E, Rissanen K. Schiff-Base Podates - X-ray, NMR and Ab Initio Molecular-Orbital Studies of the Cadmium(II) Complexes of Linear and Three-Armed Podands in Solution and Solid State. Eur. J. Inorg. Chem. 1998: 1555-1562
    222 Kirchner R M, Mealli C, Bailey M, Howe N, Torre L P, Wilson L J. The variable coordination chemistry of a potentially heptadentate ligand with a series of 3d transition metal ions. The chemistry and structures of [M(py3tren)]2+, where M(II) = Mn, Fe, Co, Ni, Cu, and Zn and (py3tren) = N{CH2CH2=C(H)(C5H4N)}3 Coord. Chem. Rev. 1987,77: 89-163
    223 Keypour H, Salehzadeh S, Pritchard R Q Parish R V. Cadmium(II) complexes of fully condensed Schiff-base ligands derived from two different symmetrical and asymmetrical tripodal tetraamines and 2-acetylpyridine; the novel observations for heptadentate mono-capped trigonal antiprismatic Schiff-base complexes. Polyhedron. 2000,19: 1633-1637
    224 Patel M, Patel N, Patel K, Dholakiya P, Patel D. Synthesis, Characterization, and Biocidal Studies of Some Transition Metal Complexes Containing Bidentate Monobasic Hydroxyaldehydes and a Neutral Bidentate Schiff Base. Synth. React. Inorg. Met-Org. Chem. 2003, 33(1): 51-62
    225 Carlucci L, Ciani G, Proserpio D M, Sironi A. Extended networks via hydrogen bond cross-linkages of [M(bipy)] (M = Zn2+ or Fe2+; bipy = 4,4(prime)-bipyridyl) linear co-ordination polymers. J. Chem. Soc, Dalton Trans, 1997: 1801-1803
    
    226 Blake A J, Hill S J, Hubberstey P, Li W-S. Copper(I) chelated by 2,9-dimethyl-l,10-phenanthroline and bridged by 4,4(prime)-bipyridine or trans-1,2-bis(pyridin-4-yl)ethene to give discrete dinuclear and polymeric cations. J. Chem. Soc, Dalton Trans. 1998: 909-915
    227 Fujita M, Kwon Y J, Washizu S, Ogura K. Preparation, Clathration Ability, and Catalysis of a Two-Dimensional Square Network Material Composed of Cadmium(II) and 4,4'-Bipyridine. J. Am. Soc. Chem., 1994, 116: 1151-1152
    228 Lu J, Paliwala T, Lim S C, Yu C, Niu T, Jacobson A J, Coordination Polymers of Co(NCS)2 with Pyrazine and 4,4'-Bipyridine: Syntheses and Structures. Inorg. Chem. 1997,26:923-929
    229 Gardner G B, Venkataraman D. Spontaneous assembly of a hinged coordination network. Nature, 1995, 374: 792-795
    230 Subramanian S, Zaworotko M J. Porous Solids by Design: [Zn(4,4 ' -bpy)2(SiF6)]n xDMF, a Single Framework Octahedral Coordination Polymer with Large Square Channels. Am. Chem. Int. Engl. 1995, 34: 2127-2129
    231 Lightfoot P, Snedden A. Metal-organic co-ordination frameworks based on mixed N-and O-donor ligands: crystal structures of [Co(phth)2(bipy)] and [Co2(mal)2(bipy)(H2O)2] (phth = phthalate, mal = malonate, bipy = 4,4'-bipyridine). J. Chem. Soc, Dalton Trans. 1999: 3549-3551
    232 Martin S, Barandika M G, Ezpeleta J M, Cortes R, Larramendi J I R, Lezama L, Rojo T. Structural analysis and magnetic properties of the ID [Fe(dca)2bipy(H2O)]-l/2H2O and the 3D [Ni(dca)2bipy] (dca = dicyanamide; bipy = 4,4' -bipyridine). J. Chem. Soc. Dalton Trans. 2002: 4275-4280
    233 Chen H-J, Zhang L-Z, Cai Z-G. Organic-inorganic hybrid materials assembled through weak intermolecular interactions. Synthesis, structures and non-linear optical properties of [4,4' -bipyH2][M(NCS)4] (M = Mn2+, Co2+ or Zn2+; 4,4' -bipy = 4,4' -bipyridine). J. Chem. Soc. Dalton Trans. 2000: 2463-2466
    234 Muetterties E L and Guggenberge r L J. Idealized polytopal forms. Description of real molecules referenced to idealized polygons or polyhedra in geometric reaction path form. J. Am. Chem. Soc. 1974, 96: 1748 - 1756
    235 Glay J B, Bonnet J J, Andersson S. The crystal structure of a new oxide chloride of copper(II) and selenium(IV): Cu5Se2O8Cl2. Acta. Chem. Scand., Ser. A. 1979, A33(5): 383-389
    23
    
    236 李明星,徐正,游效曾,陈成刚.一维4,4’-联吡啶桥联噻吩甲酰三氟丙酮过渡金属配合物的合成、结构和磁性.化学学报.1994,52(3),274-279
    237 Julve M, Verdaguer M, Faus J, Tinti F, Moratal J, Monge A, and Gutierrez-Puebla E. Exchange interaction through extended molecular bridges: magnetic properties of .mu.-4,4'-bipyridine and .mu.-pyrazine copper(Ⅱ) binuclear complexes and crystal structures of (.mu.-4,4'-bipyridine)bis[(diethylenetriamine)(perchlorato)copper(Ⅱ)] perchlorate and aquo(4,4'-bipyridine)(diethylenetriamine)copper(Ⅱ) perchlorate. Inorg. Chem. 1987, 26, 3520-3527
    238 Haddad M S and Hendrickson D N. Magnetic exchange interactions in binuclear transition-metal complexes bridged by imidazolate, benzimidazolate, biimidazolate, and bibenzimidazolate ions. Inorg. Chem. 1978, 17, 2622-2630
    239 Richardson H W and Hatfield W E. On the superexchange mechanism in polymeric, pyrazine-bridged copper(Ⅱ) complexes. J. Am. Chem. Soc. 1976, 98, 835-839
    240 Haddad M S, Hendrickson D N, Cannady J P, Drago R S, and Bieksza D S. Pyrazine and 1,4-diazabicyclo[2.2.2]octane as magnetic exchange propagating bridges in binuclear copper(Ⅱ) and vanadyl complexes. J. Am. Chem. Soc. 1979, 101,898-906
    241 李延团,焉翠蔚.铁磁偶合的间苯二甲酸根桥联Cu(Ⅱ)——Cu(Ⅱ)双核配合物的合成与表征.无机化学学报.1996,12(1):80-84
    242 Carlin R L. Magnetochemistry. Springer-Verlag, Berlin. 1986.
    243 Xu X-Y, Zheng T, Ma W-X, Zhang M-X, Liu Q-L, Grguric S R, Dinovic V M, Kaluderovic G N, Sabo T J. Synthesis, Crystal Structure and Properties of a 4,4'-Bipyridine Bridged Trigonal-Bipyramidal Copper Homobinuclear Complex with Tris(2-Aminoethyl)amine. J. Coord. Chem. 2002, 55:711-716
    244 Julve M, Verdaguer M, Faus J, Tinti F, Moratal J, Monge A. Exchange Interaction through Extended Molecular Bridges: Magnetic Properties of μ-4, 4'-Bipyridine andμ-Pyrazine Copper(Ⅱ) Binuclear Complexes and Crystal Structure of (μ-4, 4'-Bipyridine)bis[(diethylenetriamine)(perchlorato)copper(Ⅱ)] Perchlorate and Aquo(4, 4'-Bipyridine) (diethylenetriamine) copper(Ⅱ) Perchlorate. Inorg. Chem. 1987, 26, 3520-3527
    245 杨瑞娜,邢利平,赵东,李五聚,金斗满.铜蛋白质的配位化学模拟.化学研究与应用.2003,15(1):6-10
    246 杨仕平,含多咪唑配体金属酶模型化合物与分子自组装的研究.博士论文,中山大学,2000
    
    247 Zhang X, Eldik R. A functional model for carbonic anhydrase: thermodynamic and kinetic study of a tetraazacyclododecane complex of zinc(Ⅱ). Inorg. Chem. 1995, 34, 5606-5614
    248 Koike T, Takamura M, Kimura E. Role of Zinc(Ⅱ) in .beta.-Lactamase Ⅱ: A Model Study with a Zinc(Ⅱ)-Macrocyclic Tetraamine (1,4,7,10-Tetraazacyclododecane, Cyclen) Complex. J. Am. Chem. Soc. 1994, 116, 8443-8449
    249 Kimura E, Komdama Y, Koike T, Shiro M. Phosphodiester Hydrolysis by a New Zinc(Ⅱ) Macrocyclic Tetraamine Complex with an Alcohol Pendant: Elucidation of the Roles of Ser-102 and Zinc(Ⅱ) in Alkaline Phosphatase. J. Am. Chem. Soc. 1995, 117, 8304-8311
    250 Kimura E, Gotoh T, Koike T, Shiro M. Dynamic Enolate Recognition in Aqueous Solution by Zinc(Ⅱ) in a Phenacyl-Pendant Cyclen Complex: Implications for the Role of Zinc(v) in Class Ⅱ Aldolases. J. Am. Chem. Soc. 1999, 121, 1267-1274
    251 邢其毅.基础有机化学.北京:高等教育出版社.1983:1029
    252 李润涛,曾胜利,孙万赋,蔡孟深.1-烷基-2-甲基-4-硝基咪唑类化合物的合成及生物活性.高等学校化学学报.1997,13:1325-1328
    253 Addison A W, Rao T N, Reedijk J, Rijn J and Verschoor G C. Synthesis, structure, and spectroscopic properties of copper(Ⅱ) compounds containing nitrogen-sulphur donor ligands; the crystal and molecular structure of aqua[1,7-bis(N-methylbenzimidazol-2'-yl)-2,6-dithiaheptane]copper(Ⅱ) perchlorate. J. Chem. Soc., Dalton Trans. 1984:1349-1356
    254 杨光明,廖代正.设计分子基铁磁体的理论模型.化学通报.1996,12:9-15
    255 Bakalbassis E G, Bozopoulos A P, Mrozinski J, Rentzeperis P J, and Tsipis C A. Crystal structure, magnetic properties, and orbital interactions of the [(.mu.-terephthalato)(ethylenediamine)diaquocopper(Ⅱ)] zigzag chain. Inorg. Chem. 1988, 27: 529-532

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700