锂离子动力电池负极材料钛酸锂的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钛酸锂(Li4Ti5O12),作为一种“零应变”材料,与目前商品化的碳材料相比,是更具潜力的锂离子动力电池负极材料。本文以固相法合成电极材料Li4Ti5O12,旨在通过金属掺杂、表面修饰途径,提高电导率进而改善其电化学性能,具体工作如下:
     本文首先考察了制备Li4Ti5O12的固相工艺和不同原料的影响。采用XRD、SEM、激光粒度对材料进行了表征,及恒流充放电、交流阻抗、循环伏安测试方法研究了材料的电化学性能。结果表明:原料为锐钛型Ti02和Li2CO3,先于750℃预烧4h,再于850℃煅烧20 h得到的材料性能最佳,样品为结晶完好的单一物相,颗粒分布均匀,粒径分布窄,粒度分布在0.2~0.6μm之间。以0.2 C的倍率进行充放电,首次放电比容量为163.4mAh·g-1,30次循环后,容量依然保持在160mAh·g-1,常温下,分别以0.5、1和3C倍率进行充放电循环50次后,容量保持率分别为96.2、94.1、86.0%。并探索了Li4Ti5O12可能的形成机理。
     在合成纯样的研究基础上,进行了Y3+、Yb3+、Er3+、V5+、Mg2+金属离子的掺杂。电化学测试表明:金属离子掺杂后电极材料的电荷转移阻抗都显著减小,但电化学性能却显示出很大的差异。在1C倍率下循环50次后,掺杂Y3+、Yb3+、Er3+、V5+、Mg2+的比容量分别为132.6、110.1、102.4、86.2、139.6mAh·g-1。
     在固相合成和金属掺杂的基础上,分别以葡萄糖和乙酸铜作为碳源和铜源制备了Li3.9Mg0.1Ti5O12/C和Li4Ti5O12/(Cu+C)复合材料。恒电流充放电结果表明,在0.1 C的倍率下放电时,Li3.9Mg0.1Ti5O12/C(C含量分别是3、5、1 0、15wt%)的首次放电容量依次为166.5、156.3、153.7和149.4mAh·g-1。对于Li4Ti5O12/(Cu+C),在0.5、1和3C倍率下,经50次充放电循环,容量保持率分别为90.4、88.4、82.0%,其放电比容量依次为155、151.7、140.6mAh·g-1。通过循环伏安测试技术得到Li4Ti5O12和Li4Ti5012/(Cu+C)电极材料的Li+扩散系数分别为4.3×10-10cm2.s-1和1.2×10-9cm2.s-1。
As a "zero strain" material used for Li-ion power battery, Lithium titanate(Li4Ti5O12) is one of the most potential cathode materials, comparing to the commercial carbon materials so far. Solid-state synthesis method was primarily used in this paper, and then the material was disposed by metal doping and surface modification, so as to improve the electrical conductivity and enhance the electrochemical properties. Detailed work were done as follows:
     In our study, the process of solid-state synthesis and the influence of different materials to the Li4Ti5O12 preparation were investigated in the first instance. The structure, morphology and electrochemical performan-ce of the sample was characterized by X-ray diffractometry(XRD), scanning electron microscopy(SEM), laser particle analysis, galvanostatic charge-discharge test, electrochemical impedance spectroscopy (EIS) and cyclic voltammeter(CV). The result showed that Li4Ti5O12 with the best performance was achieved when using Anatase-TiO2 and LiCO3 as the original material, and preheated at 750℃for 4 h followed by 850℃for 20 h. The as-prepared sample was well-crystallized single-phase, and its particle was well-distributed with a narrow size distribution from 0.2 to 0.6μm. On charge/discharge at 0.2 C, the initial specific discharge capacity was 163.4 mAh·g-1, and the specific capacity still kept at 160 mAh·g-1 after 30 cycles. At the room temperature, on charge/discharge at the rate of 0.5,1 and 3 C after 50 cycles, the retention rate in discharge capacity was 96.2,94.1,86.0% respectively. And the possible formation mechanism of Li4Ti5O12 was explored as well.
     On the bases of the study on preparing the pure samples, the doping of the metallic icons such as Y3+, Yb3+, Er3+, V5+, Mg2+ was conducted. The electrochemical test indicated that their electrochemical performance were quite different from each other although the electron transfer resistance of them were greatly reduced. The samples doped Y3+, Yb3+ Er3+, V5+, Mg2+ had the capacity of 132.6,110.1,102.4,86.2,139.6 mAh·g-1 respectively at 1 C after 50 cycles.
     Based on the solid-phase synthesis and metal doping, the composite materials Li3.9Mg0.1Ti5O12/C and Li4Ti5O12/(Cu+C) were fabricated by glucose and copper acetate which was used as carbon and copper source. The galvanostatic charge-discharge test showed that when the content of carbon in Li3.9Mg0.1Ti5O12/C was 3,5,10 and 15 wt%, the samples had the discharge capacity of 166.5,156.3,153.7 and 149.4 mAh·g-1 for the first cycle, respectively. For Li4Ti5O12/(Cu+C) materials, The capacity retention were 90.4,88.4 and 82.0% respectively at 0.5,1 and 3 C after 50 cycles, and the corresponding discharge capacity were 155,151.7 and 140.6 mAh·g-1.The diffusion coefficient of Li+ for Li4Ti5O12 and Li4Ti5O12/(Cu+C) were 4.3×10-10 cm2·s-1 and 1.2×10-9 cm2·-1 respectively, which were calculated from CV analysis.
引文
[1]吴宇平,张汉平,吴锋.绿色电源材料[M].北京:化学工业出版社,2008:1-5.
    [2]Armand M, Tarascon J M. Building better batteries[J]. Nature,2008.451(7179): 652-657.
    [3]Goodenough J B, Kim Y. Challenges for rechargeable li batteries[J]. J. Chem. Mater.,2010,22(3):587-603.
    [4]Kang K, Meng Y S, Breger J, et al. Electrodes with high power and high capacity for rechargeable lithium batteries[J]. Science,2006,311(5763):977-980.
    [5]Byoungwoo K, Gerbrand C. Battery materials for ultrafast charging and discharging[J]. Nature,2009,458(7235):190-193.
    [6]Wang Y, Cao G Z. Developments in nanostructured cathode materials for high performance lithium-ion batteries[J]. Adv. Mater.,2008,20(12):2251-2269.
    [7]Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries[J]. Nature,2001,414(6861):359-367.
    [8]Ellis B L, Lee K T, Nazar L F. Positive electrode materials for li-ion and li-batteries[J]. J. Chem. Mater.,2010,22(3):691-714.
    [9]黄可龙,王兆翔,刘素琴.锂离子电池原料与关键技术[M].北京:化学工业出版社,2008:6-8,94~96.
    [10]Delucchi M A, Jacobson M Z. Providing all global energy with wind, water, and solar power, part I:technologies, energy resources, quantities and areas of infrastructure, and materials[J]. Energy Policy,2011,39(3):1154-1169.
    [11]Delucchi M A, Jacobson M Z. Providing all global energy with wind, water, and solar power, part II:reliability, system and transmission costs, and policies[J]. Energy Policy,2011,39(3):1170-1190.
    [12]Uehara I, Sakai T, Ishikawa H. The state of research and development for applications of metal hydrides in Japan[J]. J. Alloys Compd.,1997,253-254: 635-641.
    [13]Peterson S B, Whitacre J F, Apt J. The economics of using plug-in hybrid electric vehicle battery packs for grid storage[J]. J. Power Sources,2010,195(8): 2377-2384.
    [14]Hartmann N, Odemir E D. Impact of different utilization scenarios of electric vehicles on the German grid in 2030[J]. J. Power Sources,2011,196(4): 2311-2318.
    [15]Sutula R A, Heitner K L. The twelfth international seminar on primary and secondary battery technology and application[C], Deerfield Beach, Fla. USA. March,1995.
    [16]Sack T, Matty T. Li-ion battery technology for compact high power sources (CHPS)[J]. J. Power Sources,2001,96(1):47-51.
    [17]Terada N, Yanagi T, Arai S, et al. Development of lithium batteries for energy storage and EV applications[J]. J. Power Sources,2001,100(1-2):80-92.
    [18]Robert C. G, Wang L F, Alam M. The impact of plug-in hybrid electric vehicles on distribution networks:a review and outlook[J]. Renew. Sust. Energ. Rev., 2011,15(1):544-553.
    [19]Kristoffersen T K, Capion K, Meibom P. Optimal charging of electric drive vehicles in a market environment[J]. Applied Energy,2011,88(5):1940-1948.
    [20]Zaghib K, Dontigny M, Guerfi A, et al. Safe and fast-charging li-ion battery with long shelf life for power applications[J]. J. Power Sources,2011,196(8): 3949-3954.
    [21]Li Z, Ouyang M. A win-win marginal rent analysis for operator and consumer under battery leasing mode in china electric vehicle market[J]. Energy Policy, 2011,39(1):1-16.
    [22]Park M, Zhang X C, Chung M, et al. A review of conduction phenomena in li-ion batteries[J]. J. Power Sources,2010,195(24):7904-7929.
    [23]Broussely M. Electric and hybrid vehicles[M]. France:Elsevier,2010:305-345.
    [24]Whittingham M S. Lithium batteries and cathode materials[J]. Chem. Rev.,2004, 104(10):4271-4301.
    [25]Scrosati B. Garche J. Lithium batteries:status, prospects and future[J]. J. Power Sources,2010,195(9):2419-2430.
    [26]肖彬.锂离子电池负极材料的制备与性能研究:[硕士学位论文].哈尔滨:哈尔滨工程大学化工学院,2006.
    [27]Singh V. Joung D, Zhai L, et al. Graphene based materials:past, present and future[J]. Prog Mater Sci.,2011. Available online.
    [28]Xing W B, Xue J S, Dahn J R. Optimizing pyrolysis of sugar carbons for use as anode materials in lithium-ion batteries[J]. J. Electrochem. Soc,1996,143(10): 3046-3052.
    [29]Sato K, Noguchi M, Demachi A, et al. A mechanism of lithium storage in disordered carbons[J], Science,1994.264(5158):556-558.
    [30]Brownson D A C, Kampouris D K, Banks C E. An overview of graphene in energy production and storage applications[J]. J. Power Sources,2011,196(11): 4873-4885.
    [31]Dahn J R, Xing W, Gao Y. The "falling cards model" for the structure of micro-porous carbons[J]. Carbon,1997,35(6):825-830.
    [32]Bulel E, Dahn J R. Reductoin of the irreversible capacity in hard-carbon anode materials prepared form sucrose for li-ion batteries[J]. J. Electrochem. Soc.,1998, 145(6):1977-1981.
    [33]Liu Y H, Xue J S, Zheng T, et al. Mechanism of lithium insertion in hard carbons prepared by pyrolysis of epoxy resins[J]. Carbon,1996,34(2):193-200.
    [34]张晓林.锂离子电池炭负极材料的制备及性能研究:[硕士学位论文].天津:天津大学化工学院,2007.
    [35]张绪刚,刘敏,王作明,等.碳纳米管复合导电剂及其在锂离子电池负极中的应用[J].碳素技术,2008,27(4):10~13.
    [36]王凤飞,王新庆,杨冰,等.锂离子电池负极材料的研究进展[J].纳米技术与精密工程,2004,2(3):192~195.
    [37]Takeda Y, Nishijima M, Yamahata M, et al. Lithium secondary batteries using a lithium cobalt nitride, Li2.6Co0.4N, as the anode[J]. Solid State Ionics,2000, 130(1-2):61-69.
    [38]Gregory D H, Omeara P M, Gordon A G, et al. Structure of lithium nitride and transition-metal-doped derivatives, Li3-x-yMxN (M=Ni, Cu):a powder neutron diffraction study[J]. J. Chem. Mater.,2002,14(5):2063-2070.
    [39]Chen J, Cheng F Y. Combination of lightweight elements and nanostructured materials for batteries[J]. Acc. Chem. Res.,2009,42(6):713-723.
    [40]Cheng F Y, Tao Z L, Liang J, et al. Template-directed materials for rechargeable lithium-ion batteries[J]. J. Chem. Mater.,2008,20 (3):667-681.
    [41]Courtney I A, Dhan J R. Electrochemical and in-situ x-ray diffraction studies of the reaction of lithium with tin oxide composite[J]. J. Electrochem. Soc.,1997, 144(6):2045-2052.
    [42]Tirado J L. Inorganic materials for the negative electrode of lithium-ion batteries: state-of-the-art and future prospects[J]. Mate. Sci. Eng. R.,2003.40(3):103-136.
    [43]Zhang W J. A review of the electrochemical performance of alloy anodes for lithium-ion batteries[J]. J. Power Sources,2011,196(1):13-24.
    [44]Maranchi J P, Hepp A F, Kumta P N, et al. High capacity reversible silicon thin-film anodes for lithium-ion batteries[J]. Electrochem. Solid-State Lett.,2003, 6(9):A198-A201.
    [45]Jung H, Park M, Han S H, et al. Amorphous silicon thin-film negative electrode prepared by low pressure chemical vapor deposition for lithium-ion batteries[J]. Solid State Commun.,2003,125(7-8):387-390.
    [46]张宏芳,伏萍萍,杨化滨,等.锂离子电池用“三明治”型Si/Fe/Si薄膜负极材料的研究[J].物理化学学报,2007,23(7):1065~1070.
    [47]徐宇虹,巩桂英吗,马萍,等Li4Ti5O12的合成及其在锂离子电池中的应用[J].金属材料与冶金工程,2007,35(1):14~18.
    [48]Zhang W M, Hu J S, Guo Y G, et al. Tin-nanoparticles encapsulated in elastic hollow carbon spheres for high-performance anode material in lithium-ion batteries[J]. Adv. Mater.,2008,20(6):1160-1165.
    [49]Yi T F, Shu J, Zhu Y R, et al. High-performance Li4Ti5-xVxO12 (0≤x≤0.3) as an anode material for secondary lithium-ion battery [J]. Electrochim. Acta,2009, 54(28):7464-7470.
    [50]Poopathy K, Muhammad M B Q. Partially immersed cylindrical horizontally revolving electrodes for the production of conducting polymers[J]. J. Electrochem. Soc.,1994, (141):147-150.
    [51]Ohzuku T, Ueda A, Yamamoto N. Zero-strain insertion material of Li[Li1/3Ti5/3]O4 for rechargeable lithium cells[J]. J. Electrochem. Soc.,1995, 142(5):1431-1435.
    [52]Shenouda A Y, Murali K R. Electrochemical properties of doped lithium titanate compounds and their performance in lithium rechargeable batteries[J]. J. Power Sources,2008,176(1):332-329.
    [53]Bruce P G, Scrosati B, Tarascon J M. Nanomaterials for rechargeable lithium batteries[J]. Angew. Chem. Int. Ed.,2008,47(16):2930-2946.
    [54]Pyun S I, Kim S W, Shin H C, Lithium transport through Li1+δ[Ti2-yLiy]O4(y=0; 1/3)electrodes by analysing current transients upon large potential steps[J]. J Power Sources,1999,81-82:248-254.
    [55]Prosini P P, Mancini R, Petrucci L, et al. Li4Ti5O12 as anode in all-solid-state, plastic, lithium-ion batteries for low-power applications[J]. Solid State Ionics, 2001,144(1-2):185-192.
    [56]高玲,仇卫华,赵海雷Li4Ti5O12作为锂离子电池负极材料电化学性能[J].北京科技大学学报,2005,27(1):82~85.
    [57]Zaghib K, Simonean M, Armand M, et al. Electrochemical study of Li4Ti5O12 as negative electrode for li-ion polymer rechargeable batteries[J]. J. Power Sources, 1999,81-82:300-305.
    [58]Robertson A D, Trevino L, Tukamoto H, et al. New inorganic spinel oxides for use as negative electrode materials in future lithium-ion batteries[J]. J. Power Sources,1999,81-82:352-357.
    [59]Guerfi A, Sevigny S, Lagace M, et al. Nano-particle Li4Ti5O12 spinel as electrode for electrochemical generators [J]. J. Power Sources,2003,119-121:88-94.
    [60]Yang L X, Gao L J. Li4Ti5O12/C composite electrode material synthesized involving conductive carbon precursor for li-ion battery[J]. J. Alloys Compd., 2009,485(1-2):93-97.
    [61]Cheng L, Yan J, Zhu G N, et al. General synthesis of carbon-coated nanostructure Li4Ti5O12 as a high rate electrode material for li-ion intercalation[J]. J. Mater. Chem.,2010,20(3):595-602.
    [62]Sorensen E M, Barry S J, Jung H K, et al. Three-dimensionally orderd macroporous Li4Ti5O12:effect of wall structure on electrochemical properties[J]. J. Chem. Mater.,2006,18(2):482-489.
    [63]杨建文,钟晖,钟海云,等Li4Ti5O12的合成及其影响因素[J].中南大学学报(自然科学版).2005.36(1):55~59.
    [64]Fu L J, Liu H, Li C, et al. Electrode materials for lithium secondary batteries prepared by sol-gel methods[J]. Prog. Mater. Sci.,2005,50(7):881-928.
    [65]Bach S. Pereira-Ramos J P, Baffier N. Electrochemical properties of sol-gel Li4Ti50,2[J]. J. Power Sources,1999,81-82:273-276.
    [66]Yan G F, Fang H S, Zhao H J, et al. Ball milling-assisted sol-gel route to Li4Ti5O12 and its electrochemical properties[J]. J. Alloys Compd.,2009,470(1-2): 544-547.
    [67]Hao Y J, Lai QY, Lu D Q, et al. Synthesis by citric acid sol-gel method and electrochemical properties of Li4Ti5O12 anode material for lithium-ion battery[J]. Mater. Chem. Phys.,2005,94(2-3):382-387.
    [68]Jian G, Chang Y J, Jie R Y, et al. Preparation and characterization of high-density spherical Li4Ti5O12 anode material for lithium secondary batteries[J]. J. Power Sources,2006.155(2):364-367.
    [69]Venkateswarlu M, Chen C H, Do J S, et al. Electrochemical properties of nano-sized Li4Ti5O12 powders synthesized by a sol-gel process and characterized by X-ray absorption spectroscopy[J]. J. Power Sources,2005,146(1-2):204-208.
    [70]Jiang C H, Ichihara M, Honma I, et al. Effect of particle dispersion on high rate performance of nano-sized Li4Ti5O12anode[J]. Electrochim. Acta,2007,52(23): 6470-6475.
    [71]Capsoni D, Bini M, Massarotti V, et al. Cr and Ni doping of Li4Ti5O12:cation distribution and functional properties[J]. J. Phys. Chem. C.,2009,113(45): 19664-19671.
    [72]Wang G J, Gao J, Fu L J. et al. Preparation and haracteristic of carbon-coated Li4Ti5O12 anode material[J]. J. Power Sources,2007,174(2):1109-1113.
    [73]Lee K T, Cho J. Roles of nanosize in lithium reactive nanomaterials for lithium ion batteries[J]. Nano Today,2011,6(1):28-41.
    [74]Gao J, Jiang C Y, Wan C R. Synthesis and characterization of spherical La-doped nanocrystalline Li4Ti5O12/C compound for lithium-ion batteries[J]. J. Electrochem. Soc.,2010,157(2):K39-K42.
    [75]Robertson A D, Trevino L, Tukanoto H, et al. New inorganic spinel oxides for use as negative electrode materials in future lithium-ion batteries[J]. J. Power Sources,1999,81-82:352-357.
    [76]Chen C H, Vaughey J T, Jansen A N, et al. Studies of Mg-stubstituted Li4-xMgxTi5O12 spinel electrodes for lithium batteries[J]. J. Electrochem. Soc., 2001,148(1):A102-A104.
    [77]Kubiak P, Carcia A, Womes M, et al. Phase transition in the spinel Li4Ti5O12 induced by lithium insertion influence of the substitutions Ti/V, Ti/Mn, Ti/Fe[J]. J. Power Sources,2003,119-121:626-630.
    [78]Huang S H, Wen Z Y, Zhu X. Preparation and cycling performance of Al3+ and F-Co-substituted compounds Li4AlxTi5-xFyO12-y[J]. Electrochem. Acta,2005,50(20): 4057-4062.
    [79]Huang S H, Wen Z Y, Zhu Y, et al. Effects of dopant on the electrochemical performance of Li4Ti5O12 as electrode material for lithiumion batteries[J]. J. Power Sources,2007,165(1):408-412.
    [80]Huang S H, Wen Z Y, Zhu Y, et al. Preparation and electrochemical performance of Ag doped Li4Ti50,2[J]. Electrochem. Commun.,2004,6(11):1093-1097.
    [81]Dominko R, Gaberscek M, Bele M, et al. Carbon nanocoatings on active materials for li-ion batteries[J]. J. Eur. Ceram. Soc.,2007,27(2-3):909-913.
    [82]Guerti A, Charest E. Kinoshita K, et al. Nano electronically conductive titanium spinel as lithium ion storage negative electrode[J]. J. Power Sources,2004, 126(1-2):163-168.
    [83]徐宇虹,巩桂英,马萍,等.C改性Li4Ti5Oi2的性能研究[J].电源技术,2007,131(5):389~393.
    [84]Huang S H, Wen Z Y, Zhang J C, et al. Li4Ti5O12/Ag composite as electrode materials for lithium-ion battery[J]. Solid State Ionics,2006,177(9-10):851-855.
    [85]Huang S H, Wen Z Y, Lin Bin, et al. The high-rate performance of the newly designed Li4Ti5O12/Cu composite anode for lithiumion batteries[J]. J. Alloys Compd.,2008,457(1-2):400-403.
    [86]Huang S H, Wen Z Y, Zhu X J. Research on Li4Ti5O12/CuO composite anode materials for lithium-ion batteries[J]. J. Electrochem. Soc.,2005,152 (7): A1301-A1305.
    [87]Jung H G, Kim J, Scrosati B, et al. Micron-sized, carbon-coated Li4Ti5O12 as high power anode material for advanced lithium batteries [J]. J. Power Sources, 2011, Available online.
    [88]Sivashanmugam A, Gopukumar S, Thirunakaran R, et al. Novel Li4Ti5O12/Sn nano-composites as anode material for lithium ion batteries[J]. Mater. Res. Bull., 2011,46 (4):492-500.
    [89]Wang Y G, Liu H M, Wang K X, et al. Synthesis and electrochemical performance of nano-sized Li4Ti5O12 with double surface modification of Ti(Ⅲ) and carbon[J]. J. Mater. Chem.,2009,19(37):6789-6795.
    [90]苏岳锋,吴锋,臧戈,等.多孔炭模板法制备Li4Ti5O12及其嵌锂行为[J].物理化学学报,2008,24(6):1002~1006.
    [91]方杰,王志兴,李新海,等.烧结温度和时间对Li4Ti5O12电化学性能的影响[J].中国有色金属学报,2009,19(12):2179~2185.
    [92]Kim S H, Park H, Jee S H, et al. Synthesis and structural properties of lithium titanium oxide powder as-synthesized by two step calcination process[J]. J. Chem. Eng.,2009,26(2):485-488.
    [93]许江枫,李建玲,王新东Li4Ti5O12的合成过程分析及性能[J].电池,2009,39(1):31-33.
    [94]黄新民.材料分析测试方法[M].北京:国防工业出版社,2008:1,13-30.
    [95]杨军,解晶莹,王久林.化学电源测试原理与技术[M].北京:化学工业出版社,2006:9.
    [96]Huang J J. Jiang Z Y. The preparation and characterization of Li4Ti5O12/carbon nano-tubes for lithium ion battery [J]. Electrochim. Acta,2008,53(26): 7756-7759.
    [97]Yuan T, Cai R, Ran R, et al. A mechanism study of synthesis of Li4TisO12 from TiO2 anatase[J]. J. Alloys Compd.,2010,505(1):367-373.
    [98]Yao X L, Xie S, Chen C H, et al. Comparisons of graphite and spinel Li1.33Ti1.67O4 as anode materials for rechargeable lithium-ion batteries[J]. Electrochim. Acta,2005,50(20):4076-4081.
    [99]Liu D T, Ouyang C, Shu J, et al. Theoretical study of cation doping effect on the electronic conductivity of Li4Ti5O12[J]. phys. stat. sol. (b),2006,243(8): 1835-1841.
    [100]Kang X H, Utsunomiya H, Achiha T, et al. Effect of conductive additives and surface fluorination on the electrochemical properties of lithium titanate (Li4/3Ti5/3O4)[J]. J. Electrochem. Soc.,2010,157(4):A437-A442.
    [101]Lin C Y, Jhan Y R, Duh J G. Improved capacity and rate capability of Ru-doped and carbon-coated Li4Ti5O12anode material[J]. J. Alloys Compd.,2011, Available online.
    [102]Tabuchi T, Yasuda H, Yamachi M. Mechanism of Li-doping into Li4Ti5O12 negative active material for li-ion cells by new chemical method[J], J. Power Sources,2006,162(2):813-817.
    [103]Qi Y L, Huang Y D, Ji D Z, et al. Preparation and characterization of novel spinel Li4Ti5O12-xBrx anode materials[J]. Electrochim. Acta,2009,54(21): 4772-4776.
    [104]Zhang B, Du H D, Li B H, et al. Structure and electrochemical properties of Zn-doped Li4TisO12 as anode materials in li-ion battery[J]. Electrochem. Solid-State Lett.,2010,13(4):A36-A38.
    [105]Huang S H, Wen Z Y, Zhu X J, et al. Preparation and electrochemical performance of spinel-type compounds Li4AlyTi5-yO12(y=0,0.10,0.15,0.25)[J]. J. Electrochem. Soc.,2005,152(1):186-A190.
    [106]Wang D, Xu H Y, Gu M, et al. Li2CuTi3O8-Li4Ti5O12 double spinel anode material with improved rate performance for li-ion batteries[J]. Electrochem. Commun.,2009,11(1):50-53.
    [107]Wolfenstine J, Allen J L. Electrical conductivity and charge compensation in Ta doped Li4Ti5O12 [J]. J. Power Sources.2008,180(1):582-585.
    [108]Hao Y J, Lai Q Y, Lu J Z, et al. Effects of dopant on the electrochemical properties of Li4Ti5O12 anode materials[J]. Ionics,2007,13(5):369-373.
    [109]Li X, Qu M Z, Yu Z L. Structural and electrochemical performances of Li4Ti5-xZrxO12 as anode material for lithium-ion batteries[J]. J. Alloys Compd., 2009,487(1-2):L12-L17.
    [110]Capsoni D, Bini M, Massarotti V, et al. Cations distribution and valence states in Mn-substituted Li4Ti5O12 structure[J]. J. Chem. Mater.,2008,20(13): 4291-4298.
    [111]Shenouda A Y, Murali K R. Electrochemical properties of doped lithium titanate compounds and their performance in lithium rechargeable batteries[J]. J. Power Sources,2008,176(1):332-339.
    [112]Zhao H L, Li Y, Zhu Z M, et al. Structural and electrochemical characteristics of Li4-xAlxTi5O12 as anode material for lithium-ion batteries[J]. Electrochim. Acta,2008,53(24):7079-7083.
    [113]Ge H, Li N, Li D Y, et al. Study on the effect of li doping in spinel Li4+xTi5-xO12 (0≤x≤0.2) materials for lithium-ion batteries [J]. Electrochem. Commun.,2008, 10(7):1031-1034.
    [114]Ji S Z, Zhang J Y, Wang W W, et al. Preparation and effects of Mg-doping on the electrochemical properties of spinel Li4Ti5O12 as anode material for lithium ion battery[J]. Mater. Chem. Phys.,2010,123(2-3):510-515.
    [115]G.X. Wang), D.H. Bradhurst, S.X. Dou, H.K. Liu. Spinel Li [Li1/3Ti5/3]O as an anode material for lithium ion batteries[J]. J. Power Sources,1999,83(1-2): 156-161.
    [116]Yuan T, Cai R, Shao Z P. Different effect of the atmospheres on the phase formation and performance of Li4Ti5O12 prepared from ball-milling-assisted solid-phase reaction with pristine and carbon-precoated TiO2 as starting materials[J]. J. Phys. Chem. C.,2011,115(11):4943-4952.
    [117]陈宗海,秦燕.动力锂电池的研发现状——第一届动力锂电池国际会议评述[J].电池,2008,38(5):293~296.
    [118]Wagemaker M, Eck E, Kentgens A, et al. Li-ion diffusion in the equilibrium nanomorphology of spinel Li4+xTi5O12[J]. J. Phys. Chem. B.,2009,113 (1): 224-230.
    [119]Wilkening M, Amade R, Iwaniak W, et al. Ultraslow Li diffusion in spinel-type structured Li4Ti5O12-A comparison of results from solid state NMR and impedance spectroscopy[J]. Phys Chem Chem Phys,2007.9(10):1239-1246.
    [120]Li X, Qu M Z, Huai Y J, et al. Preparation and electrochemical performance of Li4Ti5O12/carbon/carbon nano-tubes for lithium ion battery [J]. Electrochim. Acta,2010,55(8):2978-2982.
    [121]Wang W, Cao G S, Ye J Y, et al. Li4Ti5O12/(Ag+C)电极材料的固相合成及电化学性能[J].无机化学学报,2009,25(12):2151~2155.
    [122]Milne N A, Maria S K, Luca V. Crystallite size dependence of lithium intercalation in nanocrystaline rutile[J]. J. Phys. Chem. C.,2009,113(30): 12983-12995.
    [123]Shen L F, Yuan C Z, Luo H J, et al. Facile synthesis of hierarchically porous Li4Ti5O12 microspheres for high rate lithium ion batteries[J]. J. Mater. Chem., 2010,20(33):6998-7004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700