早发型帕金森综合征患者FBXO7基因突变分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景与目的帕金森病(parkinson's disease, PD)是发病率仅次于阿尔茨海默病的神经系统退行性疾病,以中脑黑质的多巴胺能神经元进行性丢失和残存细胞中出现含有α突触核蛋白的嗜酸性包涵体,即路易小体(Lewy bodies)为病理特征。多数PD患者为散发性和特发性,但也有少数帕金森综合征的发病是由基因突变引起。近年来,研究发现编码F-box protein 7蛋白的F-box only protein 7基因突变可导致PARK15。PARK15既往称为帕金森-锥体束综合征(Parkinsonian-pyramidal syndrome, PPS)或苍白球-锥体束病(Pallido-Pyramidal Disease, PPD),是指患者除帕金森样表现外尚合并有痉挛状态、腱反射亢进、病理征阳性等锥体束征表现。2008年,Shojaee(?)报道了一例合并有足内翻畸形的伊朗大家系,并利用500K SNP芯片进行全基因组连锁分析,在设定这个家系为常染色体隐性遗传背景的情况下,将突变区间定位至22q,并在该区间FBX07基因第7号外显子区发现一纯合错义突变(R378G)。2009年,Di Fonzo在一个意大利常染色体隐性遗传家系的2名患者中发现了FBXO7基因的纯合截短突变(R498X),并在另一个亦呈常染色体隐性遗传的荷兰家系中发现该基因由剪切位点突变和1号外显子区错义突变组成的复合杂合突变(IVS7+1G/T,T22M),并将这类疾病正式定名为PARK15。目前,世界上尚无对中国人群(包括中国大陆、中国台湾、新加坡等地)早发型FBX07基因突变的研究及分析。故而本研究旨在了解中国早发型帕金森综合征患者是否存在FBXO7基因突变及其特点。
     方法对135名早发型帕金森综合征患者及200名正常人的DNA进行FBXO7基因9个外显子的PCR扩增,将扩增产物直接测序后进行序列分析。
     结果本次实验PD患者组共发现10处多态,其中-274G→C和c.A155G为新发现的多态,另外8个为已报道的多态。经过X2检验发现,这10个多态等位基因频率及基因型频率在PD病例组与正常对照组相比没有统计学差异(P>0.05)。在多态连锁分析中,现lvs1+116C→T(rs8136485)和Ivsl+272T→G(rs8137714)呈完全连锁;二号外显子上的c.G345A (pM115I, rs11107)、Ivs6-75T→C (rs738982)和6号外显子上的c.C949T (pL317L, rs9726)也呈完全连锁(D'=1,r2=1)。
     结论FBXO7基因突变在中国早发型帕金森综合征患者中可能罕见;本次实验所发现的10个多态对于PARK15的发病没有影响,即:既不是致病因素,也不是保护性因素
Background and objective Parkinson's disease (PD), the second most common neurodegenerative disorder after Alzheimer's disease, is pathologically characterized by the progressive loss of dopaminergic neurons in the substantia nigra of the midbrain, and the formation of alpha-synuclein-containing protein aggregates, termed Lewy bodies, in surviving neurons. PD is a sporadic, idiopathic disorder in most patients, but the identification of genetic mutations causing rare Mendelian forms of parkinsonism has provided novel clues for understanding of the disease pathogenesis. Recently, we characterized mutations in the F-box only protein 7 (FBXO7) gene, encoding the F-box protein 7 (FBXO7), as the cause of PARK15. PARK 15 used to be called Pallido-Pyramidal Disease (PPD) or Parkinsonian-Pyramidal Syndrome (PPS). It is associated with a series of symptoms that includes spasm state, hyperreflexia, and positive pyramidal signs besides the 3 classical PD symptoms (static tremor, bradykinesia, and rigidity). In 2008, Shojaee, etc, reported an Iranian pedigree, in which all affected individuals exhibited equinovarus deformity since childhood. The genome-wide linkage analysis on that pedigree with 500 K SNP arrays mapped the locus to chromosome 22, and a new disease-associated missense mutation (c.1132C→G) was found resulting in the nonconservative amino acid substitution of glycine for arginine at position 378(R378G) in the F-box protein 7.In 2009, Di Fonzo, etc, found an FBXO7 homozygous truncating mutation (Arg498Stop) in an Italian autosomal recessive early-onset parkinsonian pedigree, while compound heterozygous mutations (a splice-site IVS7+1G/T mutation and a missense Thr22Met mutation) presented in a Dutch family. Since then, gene FBXO7 was officially·designated as PARK15. Until now, no investigation of the mutation of FBXO7 in Chinese early-onset Parkinsonism patients has been done.
     Methods In this study, we executed polymerase chain reaction (PCR) combined with DNA direct sequencing on 135 Chinese early-onset Parkinsonism (including 23 unrelated probands with autosomal recessive early-onset Parkinsonism and 112 sporadic patients with early-onset Parkinson disease), and 200 normal Chinese people in order to screen the FBXO7 mutation.
     Results We found 10 sequence changes; of those,8 polymorphisms have been previously reported,2 others are newly discovered:-274G→C, C.A155G. No pathogenic mutation was found. All 10 base changes have been found in normal people. The difference between the frequency of those 10 polymorphisms in PD patients and the frequency in the control group was non-significant (P value> 0.05). We found that 2 polymorphisms are complete linkage with each other:Ivsl+116C→T (rs8136485) and Ivsl+272T→G (rs8137714). And 3 polymorphisms: c.G345A (pM115I, rs11107) in exon2, Ivs6-75T→C (rs738982) and c.C949T (pL317L, rs9726) in exon6 are complete linkage too. The D'=1 and the r2=1 when we analyzed them in this study.
     Conclusion FBXO7 mutations may be rare in Chinese early-onset Parkinsonism patients; those 10 polymorphisms found in this study have no effection in the expression of FBXO7 protein and the position of the protein either.
引文
[1]Tolosa E, Wenning G, Poewe W. The diagnosis of Parkinson's disease. Lancet Neurol.2006;5:75.
    [2]Gupta A, Dawson VL, Dawson TM. What causes cell death in Parkinson's disease? Ann Neurol.2008;64(Suppl 2):S3.
    [3]Gasser T. Molecular pathogenesis of Parkinson disease:insights from genetic studies. Expert Rev Mol Med.2009;11:e22.
    [4]Bonifati V. Genetics of parkinsonism. Parkinsonism Relat Disord.2007;13(Suppl 3):S233.
    [5]Healy DG, Falchi M, O'Sullivan SS, Bonifati V, Durr A, et al. Phenotype, genotype, and worldwide genetic penetrance of LRRK2-associated Parkinson's disease:a case-control study. Lancet Neurol.2008;7:583.
    [6]Ahlskog JE. Parkin and PINK1 parkinsonism may represent nigral mitochondrial cytopathies distinct from Lewy body Parkinson's disease. Parkinsonism Relat Disord.2009; 15:721.
    [7]Bonifati V. PARK7, DJ1. In:Kompoliti K, Verhagen Metman L, editors. Encyclopedia of Movement Disorders. Vol.3. Oxford:Academic Press; 2010. pp.392-395.
    [8]Ramirez A, Heimbach A, Grundemann J, Stiller B, Hampshire D, et al. Hereditary parkinsonism with dementia is caused by mutations in ATP13A2, encoding a lysosomal type 5 P-type ATPase. Nat Genet.2006;38:1184.
    [9]Gitler AD, Chesi A, Geddie ML, Strathearn KE, Hamamichi S, et al. Alpha-synuclein is part of a diverse and highly conserved interaction network that includes PARK9 and manganese toxicity. Nat Genet.2009;41:308.
    [10]Di Fonzo A, Dekker MC, Montagna P, Baruzzi A, Yonova EH, et al. FBXO7 mutations cause autosomal recessive, early-onset parkinsonian-pyramidal syndrome. Neurology.2009;72:240.
    [11]Davison, C.Pallido-pyramidal disease. J. Neuropath. Exp. Neurol.13:50-59, 1954.
    [12]Shojaee, S.; Sina, F.; Banihosseini, S. S.;et al.Genome-wide linkage analysis of a parkinsonian-pyramidal syndrome pedigree by 500 K SNP arrays. Am. J. Hum. Genet.82:1375-1384,2008.
    [13]Horowitz, G.; Greenberg, J.Pallido-pyramidal syndrome treated with levodopa. J. Neurol. Neurosurg. Psychiat.38:238-240,1975.
    [14]Nisipeanu, P.,Kuritzky, A.,Korczyn, A.et al. Familial levodopa-responsive parkinsonian-pyramidal syndrome Mov. Disord.9:673-675,1994.
    [15]Kalita J, Mishra UK, Das BK. Soradic variety of pallido-pyramidal syndrome. Neurology India,2003;51:383-384.
    [16]Srivastava, T.; Goyal, V.; Singh, S.; et al.Pallido-pyramidal syndrome with blepharospasm and good response to levodopa. J. Neurol.252:1537-1538,2005.
    [17]Panagariya, A.; Sharma, B.; Dev, A.et al.Pallido-pyramidal syndrome:a rare entity. (Letter) Indian J. Med. Sci.61:156-157,2007.
    [18]Cenciarelli C, Chiaur DS, Guardavaccaro D, Parks W, Vidal M, et al. Identification of a family of human F-box proteins. Curr Biol.1999;9:1177.
    [19]Winston JT, Koepp DM, Zhu C, Elledge SJ, Harper JW. A family of mammalian F-box proteins. Curr Biol.1999;9:1180.
    [20]Ilyin GP, Rialland M, Pigeon C, Guguen-Guillouzo C. cDNA cloning and expression analysis of new members of the mammalian F-box protein family. Genomics.2000;67:40.
    [21]Ho MS, Ou C, Chan YR, Chien CT, Pi H. The utility F-box for protein destruction. Cell Mol Life Sci.2008;65:1977.
    [22]Kirk R, Laman H, Knowles PP, Murray-Rust J, Lomonosov M, et al. Structure of a Conserved Dimerization Domain within the F-box Protein Fbxo7 and the PI31 Proteasome Inhibitor. J Biol Chem.2008;283:22325.
    [23]Hsu JM, Lee YC, Yu CT, Huang CY. Fbx7 functions in the SCF complex regulating Cdkl-cyclin B-phosphorylated hepatoma up-regulated protein (HURP) proteolysis by a proline-rich region. J Biol Chem.2004;279:32592.
    [24]Chang YF, Cheng CM, Chang LK, Jong YJ, Yuo CY. The F-box protein Fbxo7 interacts with human inhibitor of apoptosis protein cIAP1 and promotes cIAP1 ubiquitination. Biochem Biophys Res Commun.2006;342:1022.
    [25]Laman H, Funes JM, Ye H, Henderson S, Galinanes-Garcia L, et al. Transforming activity of Fbxo7 is mediated specifically through regulation of cyclin D/cdk6. Embo J.2005;24:3104.
    [26]Laman, H., Funes, J. M., Ye, H., Henderson, S., Galinanes-Garcia, L., Hara, E., Knowles, P.,McDonald, N., and Boshoff, C. (2005) EMBO J 24,3104-3116.
    [27]Chang, Y. F., Cheng, C. M., Chang, L. K., Jong, Y. J., and Yuo, C. Y (2006) Biochem Biophys Res Commun 342,1022-1026.
    [28]Nelson DE, Laman H. A competitive binding mechanism between SKP1 and exportin 1 (CRM1) controls the localization of a subset of F-box proteins. J Biol Chem.2011 Mar 4. [Epub ahead of print]
    [29]Zhao T, De Graaff E, Breedveld GJ, et al. Loss of Nuclear Activity of the FBXO7 Protein in Patients with Parkinsonian-Pyramidal Syndrome (PARK15).PLoS One.2011;6(2):e16983.
    [1]Nygaard TG:Dopa-responsive dystonia. Curr Opin Neurol 1995,8:310-313.
    [2]Ludecke B, Dworniczak B, Bartholome K:A point mutation in the tyrosine hydroxylase gene associated with Segawa's syndrome. Hum Genet 1995,. 95:123-125..
    [3]Steinberger D, Blau N, Goriuonov D, et al.:Heterozygous mutation in 5'-untranslated region of sepiapterin reductase gene (SPR) in a patient with dopa-responsive dystonia. Neurogenetics 2004,5:187-190.
    [4]Furukawa Y, Guttman M, Sparagana SP, et al.:Dopa-responsive dystonia due to a large deletion in the GTP cyclohydrolase I gene. Ann Neurol 2000, 47:517-520.
    [5]Hwu WL, Wang PJ, Hsiao KJ, et al.:Dopa-responsive dystonia induced by a recessive GTP cyclohydrolase I mutation. Hum Genet 1999,105:226-230.
    [6]Trender-Gerhard I, Sweeney MG, Schwingenschuh P, et al.: Autosomal-dominant GTPCH1-deficient DRD:clinical characteristics and long-term outcome of 34 patients. J Neurol Neurosurg Psychiatry 2009, 80:839-845.
    [7]Clot F, Grabli D, Cazeneuve C, et al.:Exhaustive analysis of BH4 and dopamine biosynthesis genes in patients with Doparesponsive dystonia. Brain 2009,132(Pt 7):1753-1763.
    [8]Lucking CB, Durr A, Bonifati V, et al.:Association between early-onset Parkinson's disease and mutations in the parkin gene. French Parkinson's Disease Genetics Study Group. N Engl J Med 2000,342:1560-1567.
    [9]Nisipeanu P, Inzelberg R, Abo MS, et al.:Parkin gene causing benign autosomal recessive juvenile parkinsonism. Neurology 2001,56:1573-1575.
    [10]Khan NL, Graham E, Critchley P, et al.:Parkin disease:a phenotypic study of a large case series. Brain 2003,126(Pt 6):1279-1292.
    [11]Lohmann E, Periquet M, Bonifati V, et al.:How much phenotypic variation can be attributed to parkin genotype? Ann Neurol 2003,54:176-185.
    [12]Bozi M, Bhatia KP:Paroxysmal exercise-induced dystonia as a presenting feature of young-onset Parkinson's disease. Mov Disord 2003,18:1545-1547.
    [13]Khan NL, Katzenschlager R, Watt H, et al.:Olfaction differentiates parkin disease from early-onset parkinsonism and Parkinson disease. Neurology 2004, 62:1224-1226.
    [14]Kitada T, Asakawa S, Hattori N, et al.:Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 1998,392:605-608.
    [15]Hedrich K, Kann M, Lanthaler AJ, et al.:The importance of gene dosage studies: mutational analysis of the parkin gene in early-onset parkinsonism. Hum Mol Genet 2001,10:1649-1656.
    [16]Valente EM, Salvi S, Ialongo T, et al.:PINK1 mutations are associated with sporadic early-onset parkinsonism. Ann Neurol 2004,56:336-341.
    [17]Valente EM, Bentivoglio AR, Dixon PH, et al.:Localization of a novel locus for autosomal recessive early-onset parkinsonism, PARK6, on human chromosome 1p35-p36. Am J Hum Genet 2001,68:895-900.
    [18]Albanese A, Valente EM, Romito LM, et al.:The PINK1 phenotype can be indistinguishable from idiopathic Parkinson disease. Neurology 2005, 64:1958-1960.
    [19]Doostzadeh J, Tetrud JW, Allen-Auerbach M, et al.:Novel features in a patient homozygous for the L347P mutation in the PINK1 gene. Parkinsonism Relat Disord 2007,13:359-361.
    [20]Rohe CF, Montagna P, Breedveld G, et al.:Homozygous PINK1 C-terminus mutation causing early-onset parkinsonism. Ann Neurol 2004,56:427-431.
    [21]Li Y, Tomiyama H, Sato K, et al.:Clinicogenetic study of PINK1 mutations in autosomal recessive early-onset parkinsonism. Neurology 2005,64:1955-1957.
    [22]Ibanez P, Lesage S, Lohmann E, et al.:Mutational analysis of the PINK1 gene in early-onset parkinsonism in Europe and North Africa. Brain 2006,129(Pt 3):686-694.
    [23]Steinlechner S, Stahlberg J, Volkel B, et al.:Co-occurrence of affective and schizophrenia spectrum disorders with PINK1 mutations. J Neurol Neurosurg Psychiatry 2007,78:532-535.
    [24]Ephraty L, Porat O, Israeli D, et al.:Neuropsychiatric and cognitive features in autosomal-recessive early parkinsonism due to PINK1 mutations. Mov Disord 2007,22:566-569.
    [25]Poole AC, Thomas RE, Andrews LA, et al.:The PINK1/Parkin pathway regulates mitochondrial morphology. Proc Natl Acad Sci U S A 2008, 105:1638-1643.
    [26]Exner N, Treske B, Paquet D, et al.:Loss-of-function of human PINKl results in mitochondrial pathology and can be rescued by parkin. J Neurosci 2007, 27:12413-12418.
    [27]Bonifati V, Rohe CF, Breedveld GJ, et al.:Early-onset parkinsonism associated with PINK1 mutations:frequency, genotypes, and phenotypes. Neurology 2005, 65:87-95.
    [28]Rogaeva E, Johnson J, Lang AE, et al.:Analysis of the PINK1 gene in a large cohort of cases with Parkinson disease. Arch Neurol 2004,61:1898-1904.
    [29]Tan EK, Yew K, Chua E, et al.:PINK1 mutations in sporadic early-onset Parkinson's disease. Mov Disord 2006,21:789-793.
    [30]Bonifati V, Rizzu P, van Baren MJ, et al.:Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science 2003,299:256-259.
    [31]Hedrich K, Djarmati A, Schafer N, et al.:DJ-1 (PARK7) mutations are less frequent than Parkin (PARK2) mutations in early-onset Parkinson disease. Neurology 2004,62:389-394.
    [32]Hallervorden J, Spatz H:Eigenartige Erkrankung im extrapyramidalen under Substantia nigra.:Ein Beitrag zu den Beziehungen zwischen diesen beiden Zentren. Z Ges Neurol Psychiat 1922,79:254-302.
    [33]Hartig MB, Hortnagel K, Garavaglia B, et al.:Genotypic and phenotypic spectrum of PANK2 mutations in patients with neurodegeneration with brain iron accumulation. Ann Neurol 2006,59:248-256.
    [34]Hayflick SJ:Neurodegeneration with brain iron accumulation:from genes to pathogenesis. Semin Pediatr Neurol 2006,13:182-185
    [35]Hayflick SJ, Westaway SK, Levinson B, et al.:Genetic, clinical, and radiographic delineation of Hallervorden-Spatz syndrome. N Engl J Med 2003, 348:33-40.
    [36]Antonini A, Goldwurm S, Benti R, et al.:Genetic, clinical, and imaging characterization of one patient with late-onset, slowly progressive, pantothenate kinase-associated neurodegeneration. Mov Disord 2006,21:417-418.
    [37]Aggarwal A, Schneider SA, Houlden H, et al.:Indiansubcontinent NBIA: Unusual phenotypes—novel PANK2 mutations and evidence of other genetically undetermined forms. Mov Disord 2010 Apr 1 [Epub ahead of print].
    [38]Schneider SA, Aggarwal A, Bhatt M, et al.:Severe tongue protrusion dystonia: clinical syndromes and possible treatment. Neurology 2006,67:940-943.
    [39]Marelli C, Piacentini S, Garavaglia B, et al.:Clinical and neuropsychological correlates in two brothers with pantothenate kinase-associated neurodegeneration. Mov Disord 2005,20:208-212.
    [40]Sethi KD, Adams RJ, Loring DW, el Gammal T:Hallervorden-Spatz syndrome: clinical and magnetic resonance imaging correlations. Ann Neurol 1988, 24:692-694.
    [41]Hayflick SJ, Hartman M, Cory ell J, et al.:Brain MRI in neurodegeneration with brain iron accumulation with and without PANK2 mutations. AJNR Am J Neuroradiol 2006,27:1230-1233.
    [42]Valentino P, Annesi G, Ciro Candiano IC, et al.:Genetic heterogeneity in patients with pantothenate kinase-associated neurodegeneration and classic magnetic resonance imaging eyeof-the-tiger pattern. Mov Disord 2006,21:252-254.
    [43]McNeill A, Birchall D, Hayflick SJ, et al.:T2* and FSE MRI distinguishes four subtypes of neurodegeneration with brain iron accumulation. Neurology 2008, 70:1614-1619.
    [44]Cossu G, Cella C, Melis M, et al.:[123I]FP-CIT SPECT findings in two patients with Hallervorden-Spatz disease with homozygous mutation in PANK2 gene. Neurology 2005,64:167-168.
    [45]Vinters H, Farrell M, Mischel P, Anders K:Diagnostic Neuropathology. New York, NY:Marcel Dekker Incorporated; 1998.
    [46]Paisan-Ruiz C, Li A, Schneider S, et al.:Widespread Lewy body and tau accumulation in childhood and adult onset dystoniaparkinsonism cases with PLA2G6 mutations. Neurobiol Aging 2010 Jul 20 [Epub ahead of print].
    [47]Morgan NV, Westaway SK, Morton JE, et al.:PLA2G6, encoding a phospholipase A2, is mutated in neurodegenerative disorders with high brain iron. Nat Genet 2006,38:752-754.
    [48]Kurian MA, Morgan NV, MacPherson L, et al.:Phenotypic spectrum of neurodegeneration associated with mutations in the PLA2G6 gene (PLAN). Neurology 2008,70:1623-1629.
    [49]Khateeb S, Flusser H, Ofir R, et al.:PLA2G6 mutation underlies infantile neuroaxonal dystrophy. AmJ Hum Genet 2006,79:942-948.
    [50]Dorfman LJ, Pedley TA, Tharp BR, Scheithauer BW:Juvenile neuroaxonal dystrophy:clinical, electrophysiological, and neuropathological features. Ann Neurol 1978,3:419-428.
    [51]Rozdilsky B, Bolton CF, Takeda M:Neuroaxonal dystrophy. A case of delayed onset and protracted course. Acta Neuropathol 1971,17:331-340.
    [52]Paisan-Ruiz C, Bhatia KP, Li A, et al.:Characterization of PLA2G6 as a locus for dystonia-parkinsonism. Ann Neurol 2009,65:19-23.
    [53]Smesny S, Kinder D, Willhardt I, et al.:Increased calciumindependent phospholipase A2 activity in first but not in multiepisode chronic schizophrenia. Biol Psychiatry 2005,57:399-405.
    [54]Yu Y, Tao R, Shi J, et al.:A genetic study of two calciumindependent cytosolic PLA2 genes in schizophrenia. Prostaglandins Leukot Essent Fatty Acids 2005, 73:351-354.
    [55]Bras J, Singleton A, Cookson MR, Hardy J:Emerging pathways in genetic Parkinson's disease:potential role of ceramide metabolism in Lewy body disease. FEBS J 2008,275:5767-5773.
    [56]Schneider SA, Hardy J, Bhatia KP:Iron accumulation in syndromes of neurodegeneration with brain accumulation— causative or consequential? J Neurol Neurosurg Psychiatry 2009,80:589-590.
    [57]Najim al-Din AS, Wriekat A, Mubaidin A, et al.:Pallido-pyramidal degeneration, supranuclear upgaze paresis and dementia:Kufor- Rakeb syndrome. Acta Neurol Scand 1994,89:347-352.
    [58]Di Fonzo A, Chien HF, Socal M, et al.:ATP13A2 missense mutations in juvenile parkinsonism and young onset Parkinson disease. Neurology 2007, 68:1557-1562.
    [59]Ramirez A, Heimbach A, Grundemann J, et al.:Hereditary parkinsonism with dementia is caused by mutations in ATP13A2, encoding a lysosomal type 5 P-type ATPase. Nat Genet 2006,38:1184-1191.
    [60]Williams DR, Hadeed A, al Din AS, et al.:Kufor Rakeb disease:autosomal recessive, levodopa-responsive parkinsonism with pyramidal degeneration, supranuclear gaze palsy, and dementia. Mov Disord 2005,20:1264-1271.
    [61]Schneider SA, Paisan-Ruiz C, Quinn N, et al.:ATP13A2 mutations (PARK9) cause neurodegeneration with brain iron accumulation. Mov Disord 2010, 25:979-984.
    [62]Hampshire DJ, Roberts E, Crow Y, et al.:Kufor-Rakeb syndrome, pallido-pyramidal degeneration with supranuclear upgaze paresis and dementia, maps to 1p36. J Med Genet 2001,38:680-682.
    [63]Kurian MA, Zhen J, Cheng SY, et al.:Homozygous loss-offunction mutations in the gene encoding the dopamine transporter are associated with infantile parkinsonism-dystonia. J Clin Invest 2009,119:1595-1603.
    [64]Ritz K, Groen JL, Kruisdijk JJ, et al.:Screening for dystonia genes DYT1,11 and 16 in patients with writer's cramp. Mov Disord 2009,24:1390-1392.
    [65]Patel RC, Sen GC:PACT, a protein activator of the interferoninduced protein kinase, PKR. EMBO J 1998,17:4379-4390.
    [66]Lee LV, Pascasio FM, Fuentes FD, Viterbo GH:Torsion dystonia in Panay, Philippines. Adv Neurol 1976,14:137-151.
    [67]Wilhelmsen KC, Weeks DE, Nygaard TG, et al.:Genetic mapping of "Lubag" (X-linked dystonia-parkinsonism) in a Filipino kindred to the pericentromeric region of the X chromosome. Ann Neurol 1991,29:124-131.
    [68]Evidente VG, Advincula J, Esteban R, et al.:Phenomenology of "Lubag" or X-linked dystonia-parkinsonism. Mov Disord 2002,17:1271-1277.
    [69]Evidente VG, Nolte D, Niemann S, et al.:Phenotypic and molecular analyses of X-linked dystonia-parkinsonism ("lubag") in women. Arch Neurol 2004, 61:1956-1959.
    [70]Waters CH, Takahashi H, Wilhelmsen KC, et al.:Phenotypic expression of X-linked dystonia-parkinsonism (lubag) in two women. Neurology 1993, 43:1555-1558.
    [71]Lee LV, Maranon E, Demaisip C, et al.:The natural history of sexlinked recessive dystonia parkinsonism of Panay, Philippines (XDP). Parkinsonism Relat Disord 2002,9:29-38.
    [72]Waters CH, Faust PL, Powers J, et al.:Neuropathology of lubag (x-linked dystonia parkinsonism). Mov Disord 1993,8:387-390.
    [73]Lee LV, Kupke KG, Caballar-Gonzaga F, et al.:The phenotype of the X-linked dystonia-parkinsonism syndrome. An assessment of 42 cases in the Philippines. Medicine (Baltimore) 1991,70:179-187.
    [74]Evidente VG, Lyons MK, Wheeler M, et al.:First case of Xlinked dystonia-parkinsonism ("Lubag") to demonstrate a response to bilateral pallidal stimulation. Mov Disord 2007,22:1790-1793.
    [75]Martinez-Torres I, Limousin P, Tisch S, et al.:Early and marked benefit with GPi DBS for Lubag syndrome presenting with rapidly progressive life-threatening dystonia. Mov Disord 2009,24:1710-1712.
    [76]Makino S, Kaji R, Ando S, et al.:Reduced neuron-specific expression of the TAF1 gene is associated with X-linked dystoniaparkinsonism. Am J Hum Genet 2007,80:393-406.
    [77]Carvalho AP, Sweadner KJ, Penniston JT, et al.:Mutations in the Na+/K+-ATPase alpha3 gene ATP 1 A3 are associated with rapid-onset dystonia parkinsonism. Neuron 2004,43:169-175.
    [78]Brashear A, Butler IJ, Ozelius LJ, et al.:Rapid-onset dystoniaparkinsonism:a report of clinical, biochemical, and genetic studies in two families. Adv Neurol 1998,78:335-339.
    [79]Brashear A, Dobyns WB, de Carvalho AP, et al.:The phenotypic spectrum of rapid-onset dystonia-parkinsonism (RDP) and mutations in the ATP1 A3 gene. Brain 2007,130(Pt 3):828-835.
    [80]Anheim M, Lagier-Tourenne C, Stevanin G, et al.:SPG11 spastic paraplegia. A new cause of juvenile parkinsonism. J Neurol 2009,256:104-108.
    [81]Stevanin G, Azzedine H, Denora P, et al.:Mutations in SPG11 are corpus callosum, cognitive decline and lower motor neuron degeneration. Brain 2008, 131:772-784.
    [82]Paisan-Ruiz C, Guevara R, Federoff M, et al.:Early-onset L-doparesponsive parkinsonism with pyramidal signs due to ATP13A2, PLA2G6, FBXO7 and Spatacsin mutations. Mov Disord 2010, in press.
    [83]Denora PS, Schlesinger D, Casali C, et al.:Screening of ARHSPTCC patients expands the spectrum of SPG 11 mutations and includes a large scale gene deletion. Hum Mutat 2009,30:E500- E519.
    [84]Stevanin G, Santorelli FM, Azzedine H, et al.:Mutations in SPG11, encoding spatacsin, are a major cause of spastic paraplegia with thin corpus callosum. Nat Genet 2007,39:366-372.
    [85]Di Fonzo A, Dekker MC, Montagna P, Baruzzi A, Yonova EH, et al. FBXO7 mutations cause autosomal recessive, early-onset parkinsonian-pyramidal syndrome. Neurology.2009;72:240.
    [86]Davison, C.Pallido-pyramidal disease. J. Neuropath. Exp. Neurol.13:50-59, 1954.
    [87]Shojaee, S.; Sina, F.; Banihosseini, S. S.;et al.Genome-wide linkage analysis of a parkinsonian-pyramidal syndrome pedigree by 500 K SNP arrays. Am. J. Hum. Genet.82:1375-1384,2008.
    [88]Luo LZ, Xu Q, Guo JF, et al. FBXO7 gene mutations may be rare in Chinese early-onset Parkinsonism patients. Neurosci Lett.2010 Sep 27;482(2):86-9.
    [89]Skowyra, D., Craig, K. L., Tyers, M., et al, F-box proteins are receptors that recruit phosphorylated substrates to the SCF ubiquitin-ligase complex. J. W. (1997) Cell 91,209-219.
    [90]Bai, C, Sen, P., Hofmann, K., et al. SKP1 connects cell cycle regulators to the ubiquitin proteolysis machinery through a novel motif, the F-box.,J.(1996) Cell 86,263-274.
    [91]Cenciarelli, C, Chiaur, D. S., Guardavaccaro, D., Parks, W., Vidal, M., and Pagano, M. (1999) Curr Biol 9,1177-1179.
    [92]Ilyin GP, Rialland M, Pigeon C, Guguen-Guillouzo C. cDNA cloning and expression analysis of new members of the mammalian F-box protein family. Genomics.2000;67:40.
    [93]Kirk R, Laman H, Knowles PP, Murray-Rust J, Lomonosov M, et al. Structure of a Conserved Dimerization Domain within the F-box Protein Fbxo7 and the PI31 Proteasome Inhibitor. J Biol Chem.2008;283:22325.
    [94]Laman H, Funes JM, Ye H, Henderson S, Galinanes-Garcia L, et al. Transforming activity of Fbxo7 is mediated specifically through regulation of cyclin D/cdk6. Embo J.2005;24:3104.
    [95]Laman, H., Funes, J. M., Ye, H., Henderson, S., Galinanes-Garcia, L., Hara, E., Knowles, P.,McDonald, N., and Boshoff, C. (2005) EMBO J 24,3104-3116.
    [96]Chang, Y. F., Cheng, C. M., Chang, L. K., Jong, Y. J., and Yuo, C. Y (2006) Biochem Biophys Res Commun 342,1022-1026.
    [97]Nelson DE, Laman H. A competitive binding mechanism between SKP1 and exportin 1 (CRM1) controls the localization of a subset of F-box proteins. J Biol Chem.2011 Mar 4. [Epub ahead of print]
    [98]Zhao T, De Graaff E, Breedveld GJ, et al. Loss of Nuclear Activity of the FBXO7 Protein in Patients with Parkinsonian-Pyramidal Syndrome (PARK15).PLoS One.2011;6(2):e16983.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700