静电纺丝法制备一维纳米稀土氧化物和钒酸盐发光材料及其性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,一维新型纳米结构材料以其独特的荧光特性在纳米级别的电子学、光学、显示器和先进生物分析上的广泛应用而受到研究者极大的重视。因此,寻找出制备完美形貌的纳米荧光材料的简单方法是非常重要的。而溶胶凝胶过程和电纺丝技术相结合的方法是制备一维和准一维纳米材料的有效方法。本论文采取了这种新颖方法制备出了具有完美形貌的一维纳米纤维。
     本文利用静电纺丝法制备出一系列的一维纳米发光材料,例如:稀土氧化物纳米纤维和钒酸盐纳米纤维。利用X-射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)、红外光谱(FT-IR)、差热-热重分析(TG-DTA)等技术对合成材料的结构、形貌、组成进行表征,用荧光光谱、低压阴极射线光谱等手段来评价所制备的材料的发光性质。同时就离子掺杂浓度对发光强度的影响做了进一步的讨论。
     采用静电纺丝法制备了具有一维结构的Lu_2O_3:Eu~(3+)纳米纤维荧光粉。X-射线衍射(XRD)、红外光谱(FT-IR)和差热热重(TG-DTA)研究结果表明,Lu_2O_3:Eu~(3+)样品在900℃结晶,通过FESEM可以看出所制备的样品都是均匀的纤维状。TEM进一步表明了所制备的样品是由许多纳米粒子堆积而成的。在紫外光和低压电子束的激发下,样品发出强的红光。
     采用简单、方便的静电纺丝方法成功制备了一维GdVO4:Ln~(3+)(Ln=Eu,Dy,Sm)纳米纤维。所得到的GdVO_4:Ln~(3+)(Ln=Eu,Dy,Sm)纳米纤维在700℃结晶完好。从扫描电镜结果可知,所制备的前驱纤维比较均匀且表面平滑,经过700℃煅烧4个小时后,纤维直径大幅减小并且仍然保持原来的纤维状,但表面变得粗糙了。光致发光和阴极射线发光光谱表明,GdVO_4:Ln~(3+)纳米纤维由于钒酸根向其掺杂离子的有效能量传递都表现出这些离子典型的特征发光。
In recent years, there is growing interest on exploring new luminescent materials onone-dimensional (1D) nanostructures, since they exhibit specific and fascinatingluminescent properties, which possess diverse potential applications in nanoscaleelectronics, photonics, display and advanced bioanalysis. So it is important to developsome facile synthesis methods to directly prepare luminescent materials innano-/microscale with defined morphologies. A combination method of sol-gel processand electrospinning technique is a good approach to obtain excellent 1D and Q-1Dnano- /microstructures. In this paper, we focus our attention on the preparation of 1Dnanofibers by the novel and facile sol-gel/electrospinning process.
     A series of luminescent materials, such as one-dimensional (1D) nanostructuralrare earth oxides and vanadates phosphors, have been prepared by a simple andcost-effective electrospinning process. These obtained samples were characterized byX-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM),transmission electron microscopy (TEM), Fourier transform infrared spectra (FT-IR),thermogravimetric and differential thermal analysis (TG-DTA), photoluminescence(PL), cathodoluminescence (CL) spectra and so on. The effects of the concentration ofdoping ions on the luminescent properties of the samples were investigated in detail.
     One-dimensional Lu_2O_3:Eu~(3+) nanofibers have been prepared by means ofelectrospinning technique in conjunction with sol-gel process. The XRD, FT-IR andTG-DTA results show that Lu2O3:Eu~(3+) samples crystallize at 900℃. SEM imagesindicate that as prepared precursor samples and those annealed at 900℃presentuniform fiberlike morphology. TEM image further manifests that the as formedLu_2O_3:Eu~(3+) nanofibers consist of nanoparticles. Under the short wavelength ultravioletirradiation and the low-voltage electron beam excitation, Lu2O3:Eu~(3+) nanofibers allexhibit typical red (5D0–7FJ) emission.
     One-dimensional GdVO_4:Ln~(3+) (Ln = Eu, Dy, Sm) nanofibers have beensuccessfully prepared by a simple and versatile elcetrospinning method and sol-gelprocess. The obtained samples crystallized well at 700℃. SEM images indicate that theas prepared precursor fibers are smooth. After being calcined at 700℃for 4 h, the fibersstill maintain their fiberlike morphology with rough surface. Under ultraviolet excitationand low-voltage electron beam excitation, GdVO4:Ln~(3+) phosphors showed their strong characteristic emission due to an efficient energy transfer from vanadate groups todopants.
引文
[1]杨俊.几种稀土及半导体氧化物材料的水热合成、形成机理与发光性质研究[D]:[博士论文].长春:中国科学院长春应用化学研究所, 2009, 6。
    [2]孙家跃,杜海燕,胡文祥.固体发光材料[M].北京:化学工业出版社. 2003. 7.
    [3]李建宇.稀土发光材料及其应用[M].北京:化学工业出版社. 2003. 9.
    [4]倪嘉缵,洪广言.稀土新材料及新流程进展[M].北京:科学出版社,1995.
    [5]苏文斌,谷学新,邹洪等.稀土元素发光特性及其应用[J].化学研究,2001, 12(4): 55-59.
    [6] Blasse G. the Influence of Charge-Transfer and Rydberg states on the luminescence properties,Structure and bonding 13[M]. New York: Spring-Verlag Berlin Heidelberg,1975.
    [7] Judd B R, Jorgensen C K. Hypersensitive pseudoquadrupole transitions in lanthanides [J]. Mol.Phys, 1964, 8: 281-290.
    [8]张志琨,崔作林.纳米技术与纳米材料[M].北京:北京国防工业出版社,2000
    [9] Hebbink G A, Stouwdam J W, Reinhoudt D N, et al. Lanthanide (III)-Doped Nanoparticles ThatEmit in the Near-Infrared[J]. Adv. Mater., 2002, 14: 1147-1150.
    [10]迟蕾,姚永毅,李瑞霞,等.静电纺丝方法制备纳米纤维的最新进展[J].纺织科技进展,2004,5:1-6.
    [11] Bockrath M, Liang W, Bozovic D, et al. Resonant electron scattering by defects in single-walledcarbon nanotubes[J]. Science, 2001, 291: 283-285P
    [12] Huang Y, Duan X, Wei Q, et al. Directed assembly of one-dimensional nanostructures intofunctional networks[J]. Science, 2001, 291: 630-633P
    [13] Xia Y,Yang P, Sun Y,et a1. One-Dimensional Nanostructures: Synthesis, Characterization, andApplications[J]. Adv. Mater, 2003, 15(5): 353-389.
    [14]Yu L X, Song H W, Lu S Z, et a1. Luminescent properties of LaPO4:Eu nanoparticles andnanowires[J]. J. Phys. Chem. B, 2004, 108: 16697-16702.
    [15] Bu W B, Chen H R, Hua Z L, et a1. Surfacatant-assisted synthesis fo Tb(III)-doped ceriumphosphate single-crystalline nanorods with enhanced green emission[J] . Appl. Phys. Lett., 2004, 85:4307-4309.
    [16] Bu W B, Hua Z L, Chen H R, et a1. Epitaxial synthesis of uniform cerium phosphateone-dimensional nanocable heterostructure with improved luminescence[J] . J. Phys. Chem. B, 2005,109: 14461-14464.
    [17] Song R Q, Xu A W, Deng B, et a1. Novel Multilamellar Mesostructured Molybdenum OxideNanofibers and Nanobelts: Synthesis and Characterization[J]. J. Phys. Chem. B, 2005, 109:22758-22766.
    [18] Xu A W, Fang Y P,You L P,et a1.A Simple Method to Synthesize Dy(OH)3 and Dy2O3Nanotubes[J]. J. Am. Chem. Soc.,2003,125:1494-1495.
    [19]孙岳玲,龚安华.一维纳米结构有序阵列研究进展[J].辽宁化工,2008, 37 (8): 550-552.
    [20] Bae S Y, Seo H W , Na C W , et a1. Synthesis of blue-light-emitting ZnGa2O4 Nanowires usingchemical vapor deposition[J]. Chem. Commun., 2004, 1834-1835.
    [21] Fan H J,Seholz R,Zacharias M,et a1.cLocal luminescence of ZnO nanowire–coveredSurface:A cathodoluminescence microscopy study [J]. Appl Phys Lett,2005,86(2):023113(1-3).
    [22] Lin B D,Bando Y,Tang C C,et a1.Quasi–aligned single—crystalline GaN nanowire arrays[J].Appl Phys Lett,2005,87(7):073106(1-3)
    [23] Cao L, Li M K, Yang Z, et a1. Synthesis and characterization of dentate-shapedβ-Ga2O3nano/microbelts via a simple method[j]. Appl. Phys. A., 2008, 91: 415-419.
    [24]王立晟,章晓中. PVD法在ZnO(001)薄膜上制备ZnO纳米线阵列[J].电子显微学报,2005,24:252-252.
    [25] Martin C R. Membrane-Based Synthesis of Nanomaterials[J]. Chem. Mater., 1996, 8:1739-1746.
    [26]王秀丽,曾永飞,卜显和.模板法合成纳米结构材料[J].化学通报,2005, 10: 723– 730.
    [27] Bao J, Tie C, Xu Z, et a1.Template synthesis of an array of nickel nanotubules and its magneticbehaviour [J]. Adv.Mater., 2001, 13 (21) :1631.
    [28] Gao H,Xu Z, Sang H, et a1. Template synthesis and magnetic behaviour of an array of cobaltnanowires encapsulated in polyaniline nanotubules[J]. Adv.Mater.,2001, 13(2):121.
    [29] Gao H,Xu Z, Sang H, et a1.Sol-gel Template synthesis of an array of singel crystal CdSnanowires on a porous alumina template[J]. Adv.Mater.,2001, 13(18):1393.
    [30] Dai H,Wong E W,Lieber C M, et a1. synthesis and characterization of carbidenanorods[J].Nature,1995, 375(6534): 769.
    [31] Tang C,Fan S,De la Chapelle M L, et a1. synthesis of gallium phosphide nanorods[J].Adv.Mater.,2000, 12(18): 1346.
    [32] Zhu J,Fan S.Nanostructure of GaN and SiC nanowires based on carbonnanotubes[J].J.Mater.Res.,1999, 14(4): 1175.
    [33] Liang H, Angelini T E, Ho J , et a1. Molecular Imprinting of Biomineralized CdSNanostructures:Crystallographic Control Using Self-Assembled DNA-Membrane Templates[J]. J.Am. Chem. Soc., 2003, 125: 11786-11787.
    [34] Mayers B, Jiang X C, Sunderland D, et a1. Hollow nanostructures of platinum with controllabledimensions can be synthesized by templating against selenium nanowires and colloids[J]. J. Am.Chem. Soc., 2003, 125: 13364-13365.
    [35]王赛玉,熊惟皓.激光技术在材料科学中的应用[J].金属热处理,2005,30(7)
    [36] Kokai F, Takahashi K, et a1.Synthesis of single–wall carbon nanotubes by millsecond–pulsedCO2 laser vaporization at room temperature[J]. Chemical Physics letters,2000, 322: 449-454.
    [37] Munoz E, Maser W K, Benito A M, et a1. Gas and pressure effects on the production ofsingle–walled carbon nanotubes by laser ablation[J]. Carbon, 2000, 38: 1445-1451.
    [38]慈力杰,魏秉庆.碳纳米管的制备[J].新型碳材料,1998, 13(2): 9 - 15.
    [39] Formhals A, Process and apparatus for preparing artificial threads[p]. US Patent, 1 975 504.1934.
    [40] Smons H L, Process and apparatus for producing patterned non - woven fabrics[p]. US,3280229. 1966.
    [41] Larrondo L, John R S T. Electrostatic fiber spinning from polymermelts[ J ]. J. Polym. Sci.Polym. Phys., 1981, 19: 909.
    [42] Dosh I J , Reneker D H. Electrospinning process and applications of electrospun fibers [ J ].Electrostat, 1995, 35: 151.
    [43] Fong H, Chun I, Reneker D H. Beaded nanofibers formed during electrospinng [ J ]. Polymer,1999, 40: 4585.
    [44] Buchko C, Chen L C, Shen Y, et al. Processingand microstructural characterization of porousbiocompatible protein polymer thin films [ J ]. Polymer, 1999, 40: 7397.
    [45] Spivak A F, Dzenis Y A, Reneker D H. A model of steady state jet in the electrospinningprocess [ J ]. Mech. Res. Com., 2000, 27: 37.
    [46] Reneker D H . Bending instability of electrically charged liquid jets of polymer solutions inelectrospinning[ J ]. Appl. Phys., 2000, 87 (9): 4531.
    [47] Li Dan,Xia Younan. Advanced Materials[J]. 2004,16(14): l15l.
    [48] Dai H Q, Gong J, Kim H, et a1. A novel method for preparing ultra-fine alumina-borate oxidefibres via an electrospinning technique[J]. Nanotechnology, 2002, 13: 674-677.
    [49] Larsen G, Velarde-Ortiz R, Minchow K, et a1. A method for making inorganic and hybrid(organic/inorganic) fibers and vesicles with diameters in the submicrometer and micrometer rangevia sol-gel chemistry and electrically forced liquid jets[J]. J. Am. Chem. Soc., 2003, 125:1154-1155.
    [50] Viswanathamurthi P, Bhattarai N, Kim H Y, et a1. Preparation and morphology of niobiumoxide fibres by electrospinning[J] .Chem. Phys. Lett., 2003, 374: 79-84.
    [51] Shao C L, Kim H Y, Gong J, et a1. Fiber mats of poly(vinyl alcohol)/silica composite viaelectrospinning[J]. Mater. Lett., 2003, 57: 1579-1584.
    [52] Guan H, Shao C L, Chen B, et a1. A novel method for making CuO superfine fibers via anelectrospinning technique Inorg[J]. Chem. Commun., 2003, 6:1409-1411.
    [53] Guan H, Shao C L, Chen B, et a1. Preparation and characterization of NiO nanofibers via anelectrospinning technique[J]. Inorg. Chem. Commun., 2003, 6: 1302-1303.
    [54] Yang X, Shao C L, Guan H, et a1. Preparation and characterization of ZnO nanofibers by usingelectrospun PVA/zinc acetate composite fiber as precursor[J]. Inorg. Chem. Commun., 2004,7:176-178.
    [55] Ding B, Kim H, Kim C, et a1. Morphology and crystalline phase study of electrospunTiO2-SiO2 nanofibres[J]. Nanotechnology, 2003, 14: 532-537.
    [56] Viswanathamurthi P, Bhattarai, Kim H Y, et a1. Vanadium pentoxide nanfibers byelectrospinning[J]. Scr. Mater., 2003, 49: 577-581.
    [57] Gouma P I. Nanostructured polymorphic oxides for advanced chemosensors[J]. Rev. Adv. Mater.Sci., 2003, 5: 123-138.
    [58] Dharmaraj N, Park H C, Lee B M, et a1. Preparation and morphology of magnesium titanatenanofibers via electrospinning[J]. Inorg. Chem. Commun. 2004, 7: 431-433.
    [59] Shao C L, Guan H Y, Liu Y C, et a1. Preparation of Mn2O3 and Mn3O4 nanofibers viaelectrospinning technique[J]. J. Solid State Chem., 2004, 177: 2628-2631.
    [60] Hou Z Y, Yang P P, Li C X, et a1. Preparation nad luminescence properties of YVO4:Ln and Y(V,P)O4:Ln (Ln = Eu3+, Sm3+, Dy3+) nanofibers and microbelts by sol-gel/electrospinning process[J].Chem. Mater., 2008, 20: 6686-6696.
    [61] Loscertales I G, Barrero A, Marquez M, et a1. Electrically forced coaxial nanojets for one-stephollow nanofiber design[J]. J. Am. Chem. Soc., 2004, 126: 5376-5377.
    [62] Li D, McCann J T, Xia Y N, Electrospinning: A simple and versatile technique for producingceramic nanofibers and nanotubes[J]. J. Am. Ceram. Soc., 2006, 89: 1861-1869.
    [63] Zhao Y, Cao X Y, Jiang L, Bio-mimic multichannel microtubes by a facile method[J]. J. Am.Chem. Soc., 2007, 129: 764-765.
    [64] Teo W E, Ramakrishna S, A review on electrospinning design and nanofibre assemblies[J].Nanotechnology, 2006, 17: R89-R106.
    [65] Matthers J A, Wnek G E, Simpson D G, et a1. Electrospinning of collagen nano-fibers[J].Biomacromolecules, 2002, 3: 232-238.
    [66] Katta P, Alessandro M, Ramsier R D, et a1. Continuous electrospinning of aligned polymernanofibers onto a wire drum collector[J]. Nano. Lett., 2004, 4 (11): 2215-2218.
    [67] Bhattarai N, Edmondson D, Veiseh O, et a1. Electrospun chitosan-based nanofibers and theircellular compatibility[J]. Biomaterials, 2005, 26: 6176-6184.
    [68] Li D, Wang Y L, Xia Y N, Electrospinning of polymeric and ceramic nanofibers as uniaxiallyalighed arrays[J]. Nano. Lett., 2003, 3:1167-1171.
    [69] Dalton P D, Klee D, Moller M, Electrospinning wiht dual rings[J]. Polym. Commun., 2005,46:611-614.
    [70] Xu C Y, Inai R, Kotaki M, et a1. Aligned biodegradable nanofibrous structure: a potentialscaffols for blood vessel engineering[J]. Biomaterials, 2004, 25:877-886.
    [71] Li D, Wang Y L, Xia Y N. Electrospinning nanofibers as uniaxially aligned arrays andlayer-by-layer stacked films[J]. Adv. Mater., 2004, 16: 361-366.
    [72] Krissanasaeranee M, Supaphol P, Wongkasemjit S. Preparation of poly(vinyl alcohol)/tinglycolate composite fibers by combined sol–gel/electrospinning techniques and their conversion toultrafine tin oxide fibers[J]. Mater. Chem. Phys., 2009, xx, xx
    [73] Xu X L, Yang L X, Xu X Y, et a1. Ultrafinemedicated fibers electrospun from W/Oemulsions[J]. Journal of Controlled Release, 2005, 108:33-42.
    [74] Huang Z M, Zhang Y Z, Kotaki M, et a1. A review on polymer nanofibers by electrospinningand their application in nanocomposites[J]. Composites Science and Technology, 2003, 63:2223-2253.
    [75] Grajam S.‘Smart’Silicon Dust Could Help Screen for Chemical Weapons[J]. ScientificAmerican. 2002, 3.
    [76] Wang X Y, Drew C, Lee S H, et a1. Electrospun nanofibrous membranes for highly sensitiveoptical sensor[J]. Nano. Lett., 2002, 2:1273-1275.
    [77] Ding B, et al. Electrospun fibrous polyacrylic acid membrane-based gas sensors[J]. Sensors andActuators, 2005, 106: 477-483.
    [78] Hou H Q, Jun Z, Reuning A, et a1. Poly (ρ- xylylene) nanotubes by coating and removal ofultrathin polymer template fibers[J]. Macromolecules, 2002, 35: 2429-2431.
    [79] Waters C M, Noakes T J, Pavery I, et a1. Liquid crystal devices[P]. 1992, US Patent 5088807.
    [80] Huang M H, Mao S, Feick H, et a1. Room-temperature ultraviolet nanowire nanolasers[J].Science, 2001, 292 :1897.
    [81] Huynh W U , Dittmer J J, Alivisatos A P , Hybrid nanorod-polymer solar cells[J].Science, 2002,295 , 2425.
    [82] Pan Z W , Dai Z R , Wang Z L. Nanobelts of semiconducting oxides[J] Science, 2001, 291:1947.
    [83] Tsukagoshi K, Alphenaar B W, Ago H. Coherent transport of electron spin in aferromagnetically contacted carbon nanotube[J] Nature,1999, 401: 572.
    [84] Zhang D F, Sun L D, Jia C J, et a1. Hierarchical assembly of SnO2 nanorod arrays onalpha-Fe2O3 nanotubes: A case of interfacial lattice compatibility[J].J. Am. Chem. Soc.,2005,127:13492-13493.
    [85] Ramaseshan R, Sundarrajan S, Jose R.. J. Appl. Phys, 2007, 102: 111101.
    [86] Mirkin C A, NANOTECHNOLOGY:Tweezers for the Nanotool Kit[J].Science , 1999,286 :2095.
    [87] Nakamura S. The Roles of Structural Imperfections in InGaN-Based Blue Light-EmittingDiodes and Laser Diodes [J]. Science.1998, 281 : 956-961.
    [88] Obarr R , Yamamoto S Y, Schultz S, et a1. Fabrication and characterization of nanoscale arraysof nickel columns[J]. Journal of Applied Physics,1997, 81: 4730.
    [89] Fu L, Liu Y Q, Hu P, et a1. Ga2O3 Nanoribbons: Synthesis, Characterization, and ElectronicProperties[J], Chem. Mater., 2003, 15: 4287-4291.
    [90] Bae S Y, Seo H W, Park J, et a1. Single-crystalline gallium nitride nanobelts[J]. Appl. Phys.Lett., 2002, 81: 126-128.
    [91] Trentler T J, Hickman K M, Goel S C, et a1. Solution-Liquid-Solid Growth of Crystalline III-VSemiconductors: An Analogy to Vapor-Liquid-Solid Growth.[J] Science, 1995, 270: 1791-1794.
    [92] Duan X F, Lieber C M, General Synthesis of Compound Semiconductor Nanowires[J]. Adv.Mater., 2000, 12: 298-302.
    [93] Jung J H , Kobayashi H, Van Bommel K J L, et a1. Creation of Novel Helical Ribbon andDouble-Layered Nanotube TiO2 Structures Using an Organogel Template[J]. Chem. Mater., 2002,14: 1445-1447.
    [94] Wu Y Y, Yang P D. Germanium Nanowire Growth via Simple Vapor Transport[J]. Chem.Mater., 2000, 12: 605-607.
    [96] Chen C C, Yeh C C. Large-Scale Catalytic Synthesis of Crystalline Gallium NitrideNanowires[J]. Adv. Mater., 2000, 12: 738-741.
    [97] Teo W E, Ramakrishna S. A Review on Electrospinning Design and Nanofibre Assemblies[J] .Nanotechnology, 2006, 17: R89-R106.
    [98] Li D, Xia Y. Fabrication of Titania Nanofibers by Electrospinning[J]. Nano Letters, 2003, 3:555.
    [99] Ding B , Kim H, Kim C. et a1. Morphology and crystalline phase study of electrospun[J].Nanotechnology 2003,14: 532.
    [100] Li D , Ouyang G, McCann JT, et a1. Collecting Electrospun Nanofibers with PatternedElectrodes[J].Nano Letters, 2005,5: 913.
    [101] Madhugiri S, Dalton A, Gutierrez J ,et a1. Electrospun MEH-PPV/SBA-15CompositeNanofibers Using a Dual [J]. J Am Chem Soc 2003, 215: 14531.
    [102] Zych E, Hreniak D, Strek W. Spectroscopic properties of Lu2O3/Eu3+ nanocrystalline[J]. J PhysChem B 2002, 106: 3805.
    [103] Li Y P , Zhang J H , Zhang X . Spectral Probing of Surface Luminescence of CubicLu2O3:Eu3+[J].J Phys Chem C 2009, 113: 17705.
    [104] Zych E, Wawrzyniak M, Kossek A, et a1. New synthesis procedure for nanoparticulate Lu2O3 :Eu and spectroscopy of the product[J]. J Alloy Compd 2008, 451: 591.
    [105] Trojan-Piegza J, Zych E, Hreniak D, et a1. Comparison of spectroscopic properties ofnanoparticulate Lu2O3 : Eu synthesized using different techniques[J].J Alloy Compd , 2004, 380:123.
    [106] Yu M, Lin J, Wang Z, et al. Fabrication, Patterning and Optical Properties of NanocrystallineYVO4:A (A = Eu3+, Dy3+, Sm3+, Er3+) Phosphor Films via Sol-Gel Soft Lithography. Chem Mater,2002, 14(5):2224-2231P
    [107] Lu X F, Zhao Y Y, Wang C. Fabrication of PbS Nanoparticles in Polymer-Fiber Matrices byElectrospinning. Adv Mater, 2005, 17(20):2485-2488P
    [108] Petel A C, Li S, Wang C, et al. Electrospinning of Porous Silica Nanofibers Containing SiliverNanoparticles for Catalytic Applications. Chem Mater, 2007, 19(6):1231-1238P
    [109]Zhao Y Y, Wang H, Lu X F, et al. Fabrication of Refining Mesoporous Silica Nanofibers viaElectrospinning. Mater Lett, 2008, 62(1):143-146P
    [110] Garcia-Murillo A, Luyer, C Le Pedrini C, et al . Synthesis and properties of Lu2O3 sol-gelfilms[J]. J Alloy Compd , 2001, 323: 74.
    [111] Yang J, Li C, Quan Z, et al. Self-Assembled 3D Flowerlike Lu2O3 and Lu2O3:Ln3+ (Ln = Eu,Tb, Dy, Pr, Sm, Er, Ho, Tm) Microarchitectures: Ethylene Glycol-Mediated Hydrothermal Synthesisand Luminescent Properties[J]. The Journal of Physical Chemistry C, 2008, 112: 12777.
    [112] Zych E, Hreniak D, Strek W, et al. Spectroscopic Properties of Lu2O3/Eu3+ NanocrystallinePowders and Sintered Ceramics[J]. The Journal of Physical Chemistry B. 2002, 106: 3805.
    [113] Blasse G. ENERGY TRANSFER IN OXIDIC PHOSPHORS[J].Philips Research Reports.1969, 24:131.
    [114] Feldman C. Range of 1-10 keV Electrons in solids. Phys Rev, 1960, 117:455-459P
    [115] A. Formhals, U.S. Patent Specification. 1934, 1975504.
    [116] Li D, Xia Y N. Fabrication of Titania Nanofibers by Electrospinning[J]. Nano. Lett., 2003, 3:555-560.
    [117] Ding B, Kim H, Kim C, et al. Morphology and Crystalline Phase Study of ElectrospunTiO2-SiO2 Nanofibers[J]. Nanotechnology, 2003, 14: 532-537.
    [118] Li, D, Ouyang G, McCann J T, et al. Collecting Electrospun Nanofibers with PatternedElectrodes[J]. Nano.Lett., 2005, 5: 913-916.
    [119] Madhugiri S, Dalton A, Gutierrez J, et al. Electrospun MEH-PPV/SBA-15 CompositeNanofibers Using a Dual Syringe Method[J]. J. Am. Chem. Soc., 2003, 125:14531-14538.
    [120] Wang X Y, Drew C, Lee S H, et al. Electrospun Nanofibrous Membranes for Highly SensitiveOptical Sensors[J]. Nano. Lett., 2002, 2: 1273-1275.
    [121] Liu, H Q, Kameoka J, Czaplewski D A, et al. Polymeric Nanowire Chemical Sensor[J]. NanoLett., 2004, 4: 671-675.
    [122] Czaplewski D A, Kameoka J, Mathers R, et al. Nanofluidic Channels with Elliptical CrossSections Formed Using a Nonlithographic Process[J]. Appl. Phys. Lett., 2003, 83: 4836-4838.
    [123] Casper C L, Stephens J S, Tassi N G, et al. Controlling Surface Morphology of ElectrospunPolystyrene Fibers: Effect of Humidity and Molecular Weight in the Electrospinning Process[J].Macromolecules, 2004, 37: 573-578.
    [124] Zaguniennyi A I, Ostoumov V G, Shcherbakov I A, et al. The Nd:GdVO4 crystal: a newmaterial for diode-pumped lasers[J]. Sov. J. Quant. Electron, 1992, 22 1071.
    [125] Bril A,Wanmaker W L,Bross P, Photoluminescent properties of some europium-activatedgadolinium and yttrium conpounds [J]. J. Chem. Phys., 1965, 43, 311-312.
    [126] Brixner L H,Abramson E, On the luminescent of the rare earth vanadates, J. Electrochem.Soc.,1965, 112, 70-74.
    [127] Frank C.Palilla,Albert K.Lecin, Maija Rinkevice, Rare eaeth activated phosphors based onytrrium orthovanadate and related compounds [J]. J. Electrochem. Soc., 1965,112, 776-779.
    [128] Bercher G, Samelson H, Lempicki A, et al. Polarized Spectra and Crystal-Field Parameters ofEu3+ in YVO4[J]. Phy. Rev., 1967, 155(2), 178-187.
    [129] García-Murillo A, Luyer C L, Dujardin C, et al. Elaboration and characterization of Gd2O3waveguiding thin films prepared by the sol–gel process [J]. Opt. Mater.,2001, 16, 39-46.
    [130] Hsu, C, Powell, R C. Energy transfer in europium doped yttrium va Crystals[J]. J. Lumin.1975, 10, 273-293.
    [131] Blasse G, Grabmaier B C. Luminescence Materials, Springer-Verlag, Berlin Heideberg[M].1994, Chapter 4-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700