用户名: 密码: 验证码:
红麻光钝感突变体的基因组差异与蛋白质组学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
红麻(Hibiscus cannabinus L.)为锦葵科木槿属短日照一年生草本韧皮纤维植物,具有耐环境胁迫能力强、适应性广、纤维产量高、品质好等特性,是我国麻纺和造纸工业的重要纤维原料,但其早花混杂品种严重影响了纤维产量,本研究拟以福红952航天诱变获得的光钝感(对光周期反应不敏感)突变体为材料,在海南表现为三种类型的突变体:现蕾期幼蕾脱落(GⅠ型)、现蕾不开花(GⅡ型)、开花不结实(GⅢ型),分别从植物生理学、基因组差异、蛋白质组学研究突变体光钝感且短光诱导不育的遗传规律,研究结果如下:
     1、红麻光周期观察:红麻光钝感突变体2008年冬季在海南自然短日照条件下,155d仍未现蕾开花,而正常品种只需120d左右即可现蕾开花。2009年7月4日在福州对红麻光钝感突变体材料进行12h的短日照处理,结果表明处理20d后对照福红952开始现蕾,而突变体30d后开始现蕾,即现蕾时间推迟大约10d左右。
     2、以红麻品种福红952经航天诱变获得的光钝感突变体与光敏感红麻细胞质保持系L23B品种杂交,在海南130d短日照条件下诱导了花蕾的分化发育,即突变体中出现了幼蕾的黄化脱落、现蕾不开花、开花不结实三种类型,观察其分离情况,F2代群体光敏感与光钝感植株的分离比例为3:1分离,说明光钝感与光敏感性状存在一对基因的遗传差异,光周期钝感性状为隐性遗传,该研究结果可为进一步开展红麻光钝感的基因克隆及分子机理研究提供重要的遗传材料。
     3、分别测定在人工短日照光周期处理的光钝感红麻与对照福红952三个不同时期的叶片可溶性糖、可溶性蛋白、可溶性氨基酸含量的动态变化,结果表明,随着红麻从一裂叶、三裂叶、五裂叶三个不同时期的发育,叶片中的可溶性糖、可溶性蛋白、可溶性氨基酸均呈现低、高、低的变化规律,对照福红952变化幅度均大于光钝感植株,表明红麻光钝感在光周期诱导下表现出的光周期不敏感特性与其叶片内的生理代谢密切相关。
     4、从24个多态性较好的RAPD引物中筛选到3个引物可以把红麻光钝感突变体与对照品种区分开来,获得4条特异条带,测序表明这四个片段大小分别为612bp、723bp、743bp、1178bp,为进一步开发SCAR标记奠定实验基础。
     5、应用在其他高等植物开发的8对mtDNA(线粒体DNA)特异引物,对红麻光钝感突变体线粒体基因非编码区DNA序列进行PCR扩增。结果表明选用的8对引物能扩增线粒体基因间隔区和内含子区域,并只检测到2个变异位点,说明mtDNA在红麻光钝感突变体与亲本之间相当保守。
     6、应用8对cpDNA(叶绿体DNA)通用引物对红麻光钝感突变体及相近的红麻品种的叶绿体基因组非编码区DNA序列进行PCR扩增。共扩增植物cpDNA约13kb,占其叶绿体基因组8.1%。扩增产物分别应用4种限制性内切酶(EcoRⅠHindⅢ、TaqⅠAulⅠ)酶切,1.5%琼脂糖电泳检测结果表明:cpDNA在红麻光钝感突变体与正常品种比较,均能扩增出条带,大小在1.5kb-2.0Kb之间,说明所选用的通用引物可用于红麻叶绿体基因组DNA研究,将PCR扩增产物进行酶切,每个片段均有相同的酶切位点,仅cp4引物的PCR扩增产物用AluⅠ内切酶酶切得到多态片段,但突变体与亲本之间未发现叶绿体基因组DNA发生变异。上述结果表明,红麻光钝感突变发生在基因组DNA上,与线粒体与叶绿体的基因组DNA无关。
     6、以红麻光周期不敏感(光钝感)突变体的开花期与正常品种福红952叶片为材料,首先建立并优化蛋白质双向电泳研究体系,即采用蛋白质双向电泳(two-dimensional electrophoresis,2-DE)技术,在样品制备、不同的蛋白质上样量及染色方法等方面进行了比较研究,研究结果表明:(1)红麻叶片TCA丙酮法比苯酚抽提法提取效率高且蛋白齐全,其中TCA-丙酮法蛋白提取率为20.56%,苯酚抽提法提取效率为4.90%。(2)蛋白质干粉的裂解液中加入0.2M硫脲后可以获得更多的蛋白质差异点,这些差异点主要为碱性蛋白。(3)分别利用银染和考马斯亮蓝染色对第二向SDS-PAGE胶进行染色,结果表明,银染灵敏度最高,但可重复性差,考马斯亮蓝G250比R250染色方法更灵敏,因此建议使用考马斯亮蓝G250,可以获得理想的结果。(4)利用上述改良后的方法提取红麻福红952与光钝感红麻叶片总蛋白,进行双向电泳,对染色后的胶体图片利用PDQUEST软件进一步对双向电泳产生的2-DE蛋白质图谱进行比较分析,获得9个差异的蛋白质点,其中2个核酮糖-1,5-二磷酸羧化酶,质体转酮酶,果糖1,6-磷酸醛缩酶,热激蛋白共5个点在品种福红952中出现,而在突变体中表现为蛋白表达量下调,核酮糖-1,5-二磷酸羧化酶/加氧酶大亚基在突变体中表现为蛋白表达量上调,核酮糖-1,5-二磷酸羧化酶(Spot2)和一个未知蛋白(spot7)只在突变体中出现,H+-ATP合成酶(Spot4)只在品种福红952的参照中表达,而在突变体中缺失,这些差异蛋白可能与红麻对光的敏感度有关。为红麻光钝感蛋白质组学功能基因组序列分析研究奠定实验基础。
Kenaf is Malvaceae Hibiscus, Annual herbaceous short-day plant bast fiber, With strong resistance to environmental stress, adaptability, high yield and fiber quality characteristics, and a major fiber materials of Hemp and Paper Industry in China, But the early flowering hybrid varieties has seriously affected the fiber output. In this study, space mutation Fuhong 952 (light insensitive) and control varieties fuhong 952 was used as material, In Hainan showed three types of mutant:Buds falling off(GⅠtypes), Not flowering bud(GⅡtypes), flowering but Fruitless(GⅢtypes), through plant physiology, genomic differences, proteomics light insensitive mutant with short light-induced infertility and genetic law respectively to study its Molecular mechanism, The results are as follows:
     1、kenaf Photoperiod Observation:Kenaf light insensitive mutant under the short-day conditions in Hainan Province's winter, the mutant is not Bloom until 155 days, but the control varieties can flower in 120 days,12 hours of artificial short day treatment in Fuzhou's winter, the control varieties can flower in 20 days, the mutant 30days, Budding time delayed 10days.
     2、hybrid with light insensitive of kenaf varieties Fuhong 952 mutant and light-sensitive cytoplasmic maintainer line L23B, Hainan 130 days short day conditions induced differentiation and growth of buds, That mutant buds appeared three types, that is buds yellow off, squaring non-flowering, when the flowers but not fruit, F2 group Separation ratio was 3:1 (light sensitive with light insensitive),the results showed that, light Insensitive and light sensitivity were controlled by a pair of gene,photoperiod insensitivity Characters was Recessive gene, The results can further light insensitive kenaf Cloning and provide an important molecular mechanism of genetic material.
     3、Measured in the artificial short day photoperiod treatment and control of light insensitive kenaf Fuhong 952 in three different periods of leaf soluble sugar, soluble protein and soluble amino acid content of the dynamic changes, The results show that With the different stages of development of kenaf, that is one split leaf, three splits leaf, five splits leaf, Leaf soluble sugar, soluble protein, soluble amino acids all showed a low, high, low variation, the Change of varieties fuhong 952 was larger than that of light insensitive plants, Show that the light insensitive kenaf induced in the light cycle shown photoperiod insensitivity and its leaves are closely related to the physiological metabolism.
     4、From the 24 polymorphisms RAPD primers were selected and 3 primers can distinguish light insensitive mutant of the control kenaf varieties, Get four specific bands, Sequencing showed that the size of the four fragments were 612bp,723bp, 743bp,1178bp,the results can prepare for further SCAR markers development.
     5、eight universal Primer Pairs of chloroplast genome were used to amplify chloroplast DNA (mtDNA) non-coding regions in kenaf varieties,the results shows that those primers can used to amplify mitochondrial gene spacer regions and introns, and Detected only two variable sites, the results also showed that mtDNA in the light insensitive kenaf between mutants and controls was very conservative.
     6、eight universal Primer Pairs of Mitochondria genome were used to amplify chloroplast DNA (mtDNA) non-coding regions in kenaf varieties, approximately 20.4kb,8.1% of the chloroplast genome was analyzed. The products were digested by four restriction enzymes. The results showed that all the primes can amplify bands of size between 1.5kb-2.0Kb, The amplification products both can be digested by restriction enzymes, only primers cp4 has digested Polymorphic fragments, but there is no difference between control varieties and the mutant, These results indicate that the mutant gene of kenaf light-insensitive was in genome DNA, and has no relationship to Mitochondria and chloroplast genome DNA.
     7、To establish a research system of kenaf in proteomics, we use ligh-insensitive kenaf mutants flowering and normal varieties Fuhong varieties 952 as materials. established and optimized the proteins firstly bidirectional electrophoresis system, the protein electrophoreses (bidirectional to dimensional electrophoresis,2-DE) technology. In the sample preparation, different protein samples and dyeing methods in comparative study, etc. Research results show that:
     (1) kenaf leaf total protein with TCA acetone extraction method was more effective than Phenol extraction, Protein extraction rate of TCA acetone extraction was 20.56%, Phenol extraction was of 4.90%.
     (2) the protein Lysate contain 0.2 M thiourea can get more points of different protein, which were mainly basic protein.
     (3) Of the silver stain and examination of the second MaSiLiang blue staining to SDS-PAGE glue staining, the results show that the highest sensitivity silver stain, but poor, repeatability MaSiLiang G250 blue staining method is more sensitive than R250, therefore suggest using test MaSiLiang G250 blue, can get ideal result.
     (4) Using the improved method extracting varieties fuhong 952 and kenaf are insensitive to kenaf blades, total protein electrophoresis, two-way to dye colloid pictures using PDQUEST software for two-way electrophoresis of further 2-DE protein map comparison and analysis of the difference, get nine protein points, including five proteins in mutant were down-regulated expression, Ribulose 1, 5-biphosphate carboxylase large subunit (spot3) in the mutant was up-regulated expression, Ribulose 1,5-biphosphate carboxylase large subunit (spot2) and a hypothetical protein (spot7) were not expressed in varieties fuhong 952, but in the mutants, H(+)-transporting ATP synthase (Spot4) was only expressed in varieties of 952 reference, these differences may be relevant with the light sensitivity of kenaf, The results of the light insensitive kenaf proteomics analysis lays the foundation of functional genome
引文
[1]粟建光,戴志刚等.红麻种植资源描述规范和数据标准[M].北京:中国农业出版社,2006,3: p1
    [2]熊和平.麻类作物育种学.北京:中国农业科学技术出版社[M].2008,10:p208,211-212
    [3]彭定祥,蔡明历.光照时间对红麻不同熟期品种和光钝感材料发育影响研究[J].中国麻作,1998,20(4):9-12
    [4]李德芳,刘伟杰,谭石林等.红麻对短光钝感材料的发掘及其研究[J].作物学报,1996,22(1): 50-54
    [5]任锡畴,张菊野,罗文华,金仕萍.短日照诱导前的长日照对红麻Hibiscus cannabinus cv·South-selected花形成的抑制作用[J].植物生理与分子生物学学报,1982,8(03):213-221
    [6]邓丽卿.红麻品种的光温反应特性研究[J].中国农业科学,1987,20(4):56-62
    [7]郎续纲,孙庆祥.红麻南种北植短光照制种的研究.作物学报,1981,7(1):37-42
    [8]曾群,赵仲华,赵淑清.植物开花时间调控的信号途径.遗传,2006,28(8):1031-1036.
    [9]Mouradov A, Cremer E Coupland G Control of flowering time:interacting pathways as a basis for diversity. PlantCell,2002,14(Suppl.):S111-130.
    [10]Yanovsky MJ, Kay SA. Living by the calendar:how plantsknow when to flower. Nat Rev Mol Cell Biof,2003,4(4):265-276.
    [11]Komeda Y Genetic regulation of time to flower in Arabi-dopsis thaliana. Annu Rev Plant Biol,2004,55(1):521-535.
    [12]Perilleux C, Bernier G The control of flowering:do genetical and physiological approaches converge. Annu Plant Rev,2002,6(1):1-32.
    [13]Huang T, Bohlenius H, Eriksson S, Parcy F, Nilsson O. The mRNA of the Arabidopsis gene FT moves from leaf to shoot apex and induces flowering. Science,2005,309(5741): 1694-1696.
    [14]Corbesier L, Vincent C, Jang S, Fornara F, Fan Q, Searlel, Giakountis A, Farrona S, Gissot L, Turnbull C, Coupland G FT protein movement contributes to long-distance sinaling in floral induction of Arabidopsis. Science,2007,316(5827):1030-1033.
    [15]Curtis OF, Chang H T.The relative effectiveness of the temperature of the crown as contrasted with that of the rest of the plant upon the flowering of celery plants. Am J Bot, 1930,17:1047-1048
    [16]Chouard P.Vernalization and its relation to dormancy.Annu Rev Plant Physiol,1960,11: 191-238
    [17]谭克辉,张玉竹.胰蛋白酶在冬小麦春化过程中的作用.植物学报,1982,24(3)241-246
    [18]谭克辉.低温诱导植物开花的机理.植物生理生化进展.1983,2:90-107
    [19]谭克辉.春化过程中特异蛋白质的合成.植物学集刊,1992,6:13-16
    [20]Finnegan EJ, Genger RK, Peacock WJ, Dennis ES. DNA methylation in plants. Annu Rev Plant Physiol Plant MolBiol,1998,49(1):223-247.
    [21]Corbesier L, Coupland G. Photoperiodic flowering of Arabidopsis:integrating genetic and physiological approaches to characterization of the floral stimulus. Plant Cell Environ,2005, 28(1):54-66.
    [22]Achard P, Herr A, Baulcombe DC,Harber NP.Modulartion of floral development by a gibberellin-regulated microRNA.Development,2004,131(4):3357-3365
    [23]Izawa Oikawa T'Tokutomi S, Okuno K, Shimamoto K. Phytochromes confer the photoperiodic control of flowe-ring in rice(a short-day plant). Plant J,2000,22(5):391-399.
    [24]Egea-Cortines M, Weiss J. A rapid coming of age in tree biotechnology. NatBiotechnol, 2001,19(3):215-216.
    [25]Thornsberry JM, Goodman MM, Doebley J, Kresovich S, Nielsen D, Buckler IV ES. Dwarf8 polymorphisms asso-ciate with variation in flowering time. Nat Genet,2001,28(3):286-289.
    [26]Suarez-Lopez Wheatley K, Robson F, Onouchi H, Val-verde F Coupland G. CONSTANS mediates between the circadian clock and the control of flowering in Arabidop-sis. Nature, 2001,410(6832):1116-1120.
    [27]BornerR, Kampmann G, Chandler J, Gleissner R, WismanE, Apel K, Melzer S. A MADS domain gene involved in the transition to flowering in Arabidopsis. Plant,2000,24(5): 591-599.
    [28]丁士健,夏其昌.蛋白质组学的发展与科学仪器现代化[J].现代科学仪器,2001(3):12-17.
    [29]Lorthals G L, Wasinger V C, Hochstrasser D F.The dynamic range of protein expression:a challenge for proteomic research[J].Electrophoresis,2000,21:1104.
    [30]李峰,肖志强,陈主初.质谱数据库查询软件的应用与评价[J].生命的化学,2003,23(6):467-469.
    [31]Humphery-Smith I, Bhckstock W.Proteome analysis:genomics via the output rather than the input code[J].J Prot Chem,1997,16(5):537-544.
    [32]伊正君.蛋白质组学的相关技术研究进展[J].国外医学生物医学工程分册,2005,28:318-320.
    [33]李明珠,张部昌,黄留玉.蛋白质组学中的分离检测技术[J].生物技术通讯,2005,16(1):93-95.
    [34]朱红,周海涛,何春涤,陈洪铎.蛋白质组学主要技术及其应用进展[J].国际皮肤性病学杂志,2006,32(1):44-47.
    [35]王阳梦,董银卯,何聪芬.蛋白质组学核心技术研究进展[J].北京工商大学学报(自然科学版),2006,24(4):9-14.
    [36]上官斌,虞鹏程,简少卿.蛋白质组技术研究进展[J].江西科学,2004,22(4):260-264.
    [37]Guo Y M, Shen S H, Jing Y X, et al.Plant proteomics in the post-genomic era[J].Acta Botarica Sinica,2002,44(6):631-641.
    [38]贺林.解码生命[M].北京:科学出版社,2000.
    [39]Barreneche T, Bahrman N, Kremer A.Two-dimensional gel electrophoresis confirms the loe level of genetic diferentiation between Quercus robur L and Quercus petraea(Matt) Lieb1[J].Forest Genet,1996,3(1):89-92.
    [40]郭奕明,沈世华,荆玉详等.Plant proteomics in the post-genomic era[J].植物学报,2002,44(6):631-641.
    [41]Okamoto T, Higuchi K, Shinkawa T, et al.Identification of major proteins in maize egg cells[J].Plant cell Physiol,2004,45:1406-1412.
    [42]Mechin V, Balliau T, Chateau-Joubert S, et al.A two-dimensional proteome map of maize endosperm [J]. Phytochemistry,2004,65:1609-1618.
    [43]Mechin V, Thevenot C, Guilloux ML, et al.Developmental analysis of maize endosperm proteome suggests a pivotal role for pyruvate orthophosphate dikinase[J].Plant Physiology, 2007,143:1203-1219.
    [44]Patricia M.Lonosky, Xiaosi Zhang, Vasant G.Honavar, Drena L.Dobbs, AigenFu, and Steve R.Rodermel.A Proteomic Analysis of Maize Chloroplast Biogenesis[J].Plant Physiology, February,2004,134:560-574.
    [45]Maltman D J, Simon J W, Wheeler C H, Dunn M J, Wait R, Slabas A R.Proteomic analyses of the endo-plasmic recticulum from developing and germinating seed of castor(Ricinus communis).Electrophoresis, 2002,23(4):626-639
    [46]李荣春.双孢蘑菇分子标记研究进展.微生物学通报,2002,29(2):64-67.
    [47]方宣钧,吴为人,唐纪良.作物DNA标记辅助育种,北京:科学出版社,2001,1-9
    [48]王军,谢皓,郭二虎,等.DNA分子标记及其在谷子遗传育种中的应用[J].北京农学院学报,2005,20(1):76-80.
    [49]王晓梅,杨秀荣.DNA分子标记研究进展[J].天津农学院学报,2000,7(1):21-24
    [50]Carlson JE, Tulsieram LK, Glaubitz JC, Luk VWK, Kauffeldt C, Rutledge R(1991 Segregation of random amplifyied DNA markers in Fl progeny of conifers.Theor Appl Genet 83:194-200
    [51]Reiter RS, Williams JGK, Feldmann KA, Rafalski JA, Tingey SV, Scolnik PA(1992)Global and local genome mapping in Arabidopsis thaliana by using recombinant inbred lines and random amplified polymorphic DNAS (RAPD).Proc Natl Acad Sci USA89:1477-1481
    [52]Giovannoni JJ, Wing RA, Ganal MW, Tanksley S(1991)Isolation of molecular marker from specific chromosomal intervals using DNA pools from exiting mapping populations.Nucleic Acids Res 19:6553-6558
    [53]Michelmore RW, Paran I, Kesseli RV(1991)Identification of markers linked to detect markers in specific genomic regions by using segregating populations.Proc Natl acad Sci USA 88:9828-9832
    [54]Tinker NA, Fortin MG, Mather DE(1993)Random ampified polymorphic DNA and pedigree relationships in spring barley.Theor Appl Gener 85:976-984
    [55]Mailer RJ, Scarth R, Fristenski B(1994)Discrimination among cultivars of rapeseed (Brassica napus L.) using DNA polymorphisms amplified from arbitary primers.Thero Appl Genet87:697-704
    [56]Zeitkiewicz E et al. Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics,1994,20:176-183.
    [57]Zietkiewicz E, Rafalski A, Labuda D.Genome fingerprinting by simple secquence repeat (SSR)-anchored polymerase chain reacion amplification[j].Genomics,1994,20:176-183
    [58]Gupta M, Chyi Y-S, Romero-Severson J, et al.Amplification of DNA makers from evolutionarily diverse genomes using single primers of simple-sequence repeats[J]. Theor Appl Genet,1994,89:998-1006
    [59]Sanchez de la Hoz, MP et al. Simple sequence repeat primers used in polymerase chain reaction amplifications to study genetic diversity in barley. Genome,1995,39:112-117
    [60]江树业,陈启锋,方宣钧.水稻农垦58与农垦58s的RAPD和ISSR分析.农业生物技术学报.2000,8(1):63-66.
    [61]Tsumura Y, Ohba K, trauss SH. Diversity and inheritance of inter-simple sequence repeat polymorphisms in Douglas-fir(Pseudotsuga menziesii) and sugi (Cryptomeria japonica) [J].Theor Appl Genet,1996,92:40-45
    [62]钱韦,葛颂,洪德元.采用RAPD和ISSR标记探讨中国疣粒野生稻的遗传多样性.植物学报,2000,42(7):741-750
    [63]祁建民,周东新,吴为人等.用ISSR标记检测黄麻野生种与栽培种遗传多样性.应用生态学报,2003,14(9):1473-1477
    [64]邱英雄,傅承新,吴斐捷.明党参与川明参群体遗传结构及分子鉴定的ISSR分析.中国中药杂志,2003,28(7):598-603
    [65]葛永奇,邱英雄,丁炳扬等.孑遗植物银杏群体遗传多样性的ISSR分析.生物多样性,2003,11(4):276-287
    [66]Kojima T, Nagaoka T, Noda K, et al. Genetic linkage map of ISSR and RAPD markers in Einkorn wheat in relation to that of RFLP Markers. TAG,1998,96:37-45
    [67]陶爱芬,祁建民,李爱青,方平平,等.红麻优异种质资源遗传多样性与亲缘关系的ISSR分析.作物学报,200531(12):1668-1671
    [68]罗培高,任正隆,张怀渝,等.AFLP分子标记及其在作物遗传育种中的应用与前景[J].作物研究,2001,19(4):406-410.
    [69]伍春莲,孙敏,王颖,等.AFLP分子标记及其在禾本科作物遗传改良中的应用[J].作物研究,2001(4):48-51.
    [70]Feltus, F, A., Wan, J., Sehulze, S.R.et al.2004, An SNP resource for rice genetics and breeding based on subspecies indica and japonica genome alignments Genome Res.,14, 1812-1819
    [71]Li G, Quiros C F.Sequence-related amplified polymorphism(SRAP).A new marker system based on a simple PCR reaction:its application to mapping and gene tagging in Brassica.Theor Appl Genet.2001,103:455-461
    [72]王晓飞,祁建民等.红麻种质资源遗传多样性的SRAP分子标记研究.福建农林大学硕士毕业论文,23—42
    [73]潘俊松,王刚等.黄瓜SRAP遗传连锁图谱的构建及始花节位的基因定位.自然科学进展,2005,15(2):167-172.
    [74]刘立军,蒙祖庆.苎麻基因组SRAP扩增体系的优化研究.分子植物育种2006,4(5):726-730.
    [75]GLi.C.F.Quiros Sequence-related amplified polymorphism(SRAP), a new marker system based on a simple PCR reaction:its application to mapping and gene tagging in Brassica Theor Appl Genet (2001) 103:455-461.
    [76]梁景霞,祁建民等.烟草DNA的提取与SRAP反应体系的建立.中国烟草学报,2005,11(4):33-38.
    [77]揭琴,姜伟,李华,翟红,马代夫.甘薯抗茎线虫病基因的遗传分析及SCAR标记.分子植物育种,2008,6(3):523-526
    [78]盖树鹏,孟祥栋,徐丽娟.大葱雄性不育分子标记辅助选择的研究.分子植物育种,2004,2(2):223-228
    [79]薄天岳,叶华智等.亚麻抗锈病基因M4的特异分子标记,遗传学报,2002,29(10):922-927
    [80]程舟,鲛岛一彦,陈家宽.日本的红麻研究、加工和利用.中国麻业,2001,23(3):16-24
    [81]邓丽卿,粟建光,黄培坤,等.红麻种质资源的形态及分类研究.中国麻作,1991(4):16—20
    [82]郑来久,郁崇文.红黄麻纤维化学改性及纺麻棉混纺纱.大连轻工业学院学报,2002,21(2):145-148.
    [83]姚金怀,胡宝玲,朱世金.黄红麻、棉混纺织物的开发与生产.河南纺织科技,2003,24(4):28—29
    [84]杨晓伶,程舟.地球环境保全及植物资源利用——日本第五届红麻等植物资源利用研究会概述.中国麻业,2002,24(6):36-37.
    [85]李敬机.红麻制浆造纸现状及发展方向(上).中国造纸,1996,15(1):52-57.
    [86]王晓敏,王男,徐瑾.利用红麻制浆废弃物模压包装材料的研究.包装工程,2004,25(3):16-18.
    [87]程舟.中日合作开发绿色红麻板材.林产工业,2002,29(6),54-56
    [88]杨远才,侯伦灯,祁建民.红麻轻质阻燃人造板的研制.中国麻业科学,2006,28(5):239-242.
    [89]杨(?).植物成花的分子调控研究进展[J].热带农业科学,2004,24(5):73-78
    [122]Bernier G, Havelange A Houssa C, et al. Physiological signals that induce floweringlJ J. Plant Cell,1993,5:1147-1155
    [123]韩天富,王金陵.开花前后的光周期处理对大豆叶片蛋白质组分的影响[J].大豆科学,1995,14(2):95-100
    [124]屠乃美,官春云.光周期对稻源库关系的影响[J].作物学报,1999,25(5):596-601
    [125]伊宝重,张月辰,陶佩君,等.光周期诱导对红小豆不同叶龄叶片生理生化特性的影 响,华北农学报。2008,23(2):25-29
    [126]孔祥生.植物生理学实验技术,中国农业出版社[M],2008,p134-136
    [127]Garner W W, Allard H A. Further studies in photoperiodism, the response of the plant to relative length of day and night[J]. J Agrie Res,1923,23(2):871-920
    [128]Knott J E. Efiect of a localized photoperiod on spinach. Proceedings of the American [J]. Horticultural Society,1934,31:152-164
    [97]Chory J, Chatterjee M, Cook R K, el al. From seed germination to flowering, light controls plant development via the pigment phytochrom[J]. Proc Natl Acad Sci USA,1996,93: 12066-12071
    [98]白书农,谭克辉.对光敏水稻研究的回顾与反思:植物光周期现象中叶片信息对茎端的形态建成事件有专一性吗?[J].科学通报,2001,46(9):788-792
    [99]江院,张向前,卢小良,解新明.光周期与氮肥互作对华农1号青饲玉米碳氮代谢相关酶的影响.2008,17(4):92-101
    [100]康彬,童.哲,匡廷云.水稻叶片中一种受光敏色素凋控的光周期诱导蛋白[J].科学通报,2000(45)9:955-959
    [101]袁娟,武天龙,陈典.光周期对扁豆内源激素及游离氨基酸含量的影响[J].上海交通大学学报(农业科学版),2004,22(3):215-217
    [102]赵增煜.常用农业科学实验法[M].北京:中国农业出版社,1986:115-116.
    [103]孟繁静.植物花发育的分子生物学[M].北京:中国农业出版社,1998:86-92
    [104]Bernier G. The control of floral evolution, morphogenesis[J]. Ann Rev Plant Physiol and Plant Mol Biol,1988,39:119-175
    [105]王占朝.火鹤花期调控技术研究[D].保定:河北农业大学,2003
    [106]孟繁静.植物花发育的分子生物学[M].北京:中国农业出版社,1998:86-92
    [107]刘玉平,李建平,兰素缺,等.光周期迟钝基因对小麦农艺性状的影响[J].华北农学报,2001,16(4):59-64
    [108]Burger G, Gray M W, Lang B F. Mitochondrial genomes, anything goes. Trends in Genet,2003.19:709-716
    [109]Sugiura M. The chloroplast chromosomes in land plants. Anreal Review of Cell,1989, 5:51-70
    [110]SugiuraM. chloroplast chromosomes.Plant Molecular Biology,1992,19:149-168)
    [111]Badenes M L, Parfitt D E. Phylogenetic relationships of the cultivated Prunus species form an analysis of chloroplast DNA variation.Theor Appl Genet,1995,90:1035-1041
    [112]Demesure B, Comps B, Petit R J.Chloroplast DNA phylogeograph of the common Beech(fagus sylvatica L.)in Europe.Evolution,1996,50:2515-2520
    [113]Parani M, Lakshmi M, Ziegenhagen B, Fladung M, Senthilkumar P, ParidaA.Molecular Phylogeny of Mangroves VII PCR-RFLP of trns-psbC and rbcL gene regions in 24 mangrove and mangrove-associate species.Theor Appl Genet,2000,100:454-460
    [114]徐建堂,祁建民,方平平等.CTAB法提取红麻总DNA技术优化与ISSR和SRAP扩增效果.中国麻业科学,2007,29(4):179-183
    [115]Sugiura M.The chloroplast genome.Plant Molecular Biology,1992,19:149-168
    [116]O'Farrell P H. High resolution two-dimentional electrophoresis of proteins [J].JBiol Chem, 1975,250:4007-4020.
    [117]Klose J. Protein mapping by combined isoelectric focusing and electrophoresis of mouse tissues. A novel approach to testing for induced mutation in mammals [J].Humangenetic,1975, 26:231-243.
    [118]刘上峰,傅俊江,综述,等.双向电泳技术原理及其应用[M].国外医学、生理、病理科学与临床分册,2002,22(2):197-199.
    [119]郭尧君.蛋白质电泳实验技术[M].2版.北京:科学出版社,2005:111.
    [120]梁宇,荆玉祥,沈世华.植物蛋白质组学研究进展[J].植物生态学报,2004,28(1):114-112.
    [121]祁建民,林荔辉,吴为人等.红麻种质资源创新的理论与实践[J].中国麻作,1999(1)43-44.
    [122]祁建民,周东新,方平平,等.应用RAPD指纹探讨黄麻属种间遗传多样性及其亲缘关系[J].遗传学报,2003(10):926-932.
    [123]祁建民,周东新,方平平等.用ISSR标记检测黄麻野生种与栽培种遗传多样性[J].应用生态学报,2003,(9):1473-1477.
    [124]祁建民,方平平,林荔辉,等.黄麻属种质资源遗传多样性的RAPD与ISSR分子标记及其分析方法比较[J].中国农业科学,2004(12):386-390.
    [125]祁建民,刘国忠,徐建堂.黄麻红麻品种与高效配套技术[M].北京:台海出版社,2008:117-118.
    [126]林金科,郑金贵,袁明,等.茶树蛋白质提取及双向电泳的改良方法[J].茶叶科学,2003,23(1):16-20.
    [127]沙月霞,简桂良.棉叶总蛋白提取及SDS-PAGE电泳的改良[J].棉花学报2005,17(3):146—150.
    [128]朱宏,张中恒,王同昌,等.小麦叶片蛋白质双向电泳的改良[J].东北林业大学学报,2004,32(4):68-69.
    [129]薛妙男,杨继华.沙田柚自交、异交花柱蛋白质的双向电泳[J].广西师范大学学报:自然科学版,2000,18(3):83—86.
    [130]杨继华,颜承,薛妙男,等.沙田柚花粉蛋白质双向电泳分析[J].广西师范大学学报:自然科学版,2002,20(2):73—77.
    [131]秦新民,李惠敏,薛妙男,等.沙田柚自交、异交花粉管蛋白双向电泳分析[J].广西植物,2004,24(6):566-569.
    [132]胡金勇,曾英,桑玉英.双向电泳分析鸢尾绿白嵌合叶片的蛋白质[J].云南植物研究,2002,24(3):387—391.
    [133]董贵俊,张卫东,刘公社.向日葵种子蛋白质的微量提取和双向电泳技术研究[J].中国油料作物学报,2004,26(1):22—26.
    [134]陈伟,吕柳新.顽拗植物荔枝蛋白质双向电泳的改良方法[J].福建农业大学学报,2001,30(1): 123-126.
    [135]Carpentier S C, Witters E, Laukens K, et al. Preparation of protein extracts from recalcitrant plant tissues:An evaluation of different methods for two-dimensional gel electrophoresis analysis. Proteomics,2005,5:2497-2507
    [136]Bradford M.A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding[J].Anal Biochem,1976,72:248-254.
    [137]HE Rui-Feng,DING Yi,ZHANG Jian-Feng et al.Improvement in the Two-dimensional Electrophoresis of Proteins from the Leaves of Plant. HEREDITAS(Beijing),2000, 22(5):319-321.
    [138]王经源,陈舒奕,梁义元,林文雄,等.ISO-DALT双向电泳方法的优化与改进[J].福建农林大学学报,2006,35(2):187-190.
    [139]SHEVCHENKO A, WILM M, VORM O, et al. Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels[J]. Anal Chem,1996,68 (5):850-858.
    [140]谷瑞升,刘群录,陈雪梅,等.木本植物蛋白提取和SDS-PAGE分析方法的比较和优化[J].植物学通报,1999,16(2):171-177.
    [141]Perdew G H,Schaup H W,elivonchick D P. The use of a zwitterionic detergent in two-dimensional gel electrophoresis of trout liver microsomes. Anal Biochem,1983, 135(2):453-455.
    [142]Molloy M P,Herbert B, Walsh B J, Tyler MI, Traini M, Sanchez,J C. Extraction of membrane proteins by differential solubilization for separation using two-dimensional electrophoresis.Electrophoresis,1998,19(5):837-844.
    [143]Rabilloud T, Adessi C, Giraudel A, Lunardi J.Improvement of the solubilization of proteins in two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis,1997, 18(3-4):307-316.
    [144]Cremer F,van de Walle C. Methods for Extraction of Proteins from Green Plant Tissues for Two-Dimension al Polyacrylamide Gel Electrophoresis. Anal Biochem,1985,(147):22-26.
    [145]Dunbar B S. Two-Dimensional Electrophoresis and Immunological Techniques. New York: Plenum Press,1987:67-76.
    [146]孙崇荣,李育庆,汪景长,等.水稻种子蛋白质组分的双向电泳分析[J].作物学报,1987,13(1):63-68.
    [147]逯斌,林兵.一种改良的植物蛋白质双向电泳方法.生物化学与生物物理进展,1989,16(6):480-490.
    [148]刘健平,陈国华,陈本美,周平,唐瑶云,等.蛋白质组双向电泳实验中一些常见失误的分析[J].生命科学研究,2003,7(2):177-180.
    [149]Lan Y, Woodrow L E, Mott K A,1992. Light-dependent changes in ribulose bisphosphate carboxylase activase activity in leaves.Plant Physiol,99:304-309
    [150]Lan Y, Woodrow L E, Mott K A,1992. Light-dependent changes in ribulose bisphosphate carboxylase activase activity in leaves.Plant Physiol,99:304-309
    [151]Salvucci ME,Ogren WL.The mechanism of Rubisco activase:insights from studies of the properties and structure of the enzyme[J].Photosynth Res,1996,47:1-11
    [152]韩鹰,陈刚,王忠.Rubisco活化酶的研究进展[J].植物学通报,2000,17(4):306-311.
    [182]Uwe Sonnewaldb, Ralf Badurb, Ralf Flachmanna,Mark Stitta. A Small Decrease of Plastid Transketolase Activity in Antisense Tobacco Transformants Has Dramatic Effects on Photosynthesis and Phenylpropanoid Metabolism Stefan Henkesa, Plant Cell,13,535-551

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700