鸡类胰岛素生长因子-Ⅰ基因单碱基突变对该基因转录、表达以及对生长、屠体性状的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鸡类胰岛素生长因子-Ⅰ(IGF-Ⅰ)对生物体的生长发育具有重要的调控作用,直接发挥生长激素的促生长发育功能。前人的研究结果表明:在鸡的1号染色体长臂近着丝粒附近存在一个影响青年鸡体重的数量性状座位(QTL),IGF-Ⅰ基因处于该区域内。我们认为IGF-Ⅰ基因是产生这种QTL效应的主要因素。
     通过对丝羽乌骨鸡和肉鸡IGF-Ⅰ基因的部分碱基序列测定,发现在其5’端调控区存在一处单碱基突变:C→A。肉鸡中大部分都是突变型(A),而丝羽乌骨鸡则全部是野生型(C)。在丝羽乌骨鸡和肉鸡杂交产生的F2代群体中进行基因型鉴定,扩大样本量。最后的统计分析结果显示:该突变位点与一些生长、屠体性状相关显著,对生长速度有显著影响。
     该突变位于IGF-Ⅰ基因的启动子区域,距转录启始位点和“TATA”盒较近,而且该区段在几个物种中高度保守。转录因子结合位点预测分析结果表明:突变导致基因5’端启动子区域增加一个转录因子CdxA与之结合。CdxA是鸡体内特异表达的同源异形盒基因,其对消化器官,尤其是肠发育有很重要的调节作用。纯化的外源表达的融合蛋白GST—CdxA与突变和非突变寡核苷酸序列相互作用的电泳迁移率变动实验(EMSA)体外证明了突变确实增加了转录因子CdxA与其结合。相关文献报道:转录因子cDxA能够使报告基因的转录水平显著增加。因此,突变型个体IGF-Ⅰ基因的转录、表达水平也要比非突变个体的水平显著增加。由于转录因子CdxA在鸡出生后仅在肠上皮细胞中表达,虽然IGF-Ⅰ基因在肝脏及其全身多种组织、器官表达,但除了肠上皮细胞外,其他组织、器官没有转录因子与IGF-Ⅰ基因相结合,所以突变型个体仅在肠组织中IGF-Ⅰ基因的转录、表达水平上升,其它组织中则无变化。通过荧光实时定量PCR和放射性免疫实验技术,我们检测了突变和非突变型个体IGF-Ⅰ基因在肝脏、小肠中的转录、表达情况。在肝脏中,IGF-Ⅰ基因的转录、表达水平无显著的基因型差异。在小肠中,突变型个体IGF-Ⅰ基因的转录水平在三周龄时比非突变型个体高出约1倍,表达水平高出约30%。6周龄和9周龄时转录、表达水平没有显著的差异。
     IGF-Ⅰ基因能促进人的小肠平滑肌细胞生长,我们的实验结果证明IGF-Ⅰ基因同样能促进鸡的小肠平滑肌细胞生长。由于突变型个体肠组织中IGF-Ⅰ的含量比非突变型个体高出约30%,因此其平滑肌细胞、整个肠组织生长、发育更快。最后导致小肠长度比非突变型个体长约3%。小肠是重要的消化、吸收器官,由于突变型个体的消化、吸收面积增大,使其在同样的条件下获得更多的营养成份,因而其生长速度加快,获得了较高的体重和其它一些屠体性状均值。
     在畜禽中,长期对生长速度进行人工选择,可以导致该品种(系)消化器官相对比例的上升,使其消化、吸收能力增强,我们的实验结果验证了这种观点,同时也可以作为解释肉鸡为什么具有很高生长速度的多个因素之一。可以应用于将来的分子育种工作中。数量性状座位(QTL)是基因组上的一段区域,含有一个或几个影响数量性状的基因。某一数量性状一般受多个基因以及环境因素的影响,每个基因对该性状的影响程度相对较小,加上环境因素的作用,寻找、证明QTL基因比较困难。但近年随着一些新的技术手段、统计分析工具的发展以及对基因组的更深入的研
A QTL affecting body weight of young chickens was mapped to the short arm of chromosome 1 near the centromere using an F2 population crossing of a broiler sire-line and egg-lying line previously. Searching for genes or putative genes in this region, we found that the insulin-like growth factor-I gene is the strongest candidate gene for this effect base on its crucial role in growth and development.We identified a C-A mutation nearing the putative 'TATA' box and the transcriptional start site. Association study demonstrated that the regulatory polymorphism is strongly associated with growth and carcass traits. Birds with A A genotype have more 6 week, 9 week and 12 week body weight than birds with CC and CA genotype, in others traits, the AA birds have also higher traits means than AC and CC birds, such as live weight, carcass weight, eviscerated yield with giblet, eviscerated yield, breast muscle weight, leg muscle weight, heart weight, abdominal fat weight, small intestine length, etc.The mutation occurs in the regulatory region which is highly conserved in several species. The mutation increases a transcription factor of CdxA in vitro and in vivo, which has activity of enhancing transcription level of reporter plasmids in CDXA expressing cells, and expressed exclusively in chicken gut after hatch. We analyzed the transcriptional and expressional level of IGF-I gene in liver and in small intestine between the mutant and the wild-type birds at 3, 6, 9 week by real-time quantitative PCR and radioimmunoassay. In liver, there were no transcriptional and expressional differences between the mutant and wild-type birds at 3, 6, 9 week age; in small intestine, the mutant birds had about one-fold mRNA and 30% protein of IGF-I higher than wild type birds at 3 week age, and no significant genotype difference at 6 and 9 week age. Thus the mutation results in the increase of expressional efficiency in vivo. The mutant birds have higher IGF-I in small intestine, and high IGF-I can promote intestine cell growth faster, then these birds favor the longer small intestine length, with more nutrition digested in and absorbed from intestine the mutant birds finally result in higher growth rate and others carcass traits means.Our results supported the view that selection for high growth rate in birds is linked to an increase in the relative size of the digestive organs and rapid early development of the digestive organs. Our results may be also an example of a complex genetic traits created by multiple susceptibility genes. Identification of QTL gene can provide suggestive information about normal development and disease processes, and now with the development of new genetic technique, statistical tools and better characterized genome, find QTL gene is becoming easier than before. The results are also useful in practice of chicken molecular breeding programme in the near future.
引文
[1] Brown W.R.A., Hubbard S.J., Tickle C. et al. The Chicken as a model for large-scale analyses of vertebrate gene function. Nature Reviews Genetics 2003,4: 87-98.
    [2] Collins F.S., Green E.D., Guttmacher A.E. et al. Avision for the future of genomics research. Nature 2003, 422: 835-847.
    [3] Pearson H. Chicken genome due at year's end. Nature News 2003, April 29.
    [4] Salmon W, D, Daughaday W H. A hormonally controlled serum factor which stimulates sulfate incorporation by cartilage in vivo, J Lab clin Med 1957,49:825-836
    [5] Mohan S, Baylink DJ, Pettis JL, et al. Editoral:Insulin-like growth factor(IGF) binding protein sinserum Do they have additional roles be sides modulating the endocrine IGF actions J Clin Endocrinol Metab, 1996,81(9): 3817 3820.
    [6] Gluckman PD, Douglas RG, Ambler GR, et al. The endocrine role of insulin like growth factorl Acta Paediatr Scand, 1991,372 [Sup pl]: 97 105.
    [7] Daughaday WH, Phillips LS, Mueller MC,et al. The effects of insulin and growth hormone on the release of soma to medin by the isolated rat liver Endocrinology, 1976,98(4): 1214 1219.
    [8] Ernst M, Froesch ER. Growth hormone dependent stimulation of osteoblast like cells in serum free cultures via local synthesis of insulin like Growth factorl Biochem Biophys Res Commun,1988,151(1):142 147.
    [9] Thissen JP, Pucilowska JB, Underwood LE. Differential regulation of insulin like growth factorl (IGF 1) and IGF binding protein 1 messenger ribonucleic acids by amino acid availability and growth hormone in rat hepatocyte primary culture Endocrinology, 1994,1 34(6): 1570-1576.
    [10] Maiter D, Maes M,Underwood LD,et al. Early changes in serum concentrations of somato medin Cinduced by dietary protein deprivationin ratsxontributions of growth hormone receptor and post receptor defects.J Endocrinol, 1988,118(1): 113 120.
    [11] Malmlof K, Arrhenius Nyberg V,Saxerholt H,et al. The role of insulin, insulin like growth factor 1 and growth hormone in counteracting Dexamethasone induced nitrogen wasting in rats. Horm Metab Res, 1997,29(1):20 24.
    [12] Lo HC, Hirvonen MD, Kritsch KR,et al. Growth hormone or insulin like growth factor 1 increases fat oxidation and decreases protein oxidation without altering energy expenditure in parenterally fed rats.Am J Clin Nutr,1997,65(ll):1384 1390.
    [13] Salomom F,Cuneo RC,Hesp R,et al.The effects of treatment with recombineant human growth hormone on body composition and metabolism in adults with growth hormone deficiency. N Engl J Med, 1989, 321(22): 1797 1803.
    [14] Pascual M, Larraode J, Martinez JA. Insulin like growth factor1 (IGF1)affects plasma lipid profile and inhibits the lipolyticaction of growth hormone(GH) in isolated adipocytes.Life Science, 1995,57(9): 1213-1218.
    [15] Oscarsson J, Lundstam U, Gustafsson C,et al. Recombinant human insulin like growth factor 1 decreases serum lipoprotein concentrations in normal adult men. Clin Endocrinol, 1995,42(3): 673 676.
    [16] Streicher R, Kotzka J. SREBP 1 mediate sactivation of the low density lipo protein receptor promoter by insulin and insulin like growth factor 1. J Biol Chem, 1996,271(18):7128-7133.
    [17] Froesch ER, Zenobi PD, Hussain M. Metabolic and the rapeutic effects of insulin like growth factorl. Horm Res,1994,42(l):66 71
    [18] Veldhuis J, Nestler J, Strauss J, et al. Insulin like growth factor(somatomedin C)modulates low density lipo-protein metabolism by swine granulose cells. Endocrinology, 1987,121(2):340 346.
    [19] Tan KCB, Shiu SWM, Janus ED, et al. LDL subfraction sinacromegaly: relation to growth hormone and insulin like growth factor 1. Athrosclerosis, 1997,129(1):59 65.
    [20] Kerr DE. Effects of passive immunization of growing guinea pigs with an insulin like growth factor I monoclonal antibody. J En docrinol, 1990,124:403 415.
    [21] Devol DL. Activation of insulin like growth factor gene expression dnuring work induced skeletal muscle growth. Am J Physiol,1990, 259:89 95.
    [22] Evock CM. Effect of GH status on IGF I and IGF II concentractions and serum IGF binding profiles in pigs. J Anim Sci,1990, 68:1963 1964.
    [23] Clemmons DR, Underwood LE. Nutritional regulation of IGF I and IGFbinding proteins. AnnuRev Nutr,1991,11:393 412.
    [24] Pash FM. Regulations of insulin like growth factor I transcription by prosta glandin E2 in osteoblast. Endocrinology, 1995,136:33-38.
    [25] Murphy LJ, Ghahary A. Uterine insulin like growth factor I:regulation of expression and its role in estrogen induced uterine proliferation. Endocrinol Rev, 1990,11:443 453.
    [26] Duguay SJ. Nucleotide sequence and tissue distribution of three insulin like growth factor I phrohormones in salmon. Mol Endocrinol, 1992, 3: 2005 2010.
    [27] Kikuchi K. Expression of insulin like growth factor I during chicken development. Endocrinology, 1991,128:1323 1328.
    [28] Ruan W.. Estradiol enhances the stimulatory effect of insulin like growth factor I (IGF I )on mammary development andgrowth hormone induced IGF I messenger ribonucleic cacid. Endocrinology, 1995,136:1296 1302.
    [29] Russ C. The somatogenic hormones and insulin like growth factor I :Stimulators of lymphopoiesis and immunefunction. Endocrine Reiews,1997,18:157 174.
    [30] Mccormick SD. Osmo regulatory actions of insulin likeg rowth factor I in rainbow trout(Oncorhynchusmykiss). J Endocrinol, 1991,130:87 92.
    [31] Rinderknecht E, Humbel R E. The amino acid sequence of human insulin-like growth factorl and its structural homology with proinsulin. J Biol Chem 1978, 253:2769-2776
    [32] Rinderknecht E, Humbel R E. primary structure of human insulin-like growth factor II. FEBS lett 1978 89:283-286
    [33] Blundell T L.. Insulin-like growth factors: A model for teriary structure accounting for immunoreactirity and receptor binding Proc Natl Acad Sci USA, 1978. 75: 180-184
    [34] Froesh E R, Schmid Chr, and Zapf J. Actions of insulin-like growth factors.Ann. Rev physiol. 1985.47:443-467
    [35] Schwander J. Synthesis and secretion of insulin-like growth factor and its binding protein by the perfused rat liver: vependence on growth hormone status. Endocrinology 1983. 113: 297-305
    [36] Dave S R. Francis G L . purification, partial sequences and properties of chicken insulin-like growth factors. J Endocr 1998 117:173-181
    [37] Klein S, Morrice D R. Geneti and physical mapping of the chicken IGF-I gene to chromosome 1 and conservation of synteny with other vertebrate genomes. J of Heredity 1996, 87: 10-14
    [38] Kajimoto Y and Rotwein P. Structure of the chicken insulin-like growth factor I gene reveals conserved promoter elements J of Biological chemistry 1991. 266:(15): 9724-9731
    [39] Celiker R, Arslan S. Comparison of serum insulin like growth factor 1 and growth hormone levels in osteoporotic and non osteoporotic post menopausal women. RheumatolInt, 2000,19:205 208.
    [40] Kanatani M, Sugimoto T, Kano J, et al. IGF I mediates the stimulato ry effect of high phosphate concentration on osteoblastic cell proliferation. J Cell Physiol, 2002,190:306 312.
    [41] Sakata T, Halloran BP, Elalieh HZ, et al.Skeletal unloading induces resistance to insulin like growth factor I on bone formation.Bone, 2003,32:669 680.
    [42] Farley JR, Stilt Coffing B. Apoptosis may determine the release of skeletal alkaline phosphatase activity from human osteoblast linecells. Calcif Tissue Int, 2001,68:43 52.
    [43] Bourrin S, Ammann R, Bonjour JP, et al. Dietary protein restriction lowers plasma insulin like growth factor I (IGF I ),impairscortical bone formation,and induces osteoblastic resistance toIGF I in adult fe malerats. Endocrinology, 2000,141:3149 3155.
    [44] Grinspoon S, Thomas L, Miller K, et al. Effects of recombinant human IGF I and oral contraceptive administration on bone density in anorexia nervosa. J Clin Endocrinol Metab, 2002,87:2883 2891.
    [45] Ma ZJ, Misawa H, Yamaguchi M. Stimulatory effect of zinc on insulin like growth factor I and transforming growth factor beta1 production with bone growth of new born rats. Int J Mol Med,2001,8:623 628.
    [46] Olney RC. Regulation of bone mass by growth hormone. Med Pediatr Oncol,2003,41:228 234.
    [47] Green J, Goldberg R, Maor G. PTH ameliorate sacidosis induced adverse effects in skeletal growth centers:thePTH IGF I axis.Kidney Int,2003,63:487 500.
    [48] Suliman IA, El Bakri NK, Adem A, et al. The effect of ovariectomy and ovarian steroid treatment on growth hormone and insulin likeg rowth factor I levels in the rat femur. J Orthop Res,2001,19:1008 1012.
    [49] Nasu M, Sugimoto T, KajiH, et al. Estrogen modulate sosteoblastpro life ration and function regulated by parathy roid hormone in osteoblastic SaOS 2 cells:role of insulin like growth factor(IGF) I and IGF binding protein 5. J Endocrinol, 2000,167:305 313.
    [50] Pepene CE, Kasperk CH, Pfeilschifter J. Effects of triiodo thyronineon the insulin like growth factor system in primary human osteoblasticcells invitro. Bone,2001,29:540 546.
    [51] Kveiborg M, Flyvbjerg A, Eriksen EF, et al. 1,25 Dihydroxyvitamin D3 stimulates the production of insulin like growth factor binding proteins 2, 3and 4 in human bone marrow stromal cells. EurJEn docrinol, 2001,144:549 557.
    [52] Kveiborg M, Flyvbjerg A, Eriksen EF, et al. Transforming growth factor betal stimulates the production of insulin like growth factor I and insulin like growth factor binding protein 3 in human bone marrows tromal osteoblast progenitors. J Endocrinol, 2001,169:549 561.
    [53] Ortiz CO, Chen BK, BaleL K, et al. Transforming growth factor beta regulation of the insulin like growth factor binding protein 4 protease systemin cultured human osteoblasts. J Bone Miner Res,2003,18:1066 1072.
    [54] Power RA, Iwaniec UT, Wronski TJ. Changes in gene expression assoated with the bone anabolic effects of basic fibroblast growth factor in aged ovariectomized rats. Bone, 2002,31:143 148.
    [55] Zhang X, Sobue T, Hurley MM. FGF 2 increases colony formation, PTH receptor,and IGF 1mRNA in mouse marrow stromal cells. Biochem Biophys Res Commun,2002,290:526 531.
    [56] Jehle P, Schulten K, Schulz W, et al. Serum levels of insulin like growth factor(IGF) I and IGF binding protein(IGFBP) 1to 6 and their relationship to bone metabolism in osteoporosis patients.Eur J Intern Med,2003,14:32 38.
    [57] Xu RJ, Mellor DJ, Birtles MJ, et al. Effects of oral IGF-I or IGF-II on digestive organ growth in newborn pigs. Biol Neonate 1994;66:280-7.
    [58] Lee CT, Park KH, Adachi Y, et al. Genomic structure of c-Ki-ras proto-oncogene of the hermaphroditic fish Rivulus marmoratus (teleostei: Rivulidae). Cancer GeneTher,2003,10 (1):57 63.
    [59] Jone JI, Clemmons DR. Insulin-like growth factors and their binding proteins: biological actions. Endocr Rev, 1995,16:3 34.
    [60] Furlanetto RW, Harwell SE, Frick KK. Insulin-like growth factor-I induces cyclin-D1 expression in MG63 human osteosarcoma cells in vitro. Mol Endocrinol, 1994,8:510 517.
    [61] Baserga R. The insulin-like growth factor I receptor: a key to tumor growth? Cancer Res, 1995,55:249 252.
    [62] He YU, Margaret R, Spit Y, et al. In vivo incorporation of C14-l-acetate into liver and plasma lipids of postnatally overfed rats. J Natl Cancer Inst, 1999,91 (2): 151 156.
    [63] Mohamed AV, Pindey JH, Panhloo A, et al. Insulin-like growth factor binding protein-1 in NIDDM: relationship with the insulin resistance syndrome. Clin Endocrinol(Oxf), 1999,50:221-228.
    [64] Li BD, Khosravi MJ, Berkel HJ, et al. Free insulin-like growth factor-I and breast cancer risk Int J Cancer,2001,91:736 739.
    [65] Favoni RE, Cupis AD,Ravera F, et al. Expression and function of the insulin-like growth factor I system in human non-small-cell lung cancer and normal lung cell lines. Int J Cancer, 1994,56(4):858 866.
    [66] Kappel CL, Velez Yangusa MC, Hirschfeld S, et al. Human osteosarcoma cell lines are dependent on insulin-like growth factor I for in vitro growth Cancer Res,1994,54(13):2803 2807.
    [67] Bai HZ, Pollman MJ, InishiY, et al. Association of smooth muscle cell phenotypic modulation with extracellular matrix alterations during neointima formation in rabbit vein grafts. R Circ Res,1999,85(3):229 237.
    [68] Marsui J, Li L, delmonte F, et al. Adenoviral gene transfer of activated phosphatidylinositol 3'-kinase and Akt inhibits apoptosis of hypoxic cardiomyocytes in vitro.Circulation, 1999,100(23):2373 2379.
    [69] Pavelic J, Pavelic L, Karadza J, et al. Insulin-like growth factor family and combined antisense approach in therapy of lung carcinoma. Mol Med, 2002,8(3):149 157.
    [70] Wakai K, Ito Y, Suzuki K, et al. Serum insulin-like growth factors, insulin-like growth factor-binding protein-3, and risk of lung cancer death: a case-control study nested in the Japan Collaborative Cohort (JACC) Study. Jpn J Cancer Res,2002,93(12):1279 1286.
    [71] Chang YS, Gong K, Sun S, et al. Clinical significance of insulin-like growth factor-binding protein-3 expression in stage I non-small cell lung cancer. Clin Cancer Res,2002,8(12):3796 3802.
    [72] Chang YS, Wang L, Liu D, et al. Correlation between insulin-like growth factor-binding protein-3 promoter methylation and prognosis of patients with stage I non-small cell lung cancer.Clin Cancer Res,2002,8(12):3669 3675.
    [73] Lee HY, Chun KH, Liu B, et al. Insulin-like growth factor binding protein-3 inhibits the growth of non-small cell lung cancer. Cancer Res,2002,62 (12):3530 3537.
    [74] Chan JM,Stampfer MJ,Ma J,et al. Insulin-like growth factor-I (IGF-I) and IGF binding protein-3 as predictors of advanced-stage prostate cancer. J Natl Cancer Inst,2002,94(24):1893.
    [75] Singh RP, Dhanalakshmi S,Tyagi AK, et al. Dietary feeding of silibinin inhibits advance human prostate carcinoma growth in athymic nude mice and increases plasma insulin-like growth factor-binding protein-3 levels. Cancer Res,2002,62(11):3063 3069.
    [76] Le Marchand L, Donlon T, Seifried A, et al. Association of a common polymorphism in the human GH1 gene with colorectal neoplasia. J Natl Cancer Inst,2002,94(6):454 460.
    [77] Schmid C, Ghirlanda Keller C,Iapf J. Effects of IGF-I and -II, IGF binding protein-3 (IGFBP-3), and transforming growth factor-beta (TGF-beta) on growth and apoptosis of human osteosarcoma Saos-2/B-10 cells: lack of IGF-independent IGFBP-3 effects. Eur J Endocrinol,2001,145(20):213 221.
    [78] Rosato R, Gerland K, Jammes AH, et al. The IGFBP-3 mRNA and protein levels are IGF-I-dependent and GH-independent in MG-63 human osteosarcoma cells. Mol Cell Endocrinol,2001,175(1 2):15 27.
    [79] Buckbinder L, Talbott R, Velasco Miguel S, et al. Induction of the growth inhibitor IGF-binding protein 3 by p53. Nature, 1995,377:645 649.
    [80] Dunn SE, Kari FW, French J, et al. Dietary restriction reduces insulin-like growth factor I levels, which modulates apoptosis, cell proliferation, and tumor progression in p53-deficient mice. Cancer Res, 1997,57:4667 4672.
    [81] Vasan RS, Sullivan LM, D'Agostino RB, et al. Serum Insulin like growth factor I and risk for heart failure in elderly individuals without usmyocardial infarction.the framing hamheart study. Ann InternMed,2003,139:642 648.
    [82] Cheng W, Reiss K, Kajstura J, et al. Down regulation of the IGF I sys tern parallels the attenuation in the proliferative capacity of ratventricular myoctes during postnatal development. Lab Invest, 1995,72: 646 655.
    [83] Reiss K, Kajstura J, Zhang X, et al. Acutemyo cardialin farction leads to up regulation of the IGF I autocrine system, DNA replication,and nuclear mitotic division in the remaining viable cardiac myocytes. Exp CellRes, 1994,213:463 472.
    [84] Foncea R, Andersson M, Ketterman A, et al. Insulin like growth factor I activate smultiple signal transduction pathway sincultured rat cardiac myocytes .J Biol Chem, 1997, 272:19115 19124.
    [85] Baker J, Liu JP, Robertson EJ, et al. Role of insulin like growth factors in embryonic cand postnatal growth. Cell, 1993,75:73 82.
    [86] Baserga R.The insulin like growth factor I receptona key totumor growth? Cancer Res, 1995, 55:249 252.
    [87] MarinoTA, Haldar S, Williamson EC, et al. Proliferating cell nuclear anti genin developing and adult rat cardiac muscle cells. CircRes, 1991,69(5): 1353 1360.
    [88] Anversa P, Olivetti G, Loud AV. Morphometric study of early postnatal development in the left and right ventri cularmyocardium of the rat.I.Hypertrophy, hyper plasiaandb in ucleation of myocytes. CircRes, 1980,46(4):495 502.
    [89] Jaskulski D, deRiel JK, Mercer WE, et al. Inhibition of cellular proliferation by antisense oligodeoxynucleotidees toPCNA cyclin. Science, 1988,240(4858): 1544 1546.
    [90] Ito H, Hiroe M, HirataY, et al. Insulin like growth factor I induces hypertrophy with enhanced expression of muscles pecific genes in culured rat cardiomyocytes. Circulation,1993,87(5):1715 1721.
    [91] Kajstura J, Cheng W, Reiss K, et al. The IGF I/IGF I receptor sys tern modulates myocyte proliferation but notmyocyte cellular hypertrophyinvitro. ExpCell Res, 1994,215(2):273 283.
    [92] Vetter U, Kupferschmid C, Lang D, et al. Insulin like growth factors and insulin increase the contractility of neonatal rat cardiocytes invitro. Basic Res Cardiol, 1988,83 (6):647 654.
    [93] Johnston DM, Gluckman PD, Bratt CM, et al. Insulin like growth factors elicit positive inotropic responses in isolated rat heart(abstract). Growth Regul, 1994,4:44.
    [94] Freestone NS, Ribaric S, Mason WT. The effect of insulin like growth factor I on adult rat cardiac contractility. Mol Cell Biochem,1996, 163 164:223 229.
    [95] Russell Jones DL, Bates AT, Umpleby AM, et al. Acomparison of the effects of IGF I and insulin on glucose metabolism,fatmetabolism and the cardio vascular system in normal human volunteers. Eur J Clin Invest, 1995,25:403 411.
    [96] Donath MY, Jenni R, Brunner HP, et al. Cardio vascular and metabolic effects of insulin like growth factor I atrest and during exercise in humans. J Clin Endocrinol Metab, 1996, 81 (11):4089 4094.
    [97] Florini JR, Ewton DZ. Induction o fgene expression in muscle by theIGFS. Growth Regul, 1992,2(1):23 29.
    [98] Donath MY, ZapfJ ,Eppenberger Eberhardt M, et al.Insulin like growth factorI stimulates myofibril development and decrease ssmooth muscle alpha actin of adult cardiomyocytes. Proc Natl Acad Sci USA, 1994,91:1686 1690.
    [99] Harder BA, Schaub MC ,Eppenberger HM, et al. Influence of fibroblast growth factor(bFGF) and insulin like growth factor(IGF I )on cytoskeletal and contractile structures and onatrialnatriuretic factor (ANF) expression in adult rat ventricular cardiomyocytes in culture. J Mol Cell Cardiol,1996,28:19 31.
    [100] Guler HP, Zapf J, Scheiwiller E,et al. Recombinant human insulin like growth factor I stimulates growth and hasdistinct effects on organ size in hypophy sectomized rats .Proc Natl Acad Sci USA, 1988, 85: 4889-4893.
    [101] Donath MY, Gosteli Peter MA, HauriC, et al. Insulin like growth factor I stimulates myofibrillar genes and modulates atrialnatriuretic factor mRNA in rat heart Eur J Endocrinol, 1997,137:309 315.
    [102] Kluge A, Zimmermann R, Munkel B, et al. Insulin like growth factor I is involved in inflammation link edangiogenic processe saftermircoem bolisationin porcine heart. Cardiovasc Res, 1995, 29(3): 407 415.
    [103] AkagiY, Liu W, Zebrowski B, et al.Regulation of vascular endothelial growth factor expression in human colon cancer by insulin likegrowth factor I .Cancer Res,1998,58:4008 4014.
    [104] Kotlyar AA,Vered Z,Goldberg I, et al. Insulin like growthf actor I and II preserve myocardial structure in postinfarct swine. Heart, 2001,86(6):693 700.
    [105] Su EJ, Cioffi CL, Stefansson S, et al.Gene therapy vector mediate dexpression of insulin like growth factors protects cardiomyocytes from apoptosis and enhances neovas cularization. J hysiolHeartCirc Physiol,2003,284(4):H1429 40.
    [106] stetterA, Izumo S. Apoptosis:basic mechanisms and implications for cardiovascular disease.Circ Res,1998,82:1111 1129.
    [107] Long X, Boluyt MO, Hipolito ML, et al. P53 and the hypoxia induced apoptosis of cultured neonatal rat cardiacmyocytes. J ClinInvest,1997,99(11):2635 2643
    [108] Gottlieb RA, Burleson KO, Kloner RA, et al. Reperfuasion injury induces apoptosis in rabbit cardiomyocytes. J Clin Invest, 1994, 94(4): 1621-1628.
    [109] vonHarsdorf R, LiPF, DietzR. Signaling pathways in reactive oxygen species induced cardiomyocytea poptosis [J]. Circulation, 1999,99 (22):2934 2941.
    [110] LeRoith D, Roberts CT. Insulin like growth factors. Ann NYA cad Sci, 1993,692:1 9.
    [111] Parrizas M, Saltiel AR, LeRoith D. Insulin like growth factor 1 inhibits apoptosis using the phosphatidylinositol3' kinaseandmitogen activate edproteinkinase pathways. J Biol Chem, 1997, 272(1):154 161.
    [112] Lee WL, Chen JW, Ting CT, et al. Insulin likegrowthfactor I improves cardio vascular function and suppresses apoptosiso fcardiomy ocytesindilated cardiomyopathy. Endocrinology, 1999,140(10): 4831 4840.
    [113] LiQ, LiB, Wang X, et al. Overexpression of insulin like growth factorl in mice protects from myocyte death after infarction, attenuatin gven triculardilation,wallstress,and cardiac hypertrophy. J Clin Invest, 1997,100(8): 1991 1999.
    [114] Reiss K, Cheng W, Giordano A, et al. Myocardial infarctionis coupled with the activation of cyclins and cyclin dependent kinases in myocytes.Exp Cell Res,1996,225(1):44 54.
    [115] Reiss K, Cheng W, Pierzchalski P, et al. Insulin like growth factor 1re captor and its ligand regulate the reentry of adult ventricularmyocytes into the cell cycle. Exp Cell Res, 1997, 235(l):198 209.
    [116] Stromer H, Cittadini A, Douglas PS, et al. Exogenously administered growth hormone and insulin like growth factor I alter intrac ellular Ca2+ handling and enhance cardiac performance. Invitro evaluation in the isolated is ovolumic buffer perfused rat heart Circ Res, 1996, 79 (2):227 236.
    [117] IsgaardJ , Kujacic V, Jennische E, et al. Growth hormone improves cardiac function in rats with experimental myocardial infarction. Eur J Clin Invest, 1997,27(6):517 525.
    [118] Isgaard J, Bergh CH, CaidahlK, et al. Aplacebo controlled study of growth hormone in patients with congestive heart failure. Eur Heart J, 1998,19 (11): 1704 1711.
    [119] Rubin R, Baserga R. Insulin like growth factor I receptor.Its role in cell proliferation, apoptosis, and tumorigenicity . Lab Invest, 1995, 73(3):311 31.
    [120] Liu Tj, Lai Hc, Wu W, et al. developing as trategy to define the effects of insulin like growth factor 1on gene expression profilein cardiomyocytes. Circ Res, 2001,88(12): 1231 1238.
    [121] Datta SR, Brunet A, Greenberg ME. Cellular survival: aplay in three Akts. Genes Dev, 1999, 13(22): 2905 2927.
    [122] Ren J, Brown Borg HM. Impaired cardiac excitation contraction coupling in ventricular myocytes from Ames dwarf mice with IGF I deficiency. Growth Horm IGF Res,2002,12(2):99 105.
    [123] Wickman A, Jonsdottir IH, Bergstrom G, et al. GH and IGF I regulate the expression of endo thelialnitricoxide synthase(eNOS)incardio vascular tissue sofhypophy sectomized female rats. Eur J Endocrinol, 2002,147(4):523 533.
    [124] Moller S, Becker U. Insulin-like growth factor 1 and growth hormone in chronic liver disease. DigDis 1992;10(4):239-248.
    [125] Sheppard MS, Minuk GY, Bhaumick B, Bala RM. et al. Insulin-like growth factors (IGF) in liver disease: differential changes of IGF-I and IGF-II. Clinlnvest Med 1987;10(2):49-53.
    [126] Giovannucei E. Insulin, insulin-like growth factors and colon cancer: a review of the evidence. J Natr 2001; 131(11): 3109S-3120S.
    [127] Katz S, Pescovitz OH, Grosfeld JL., et al. Growth failure and decreased levels of insulin-like growth factor I in obstructive jaundice are reversed by bile diversion. J Pedatr Surg 1991;26(8):900-902.
    [128] Greve JW, Gouma DJ, Soeters PB. et al. Suppression of cellular immunity in obstructive jaundice is caused by endotoxins: a study with germ-free rats. Gastroenterology 1990;98(2):478-485.
    [129] Yuceyar H, Kokuludag A, Coker A. et al. The serum levels of soluble interleukin-2 receptor levels in patients with obstructive jaundice. Hepatogastroenterology 1996;43(10):949-953.
    [130] Rubin LA, Nelson DL.. The soluble interleukin-2 receptor: biology, function, and clinical application. Ann Int Med 1990; 113:619-627.
    [131] Costantino HR, Curley JG, Hsu CC, et al. Determining the water sorption monolayer of lyophilized pharmaceutical proteins Ann RColl Surg Engl 1996;78(6):531-535.
    [132] Heemskerk VH, Daemen MA, Buurman WA., et al. Insulin-like growth factor-1 (IGF-1) and growth hormone (GH) in immunity and inflammation. Cytokine Growth Rew 1999;10(1):5-14.
    [133] Yang Y, Guo L, Ma L, Liu X., et al Expression of growth hormone and insulin-like growth factor in the immune system of children. Hormone Metablic Res 1999;31(6):380-384.
    [134] Balteskard L, Unneberg K, Halvorsen D. et al. Effects of. insulin-like growth factor 1 on neutrophil and monocyte functions in normal and septic states. J Parenter Enteral Nutr 1988;22(3):127-135.
    [135] Brocardo MG, Schillaci R, Galeano A. et al. Early effects of insulin-like growth factor-1 in activated human T lymphocytes. Leukoc Biol2001;70(2):297-305.
    [136] Kooijman R, van Buul-Offers SC, Scholtens LE. et al. T and B cell development in pituitary deficient insulin-like growth factor-II transgenic dwarf mice. J Endocrinel 1997 55(11):165-170.
    [137] Mendenhall CL, Roselle GA, Grossman CJ. et al. II: the effects of recombinant human insulin-like growth factor-1 on immunological recovery in the malnourished alcoholic rat.Alcohol Clin Exp Res 1997;21(9): 1682-1689.
    [138] Lawson JA, Fisher MA, Simmons CA. et al. Parenchymal cell apoptosis as a signal for sinusoidal sequestration and transendothelial migration of neutrophils in murine models of endotoxin and Fas-antibody-induced liver injury. Hepatology 1998;28(3):761-767.
    [139] Lang CH, Pollard V, Fan J. et al. Acute alterations in growth hormone-insulin-like growth factor axis in humans injected with endotoxin. Am J Physiol1997; 273(1Pt2): R371-R378.
    [140] Scopa CD, Koureleas S, Tsamandas AC. et al. Beneficial effects of growth hormone and insulin-like growth factor I on intestinal bacterial translocation, endotoxemia, and apoptosis in experimentally jaundiced rats. J Am Coll Surg 2000;190(4):423-431.
    [141] Glazier A.M., Nadeau J.H. and Aitman T.J. Finding genes that underlie complex traits. Science 2002,298: 2345-2349.
    [142] Korstanje R. and Paigen B. From QTLto gene: the harvest begins. Nature Genetics 2002, 1:235-236.
    [143] Jin W., Riley R.M., Wolfinger R.D. et al. The contributions of sex, genotype and age to transcriptional variance in Drosophila melanogaster. Nature Genetics 2001,29: 389-396.
    [144] Moore A.J. and Kukuk P.F. Quantitative genetic analysis of natural populations.Nature Reviews Genetics 2002, 3:971-978.
    [145] Holland PM, Abramson RD, Watson R. Detection of specific polymerase chain reaction product by utilizing the 5'-3' exonuclease activity of Thermus aquaticus DNA polymerase. Proc Natl Acad Sci U S A, 1991, 88: 7276-7280
    [146] Higuchi R, Dollinger G, Walsh PS. Simultaneous amplification and detection of specific DNA sequences. Biotechnology, 1992,10:413-417.
    [147] Higuchi R, Fockler C, Dollinger G Kinetic PCR analysis: real-time monitoring of DNA amplification reactions. BioTechnology,1993, 11:1026-1030
    [148] Heid CA, Stevens J, Livak KJ. Real time quantitative PCR.GenomeRes, 1996, 6: 986-994.
    [149] Gibson UE, Heid CA, Williams PM. A novel method for real time quantitative RT-PCR. Genome Res, 1996,6:995-1001
    [150] Walker NJ. Real-time and quantitative PCR: applications to mechanism-based toxicology. J Biochem Mol Toxicol, 2001, 15: 121-7
    [151] Parks SB, Popovich BW, Press RD. Real-time polymerase chain reaction with fluorescent hybridization probes for the detection of prevalent mutations causing common thrombophilic and iron overload phenotypes. Am J Clin Pathol, 2001, 115: 439-47.
    [152] Walburger DK, Afonina IA, Wydro R. et al An improved real time PCR method for simultaneous detection of C282Y and H63D mutations in the HFE gene associated with hereditary hemochromatosis. Mutat Res, 2001, 432: 69-78
    [153] Lo YM, Lau TK, Zhang J. et al. Increasedfetal DNA concentrations in the plasma of pregnant women carrying fetuses with trisomy 21. Clin Chem, 1999,45: 1747-51
    [154] Laurendeau I, Bahuau M, Vodovar N. et al. TaqMan PCR-based gene dosage assay for predictive testing in individuals from a cancer family with INK4 locus haploinsufficiency. Clin Chem, 1999,45:982-6
    [155] Costes B, Girodon E, Vidaud D. ei al. Prenatal detection by real-time quantitative PCR and characterization of a new CFTR deletion, 3600+15kbdel5.3kb (or CFTRdelel9). Clin Chem, 2000, 46: 1417-20
    [156] Sewalem, A., Morrice, DM., Law, A., et al. Mapping of quantitative trait loci for body weight at three, six, and nine weeks of age in a broiler layer cross. 2002. Poult Sci. 81:1775-81
    [157] Frumkin, A., Pillemer, G, Haffner, R., et al. A role for CdxA in gut closure and intestinal epithelia differentiation. Development 1994, 120:253-63.
    [158] Frumkin, A., Rangini, Z., Ben-Yehuda, A., et al. A chicken caudal homologue, CHox-cad, is expressed in the epiblast with posterior localization and in the early endodermal lineage. Development. 1991,112:207-19..
    [159] Frumkin, A., Haffner, R., Shapira, E., et al. The chicken CdxA homeobox gene and axial positioning during gastrulation. Development. 1993, 118:553-62.
    [160] Katanbaf, M.N., Dunnington, E.A., and Siegel, RB. Allomorphic relationships from hatching to 56 days in parental lines and F1 crosses of chickens selected 27 generations for high or low body weight. Growth Dev. Aging .1988, 52: 11-21.
    [161] Lilja, C, Sperber, I., and Marks, H.L.. Postnatal growth and organ development in Japanese quail selected for high growth rate. Growth 1985,49: 51-69.
    [162] Lilja, C. and Marks, H.L.. Changes in organ growth pattern associated with long-term selection for high growth rate in quail. Growth Dev. Aging 1991, 55: 219-224.
    [163] Nir, I., Nitzan, Z., and Mahagna, M. Comparative growth and development of the digestive organs and of some enzymes in broiler and egg type chicks after hatching. Br. Poult. Sci. 1993, 34: 523-532.
    [164] Nitzan, Z., Ben-Avraham, G., Zoref, Z .et al. Growth and development of the digestive organs and some enzymes in broiler chicks after hatching. Br. Poult. Sci. 1991, 32: 515-523.
    [165] Lemmey, A.B., Martin, A.A., Read, L.C. et al. IGF-I and the truncated analogue des-(1-3)IGF-I enhance growth in rats after gut resection. Am J Physiol. 1991,260:E213-9.
    [166] Kuemmerle.J.F. Autocrine regulation of growth in cultured human intestinal muscle by growth-factors. Gastroenterology 1997, 111:817-24
    [167] Schreiber, E., Matthias, P., Muller, MM. et al. Rapid detection of octamer binding proteins with 'mini-extracts' prepared from a small number of cells. Nucleic Acids Res 1989, 17: 6419
    [168] Smith, D.B., Johnson, K.S. Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase. Gene. 1988, 67:31-40.
    [169] Amills. M, Jimenez. N, Villalba. D, et al. Identification of three SNP in the chicken IGF-I and IGF-II gene and their association s with growth and feeding traits. Poultry Sci, 2003, 82: 1485-93
    [170] Zhou. H, Mitchell. AD, Mcmurtry. JP, et al. IGF-I gene polymorphism associations with growth, body composition, skeletonintegrity, and metabolic traits in chickens. Poultry Sci 2005 84: 212-219.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700