混杂系统稳定性及其在电力系统中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
混杂系统是包含离散事件系统和连续变量动态系统、两者又相互作用的动态系统。自八十年代以来,混杂系统的研究得到了很大的关注。由于混杂系统的复杂性和特殊性,即使是线性切换型混杂系统也具有非常复杂的非线性动态行为,传统的研究方法不能直接应用,稳定性研究很困难。而稳定性是对于控制系统的一个基本要求,许多实际系统从本质上说又都是混杂的。故研究混杂系统稳定性分析和控制方法在理论和应用两个方面都具有重要意义。
     本文以李雅普诺夫函数法理论为基础,采用线性矩阵不等式方法对带有时变时滞摄动的混杂系统的稳定性进行研究。针对微分代数混杂系统的稳定性分析进行深入研究,并将其应用于电力系统电压稳定性的分析和控制。
     重点从自动控制的角度综述了混杂系统的研究现状,在对现有混杂系统模型分析的基础上,指出混杂系统的稳定性研究是现阶段混杂系统的研究重点,基于李雅普诺夫函数法得出了许多重要的结论。对混杂系统在电力系统中的应用作了重点分析。
     针对带有时变时滞摄动的混杂系统,基于单李雅普诺夫函数法和多李雅普诺夫函数法给出了能够使整个系统渐近稳定的切换律的设计办法,并把单李雅普诺夫函数法的切换律设计方法的结果以线性矩阵不等式形式给出,能够基于线性矩阵不等式算法来确定使系统渐近稳定的稳定边界。
     建立了含有微分代数子系统的混杂系统的数学模型,并提出了包括该类混杂系统稳定性和(大范围)渐近稳定性定义在内的理论框架。通过单李雅普诺夫函数和多李雅普诺夫函数方法对此类混杂系统进行稳定性研究,得出了混杂系统在任意切换及慢切换条件下的稳定性及渐近稳定性结果。
     给出了以微分代数混杂系统描述的电力系统电压稳定性的数学模型,分别利用单李雅普诺夫函数法和多李雅普诺夫函数法得到了具体实现慢切换条件下的微分代数混杂系统稳定性判定的充分条件,并进行应用,可找到切换律来使整个混杂系统达到稳定状态,进而分析电力系统电压稳定性。由于多李雅普诺夫函数法对于每个子系统的运行区域都提出一个李雅普诺夫函数,而不是所有的子系统都采用同一个李雅普诺夫函数,故比单李雅普诺夫函数法有更多优势。因此把此
    
    浙江大学博士学位论文
    混杂系统稳定性及其在电力系统中的应用研究
    方法用于电力系统电压稳定性分析的时候,此优势不仅带来了稳定性分析上的简
    便,而且可给出系统的稳定域并可用来分析系统参数变化对电力系统电压稳定性
    的影响。该方法在电压稳定性分析中的实际应用,验证了切换律设计方法的有效
    性。
Hybrid systems consist of continuous time and/or discrete time dynamic systems and discrete event systems, which interact on each other. There has been an intensified interest among control engineers in discrete event and hybrid systems during the last decade. For the complex dynamic and particularity of hybrid system, even though the linear hybrid system has very complex nonlinear character. Stability is one of the central properties in system theory and engineering. Many practical systems are hybrid naturally. So it is import for the theory and application to research on the stability and control method of hybrid system.
    Based on the Lyapunov stability theory of hybrid systems and using Linear Matrix Inequality (LMI) method, this dissertation investigates the stability of hybrid system with uncertain time-varying time-delay perturbation. And the further research is carried out for stability of differential algebraic hybrid system. And the stability theory put forward in the dissertation is used in the analysis and control of voltage stability of power system.
    The research of hybrid system is overviewed form the view of automatically control. Based on the analysis of hybrid system model in existence, it is pointed out that stability of hybrid system is the research emphasis on the stage. Many significant results are derived from Lyapunov direct method. Further more, it is discussed in detail for the application of hybrid system in power system.
    Using Single Lyapunov function and Multiple Lyapunov function, the switching laws are designed to analyze the stability of the whole hybrid system with uncertain time-varying time-delay perturbation. And the design based on Single Lyapunov function is put forward in the form of LMI. And the stability bounds can also be determined.
    Differential-Algebraic Hybrid System (DAHS) is modeled whose subsystems are formulated by differential-algebraic equations besides pure differential equations. A framework of stability theory including the definition of stability and (globally) asymptotic stability was put forward based on the model of DAHS. And the sufficient conditions to test for stability and asymptotic stability were achieved in the case of arbitrary switching and slow switching by Single Lyapunov Function and Multiple Lyapunov Functions.
    The model of voltage stability is analyzed and abstracted to the model of Differential-Algebraic Hybrid System. So the judgment of voltage stability can be come down to the stability research of Differential-Algebraic Hybrid System. Using Single Lyapunov Function and Multiple Lyapunov Function, the stability problem of Differential-Algebraic Hybrid System is researched in the case of slow switching scenario. The sufficient conditions are derived to stabilized whole hybrid system by the switching laws put forward in this dissertation and used in the research of voltage stability. Multiple Lyapunov Function is better than Single Lyapunov Function in the analysis of hybrid system for the former is that each Lyapunov Function is active in an area rather than in the whole state space. The advantage simplifies the stability analysis. And the method can be used to analyze the influence of parameter varying
    
    
    on the whole system. Therefore, when the method is used in the analysis of power system's voltage stability, it not only accounts for the validity of the switching law designed by the stability criterion put forward in this dissertation but also gives the stability margin of the system and judges the influence of the parameter varying on the whole system's stability.
引文
[1] M.Athans. Command and Control (C2) Theory: A challenge to Control Science. IEEE Trans. Automat. Contr., 1987, 32(4): 286~293
    [2] J.L. Bail, H. Alla, R. David. Hybrid Petri Nets. European Control Conference, France, 1991:1472~1477
    [3] R.Alur, C. Courcouberis, T. A. Henzinger, P. H. Ho. Hybrid Automata: An Algorithmic Approach to the Specification and Verification of Hybrid Systems. In workshop on Theory of Hybrid Systems, Lecture Notes in Computer Science, Denmark, 1992:209~229
    [4] R.Alur, C. Courcouberis, T. A. Henzinger, P. H. Ho, X. Nicollin, A. Olivero, J. Sifakis, S. Yovine. The Algorithmic Analysis of Hybrid Systems. Proc. of the 11th Int. conf. on DES, France, 1994:331~351
    [5] Michael S. Branicky, Vivek S. Borkar, Sanjoy K. Mitter. A Unified Framework for Hybrid Control. Proc. of the 11th Int. conf. on DES, France, 1994:352~358
    [6] S. Narain. Reasoning About Hybrid Systems with Symbolic Simulation. Proc. of the 11th Int. conf. on DES, France, 1994:359~368
    [7] J. Raisch. Simple Hybrid Control Systems——Continuous FDLTI Plants with Quantized Control Inputs and Symbolic Measurements. Proc. of the 11th Int. conf. on DES, France, 1994:369~376
    [8] M. Titus, B. Egardt. Controllability and Control——Law Synthesis of Linear Hybrid Systems. Proc. of the 11th Int. conf. on DES, France, 1994:377~383
    [9] Bemporad, A., Heemels, W.P.M.H., De Schutter, B. On Hybrid Systems and Closed-loop MPC Systems. Proceedings of the 40th IEEE Conference on Decision and Control, Orlando, Florida USA, December 2001, Volume: 2:1645~1650
    [10] A. Trontis, M.P. Spathopoulos. Target Control for Hybrid Systems with Linear Continuous Dynamics. Proceedings of the 40th IEEE Conference on Decision and Control, Orlando, Florida USA, December 2001,Vol. 2:1229~1234
    [11] E. Asarin, T. Dang, O. Male. d/dt: a Verification Tool for Hybrid Systems. Proceedings of the 40th IEEE Conference on Decision and Control, Orlando, Florida USA, December 2002, Vol. 3:2893~2898
    [12] B.Izaias Silva, Olaf Stursberg, Bruce H. Krogh, Sebastian Engell. An Assessment of the Current Status of Algorithmic Approaches to the Verification of Hybrid Systems. Proceedings of the 40th IEEE Conference on Decision and Control, Orlando, Florida USA, December 2001, Volume: 3:2867~2874
    [13] U.T. J(?)nsson. Robustness of Transitions in Switched Hybrid Systems. Proceedings of the 40th IEEE Conference on Decision and Control, Orlando, Florida USA, December 2002, Vol.3:2484~2489
    
    
    [14] U.T. J(?)nsson. On reachability analysis of uncertain hybrid systems. Proceedings of the 41st IEEE Conference on Decision and Control, Las Vegas, Nevada USA, December 2002, Volume: 3:2397-2402
    [15] S.Palomina Bean, D.F.Coutinho, A.Trofino, etc. Regional stability of a class of nonlinear hybrid systems: an LMI approach. Proceedings of the 41st IEEE Conference on Decision and Control, Las Vegas, Nevada USA, December 2002, Volume: 3:2786-2791
    [16] S.Abdelwahed, G.Karsai, G.Biswas, Online safety control of a class of hybrid systems. Proceedings of the 41st IEEE Conference on Decision and Control, Las Vegas, Nevada USA, December 2002, Volume: 2:1988-1990
    [17] P.Tabuada, G.J.Pappas, Discrete synchronization of hybrid systems. Proceedings of the 41st IEEE Conference on Decision and Control, Las Vegas, Nevada USA, December 2002, Volume: 1: 22-27
    [18] Hai Lin, P.J. Antsaklis. Robust controlled invariant sets for a class of uncertain hybrid systems. Proceedings of the 41st IEEE Conference on Decision and Control, Las Vegas, Nevada USA, December 2002, Volume:3: 3180-3181
    [19] Halfeng Zhai, Hongye Su, Jian Chu, Weimin Wu, Haihong Wu. Optical Control for Hybrid Systems Based on Mixed Dynamieal Programming. Proceedings of the 3rd world Congress on Intelligent Control and Automation, June 28-July2, 2000,Hefei, P. R. China: 2374~2378
    [20] J(?)rgen Malmborg. Analysis and Design of Hybrid Control Systems [Doctoral Dissertation]. Department of Automatic Control, Lund Institute of Technology, Sweden, 1998
    [21] Michael Tittus, Bo Egardt. Control Design for Integrator hybrid systems. IEEE Trans. Automat. Contr., 1998, 43(4): 491~500
    [22] Panos J. Antsnklis. Special Issue on Hybrid Systems: Theory and Applications A Brief Introduction to the Theory and Applications of Hybrid Systoms. Proceedings of the IEEE, July 2000, 88(7): 879~887
    [23] Antsaklis P J, Nerode A. Hybrid Control System: An Introductory Discussion to the Special Issue. IEEE Trans on Automatic Control, 1999,43(4): 457-4603
    [24] Morse A S, Pantelides C C, et al. Introduction to the Special Issue on Hybrid Systems. Automatica, 1999,35(3):347-348
    [25] Panos J. Antasklis. Special issue on hybrid systems: theory and applications. Proceedings of IEEE, 2000,88(7): 879~887
    [26] P. Peleties, R. Decarlo. A Modeling Strategy for Hybrid Systems Based on Event Structures. Discrete Event Dynamic systems: Theory and Applications, 1993,3:39~69
    [27] Michael S. Branicky, Vivek S. Borkar, Sanjoy K. Mitter. A Unified Framework for Hybrid Control: Model and Optimal Control Theory. IEEE Trans. Automat. Contr., January 1998,43(1): 31~45
    [28] 秦世引,宋永华.混杂控制系统的结构体系分析.电力系统自动化,2000,24(11):5~9
    [29] L. Tavernini. Differential automata and their discrete simulators. Nonlinear Analysis, Theory, Methods and Applications, 1987, 11(6): 665~683
    [30] Michael S. Braincky. Studies in Hybrid Systems: Modeling, Analysis, and Control
    
    [Doctoral Dissertation]. LIDS, Massachusetts Institute of Technology, 1995.
    [31] Michael S. Branicky, Vivek S. Borker, Sanjoy K. Mitter. A Unified Framework for Hybrid Control. Proceedings of the 33rd Conference on Decision and Control, Lake Buena Vista, FL-December 1994:4228~4234
    [32] Michael S. Branicky. Multiple Lyapunov Functions and Other Analysis Tools for Switched and Hybrid Systems. IEEE Transactions on Automatic Control, January 1998, 43(4): 475~482
    [33] R.W. Brockett. Hybrid Models for Motion control systems. In Trentelman and Willems, Eds., Essays on Control: Perspectives in the Theory and its Application. Birkh(?)user, Boston, MA: Birkhauser, 1993:29~54
    [34] Alerto Bemporad, Manfred Morari. Control of Systems Integrating Logic, Dynamics, and Constraints. Automatica, 1999, 35(3): 407~427
    [35] Alkerto Bemporad, Domenico Mignone, Manfred Morari. Moving Horizon Estimation for Hybrid Systems and Fault Detection. Proceedings of he American Control Conference, San Diego, California, June 1999:2471~2475
    [36] Giancarlo Ferrari-Trecate, Domenico Mignone, Dario Castagnoli, Manfred Morari. Mixed Logic Dynamical Model of a Hydroelectric Power Plant. The 4th International Conference Automation of Mixed Processes: Hybrid Dynamic Systems, Dortmund, Germany, September 2000:Ⅰ~ Ⅵ
    [37] James. A. Stiver, Panos J. Antsaklis. Modeling and Analysis of Hybrid Control Systems. Proceedings of the 31st IEEE Conference on Decision and Control, Tucson, Arizona, December 1992 vol.4:3748~3751
    [38] A. Nerode, W. Kohn. Models for Hybrid Systems: automata, topologies, controllability, observability. In Hybrid systems-Computation and Control, Lecture Notes in Computer Science, vol. 736, Springer, New York, 1993: 317~356
    [39] Wolf Kohn, Jeffrey B. Remmel. Implementing Sensor Fusion Using a Cost-Based Approach. Proceedings of the American Control Conference, Albuquerque, New Mexico, June 1997:2244~2248
    [40] A. Back, J. Guckenheimer, M. Myers. A Dynamical Simulation Facility for Hybrid Systems. In Hybrid systems-Computation and Control, Lecture Notes in Computer Science, vol. 736, Springer, New York, 1993:255~267
    [41] Michael Tittus. Control Synthesis for batch Processes [Doctor dissertation]. Chalmers University of Technology, 1995
    [42] Rajeev Alur, Costas Courcoubetis, Nicolas Halbwachs, et al. The Algorithmic Analysis of Hybrid Systems. Theoretical Computer Science, 1995, 138:3~34
    [43] R. Alur, D.L. Dill. A Theory of Timed Automata. Theoretical Computer Science, 1994, 126:183~235
    [44] Antonio FAVELA. Hybrid Automata Models in Continuous-linear Hybrid Systems Analysis. Proceedings of the 1999 IEEE International Symposium on Intelligent Control/Intelligent Systems and Semiotics, Cambridge, MA, September 1999:11~16
    [45] T.A. Henzinge. The theory of hybrid automata. Proceedings of the 11th Annual Symposium on Logic in Computer Science, IEEE Computer Society Press, Silverspring, MD, 1996:278~292
    [46] Karl Henrik Johansson, Magnus Egerstedt, John Lygeros, Shankar Sastry. On the
    
    Regularization of Zeno Hybrid Automata. Systems & Control Letters, 1999,38: 141~150
    [47] Rajeev Alur, Costas Courcoubetis, Thomas A. Henzinger, Pei-Hsin Ho. Hybrid Automata: an Algorithmic Approach to the Specification and erification of Hybrid Systems. In Hybrid Systems I, Lecture Notes in Computer Science 736, Springer-Verlag, 1993:209~229.
    [48] Bail J L, Alla H, David R. Hybrid Petri Nets. Proceedings of 1st European Control Conference, Grenoble France, 1991:1472~1477
    [49] A. Bourjij, M. Zasadzinski, M. Darouach, C. Krakala, M. Musser. On the Use of Hybrid Petri Nets for Control Process Safety: Application to a Steam-boilers Network Simulator. IEEE International Conference on Systems, Man and Cybernetics, 1993,2: 197~202
    [50] X.D. Koutsoukos, P. J. Antsaklis, K.X. He, M.D. Lemmon. Programmable Timed Petri Nets in the Analysis and Design of Hybrid Control Systems. Proceedings of the 37th IEEE Conference on Decision and Control, Tampa, Florida, December 1998:1617~1622
    [51] Ramavarapu S. Sreenivas. On the Existence of Supervisory Policies that Enforce Liveness in Discrete-Event Dynamic Systems Modeled by Controlled Petri Nets. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1997, 42 (7): 928~945
    [52] R. Champagnat, P. Esteban, H. Pingaud, R. Valette. Petri net based modeling of hybrid systems. Computers in Industry, 1998, 36:139~146
    [53] Demongodin I, Koussoulas N. T. Differential Petri Nets: Representing Continuous Systems in a Discrete-event world. IEEE Transactions on Automatic Control, 1998,34(4): 573~579
    [54] 张霓.参数不确定线性混杂系统的鲁棒控制及应用[博士学位论文].浙江大学,2002
    [55] 杨根科.混合系统的Petri网建模、调度分析和控制综合研究[博士学位论文).西安交通大学,1998
    [56] M.S. Branicky. Stability of Switched and Hybrid Systems. Proc. 33rd IEEE Conf. Decision and Control, Lake Buena Vista, FL, Dec. 14-16, 1994:3498~3503
    [57] G. N. Davrazos, N. T. Koussoulas. A Review of Stability Results for Switched and Hybrid Systems.9th Mediterranean Conference on Control and Automation June 27-29, Dubrovnik, Croatia 2001
    [58] R. Fierro, F. L. Lewis, C. T. Abdallah. Common, multiple, and parametric Lyapunov functions for a class of hybrid dynamical systems. Proc. IEEE Mediterranean Symp. New Directions in Contr. and Automat., Crete, Greece, June 1996:77~82.
    [59] O. Beldiman, L. Bushnell. Stability, Iinearization and control of switched systems. Proc. of American Control Conference, San Diego, CA, June 1999:2950~2955
    [60] E. Skafidas, R. J. Evans. Stability of Iogic-differential systems. Proceedings of the 37th IEEE Conference on Decision and Control, Tampa, Florida USA, 1998, vol.4:3711~3716
    [61] E. Skafidas, R. J. Evans, A. V. Savkin, etc. Stability results for switched controller system. Automatica, 1999, vol. 35:553~564
    [62] A.A. Agrachev, D. Liberzon. Lie-algebraic conditions for exponential stability of switched systems. Proceedings of the 38th IEEE Conference on Decision and Control, Phoenix, Arizona USA, Dec. 1999. Volume: 3:2679~2684
    
    
    [63] D. Liberzon, A. S. Morse. Basic problems in stability and design of switched systems. IEEE Control Systems Magazine, 1999, 19(5): 59~70
    [64] D. Liberzon, J. Hespanha, A. S. Morse. Stability of switched linear systems: a Lie-algebraic condition. Systems and Control Letters, 1999, 37(3): 117-122
    [65] Zhengguo Li, Cheong Boon Soh, Xinhe Xu. Lyapunov Stability of a class of Hybrid Dynamic Systems. Automatica, 2000, 36:297~302
    [66] Philippos Peleties, Raymond Decarlo. Asymptotic Stability of m-Switched Systems Using Lyapunov Functions. Proceedings of the 31st IEEE Conference on Decision and Control, 1992, vol.4:3438~3439
    [67] Michael S. Branicky. Stability of Hybrid Systems: State of the Art. Proceedings of the 36th Conference of Decision and Control, San Diego, California USA, December 1997: 120~125
    [68] J. Malmborg, B. Bernhardsson, K.J. Astr(?)m. A Stabilizing Switching Scheme for Multi-controller Systems. Proceedings of 13th IFAC, 1996:229~234
    [69] Hui Ye, Anthony N. Michel, Ling Hou. Stability Theory for Hybrid Dynamical Systems. IEEE Transactions on Automatic Control, 1998, 43(4): 461~474
    [70] Alexey S. Matveev, Andrey V. Savkin. Existence and Stability of Limit Cycles in Hybrid Dynamical Systems with Constant Derivatives. Part 1. General Theory. Proceedings of the 38th Conference on Decision and Control, Phoenix, Arizona USA, December 1999:4380~4385
    [71] Alexey S. Matveev, Andrey V. Savkin. Existence and Stability of Limit Cycles in Hybrid Dynamical Systems with Constant Derivatives. Part 2. Applications. Proceedings of the 38th Conference on Decision and Control, Phoenix, Arizona USA, December 1999:4386~4391
    [72] Stefan Pettersson, Beng Lennartson. LMI for Stability and Robustness of Hybrid Systems. Proceedings of the American Control Conference, Albuquerque, New Mexico, 1997:1714~1718
    [73] Mikael Johansson, Anders Rantzer. Computation of Piecewise Quadratic Lyapunov Functions for Hybrid Systems. IEEE Transactions on Automatic Control, 1998, 43(4): 555~559
    [74] Stefan Pettersson, Beng Lennartson. Stabilization of Hybrid Systems Using a Mia-projection Strategy. Proceedings of the American Control Conference, Arlington, VA, June 25-27 2001: 223~228
    [75] Anthony N. Michel, Bo Hu. Towards a stability theory of general hybrid dynamical systems. Automatica, 35 (1999): 371~384
    [76] M. Dorruel, U. Ozguner, S. Drakunov. Sliding-mode Control in Discrete-state and Hybrid Systems. IEEE Transactions on Automatic Control, 1996, 41(3): 414~419
    [77] Wang Ji, He Weidong. Formal Specification of Stability in Hybrid Control Systems. In R. Alur, T.A. Henzinger, E.D. Sontag, etc.: Hybrid Systems Ⅲ. Lect. Notes Comp. Sci.1066), Springer-Verlag, Berlin, 1996:294~303
    [78] P.V. Zhivoglyadov, R. H. Middleton. On stability in hybrid systems. Proceedings of the 37th IEEE Conference on Decision and Control, Tampa, Florida USA, Dec. 1998,
    
    Volume: 4:3687~3692
    [79] M. Kourjanski, P. Varaiya. Stability of hybrid systems. In R. Alur, T.A. Henzinger, E.D. Sontag, etc.: Hybrid Systems Ⅲ. Lect. Notes Comp.Sci. 1066), Springer-Verlag, Berlin, 1996:413~423
    [80] Andrey V. Savkin, Alexey S. Matveev. Existence and stability of periodic trajectories in switched server systems. Automatica, 2000, 36 (5): 775~779
    [81] Zhengguo Li, Cheong Boon Soh, Xinhe Xu. Stability of Hybrid Dynamic Systems. Int. J. Systems Engineering, 1997, 28(8): 837~846
    [82] Z.G. Li, C. Y. Wen, Y. C. Soh, W. X. Xie. Robust Stability of Switched Systems with Arbitrarily Fast Switchings by Generalized Matrix Measure. Proceedings of the American Control Conference, Chicago, Illinois, June 2000, Volume: 4:2679~2682
    [83] Z.G. Li, C. Y. Wen, Y. C. Soh. A unified approach for stability analysis of impulsive hybrid systems. Proceedings of the 38th IEEE Conference on Decision and Control, Phornix, Arizona USA, Dec. 1999, vol.5:4398~4403
    [84] Z.G. Li, C. B. Soh, C. Y. Wen. Stability of Uncertain Quasi-Periodic Hybrid Dynamic Systems. International Journal of Control, 2000, 73(1): 63~73
    [85] Z.G. Li, C. Y. Wen, Y. C. Sob. Switched controllers and their applications in bilinear systems. Automatica, 2001, 37 (3): 477-481
    [86] J. Guckenheimer. A Robust Hybrid Stabilization Strategy for Equilibria. IEEE Transactions on Automatic Control, 1995, 40(2): 321~326
    [87] C. Horn, P. Ramadge. Robustness Issues for Hybrid Systems. In Proceedings of the 34th Conference of Decision and Control, New Orleans, LA, Dec. 1995: 1467~1472
    [88] Li Zhengguo, C. B Soh, Xu Xinhe. Robust Stability of a Class of Hybrid Dynamic Uncertain Systems. International Journal of Robust and Nonlinear Control, 1998, no. 8: 1059~1072
    [89] C. B Soh. Robust Stability of Perturbed Periodic Hybrid Systems. International Journal of Systems Science, 1999, 30(8): 811~821
    [90] Z.G. Li, C. B. Soh. Robust Controllability and Obaervability of Impulsive Interval Hybrid Dynamic Systems. International Journal of Systems Science, 1999, 30(10): 1109~1122
    [91] Stefan Pettersson, Beng Lennartson. Stability and Robustness for Hybrid Systems. Proceedings of the 35th Conference on Decision and Control, Kobe, Japan, Dec. 1996: 1202~1207
    [92] Michael S. Branicky, Ravi Hebbar, Gang Zhang. A Fast Marching Algorithm for Hybrid Systems. Proceedings of the 38th Conference on decision and Control, Phoenix, Arizona USA, Dec. 1999:4897~4902
    [93] Michael S. Branicky, Ravi Hebba. Fast Marching for Hybrid Control. Proceedings of the 1999 IEEE International Symposium on Computer Aided Control System Design, Kohala Coast-Island of Hawaii, USA, August 22-27,1999:109~114
    [94] Michael S. Branicky, Gang Zhang. Solving Hybrid Control Problems: Level Sets and Behavioral Programming. Proceedings of the American Control Conference, Chicago, Illinois, June 2000:1175~1180
    [95] Michael S. Branicky, Sanjoy K. Mitter. Algorithms for Optimal Hybrid Control. Proceedings of the 34th Conference on Decision and Control, New Orleans, LA, Dec.
    
    1995:2661~2666
    [96] Kagan Gokbayrak, Christos G. Cassandras. A Hierarchical Decomposition Method for Optimal Control of Hybrid Systems. Proceedings of the 39th IEEE Conference on Decision and Control, Sydney, Australia, Dec. 2000:1816~1821
    [97] Young C. Cho, Wook Hyum Kwon, Christos G. Cassandras. Optimal Control for Steel Annealing Processes as Hybrid Systems. Proceedings of the 39th IEEE Conference on Decision and Control, Sydney, Australia, Dec. 2000:540~545
    [98] Ping Zhang, Christos G. Cassandras. An Improved Forward Algorithm for Optimal Control of a Class of Hybrid Systems. Proceedings of the 40th IEEE Conference on Decision and Control, Orlando, Florida USA, Dec. 2001:1235~1236
    [99] Young C. Cho, Christos G. Cassandras, David L. Pepyne. Forward Algorithms for Optimal Control of a Class of Hybrid Systems. Proceedings of the 39th IEEE Conference on Decision and Control, Sydney, Australia, Dec. 2000:975~980
    [100] Christos G. Cassandras, David L. Pepyne, Youai Wardi. Generalized Gradient Algorithms for Hybrid System Models of Manufacturing Systems. Proceedings of the 37th IEEE Conference on Decision and Control, Tampa, Florida USA, Dec. 1998: 2627~2632
    [101] Christos G. Cassandras, David L. Pepyne. Optimal Control of a Class of Hybrid Systems. Proceedings of the 36th Conference on Decision and Control, San Diego, California USA, Dec. 1997:133~138
    [102] Christos G. Cassandras, David L. Pepyne, Yorai Wardi. Optimal Control of a Class of Hybrid Systems. IEEE Transactions on Automatic Control, 2001, 46(3): 398~415
    [103] Héctor J. Sussmann. A Maximum Principle for Hybrid Optimal Control Problems. Proceedings of the 38th Conference on Decision and Control, Phoenix, Arizona USA, Dec. 1999:425~430
    [104] P. Riedinger, C. Zanne, F. Kratz. Time Optimal Control of Hybrid Systems. Proceedings of the American Control Conferencem San Diego, California, June 1999: 2466~2470
    [105] P. Manon, C. Valentin-Roubinet, G. Gilles. Optimal control of hybrid dynamical systems: application in process engineering. Control Engineering Practice, 2002, vol. 10:133~149
    [106] Yin Zengshan, Li Ping. Optimal Control of Hybrid Systems Based on Dynamic Programming. Proceedings of the American Control Conference, Arlington, VA, June 25-27, 2001:880~881
    [107] Emilio Frazzoli, Munther A. Dahleh, Eric Feron. A Hybrid Control Architecture for Aggressice Maneuvering of Autonomous Helicopters. Proceedings of the 38th Conference on Decision and Control, Phoenix, Arizona USA, December 1999: 2471~2476
    [108] Eabio Balduzzi. Hybrid System Model of Production Work-Cells and Its Optimal Control Subject to Logical Constraints. Proceedings. 2001 8th IEEE International Conference on Emerging Technologies and Factory Automation, 2001,Vol 1: 455~463
    [109] Benedetto Piccoli. Necessary Conditions for Hybrid Optimization. Proceedings of the 38th Conference on Decision and Control, Phoenix, Arizona USA, Dec. 1999:410~415
    [110] A. Bemporad, F. Borrelli, and M. Morari. Piecewise linear optimal controllers for
    
    hybrid systems. Proceedings of American Control Conference, Chicago, IL, June 2000:1190~1194
    [111] Minh-Tuan NGUYEN, Vladimir GAITSGORY. Asymptotic Optimization for a Class of Nonlinear Stochastic Hybrid Systems on Infinite Time Horizon. Proceedings of the American Control conference, Albuquerque, New Mexico, June 1997:3587~3591
    [112] Ching-Chih Tsai, Abraham H. Haddad. Averaging, Aggregation and Optimal Control of Stochastic Hybrid Sysiems with Singularly Perturbed Morkovian Switching Behavior. Proceedings of the American Control Conferences, Baltimore, Maryland, June 1994:1868~1872
    [113] Eitan Aitman, Vladimir Gaitsgory, Peng Shi. On Optimization of a Class of Hybrid System with Fast Stochastic Dynamics. Proceedings of the 35th Conference on decision and Control, Kobe, Japan, December 1996:523~528
    [114] P.W. Sauer, M. A. Pai. Power System Dynamic and Stability. Prentice Hall, Upper Saddle River, NJ, 1998
    [115] L.A. Hiskens, M. A. Pai Hybrid Systems View of Power System Modeling. IEEE International Symposium on Circuits and Systems. May 28-31, 2000,Geneca, Switzerland: Ⅱ-228~Ⅱ-231
    [116] Chen Luonan, Aihara K. Bifurcation Analysis of Hybrid Dynamical Systems. IEEE Proc. Int. Conference on Systems, Man, and Cybernetics, San Diego, CA, USA, 1998:857~862
    [117] 吴捷,柳明.非线性控制在电力系统中的应用.控制理论与应用,2002,19(1):15~21
    [118] Fan Li, Baohua Li, Xujun Zheng. Coordination of Power Flow Control in Large Power Systems. IEEE Trans. on Power Systems, 2001,16(4): 776~881
    [119] K. Xie, Y. H. Song. Power Market Oriented Optimal Power Flow via an Interior Point Method. Generation, Transmission and Distribution, IEE Proceedings-, 2001, 148(6): 549-556
    [120] T. Maekawa, K. Yasuda, R. Yoloyama, H. Ohtsuki, Y. Mizukami. Fuzzy Coordination of Economy, Security and Quality in Power System Generation Control. Power System Monitoring and Control, 1991., Third International Conference on, 1991:174-179
    [121] 孙元章.电力系统安全经济综合控制理论与应用研究现状及发展趋势.中国科学基金,1999,13(3):133~136
    [122] Gudinin, N, Roytelman I. Heading Off Emergencies in Large Electric Grids. IEEE Spectrum, 1997,34 (4): 42-47
    [123] 吕书强,秦世引,宋永华.混杂电力系统频率紧急控制的Petri网建模与仿真.电力系统自动化,2001,25(6):4~81
    [124] 秦世引,宋永华.混杂控制系统的结构体系分析.电力系统自动化,2000,24(11):5~9
    [125] Milan Bjelogrlic, Milan S. Calovic, Borivoje S. Babic. Application of Newton's Optimal Power Flow in Voltage/Reactive Power Control. IEEE Trans. on Power Systems, 1990, 5(4): 1447~1454
    [126] 仝庆贻,颜钢锋.变电站电压无功综合控制的研究.继电器,2001,29(10):22~225
    
    
    [127] 张永刚,叶鲁卿.基于受控Petri网的抽水蓄能机组工况转换控制——建模及实现.电力系统自动化,1999,23(3):35~39
    [128] Ebert A, Eppel M, Genthe S, et al. System Restoration of a Transmission Network. Proceedings of the Int. Conference on Energy Management and Power Delivery, Part 1, Singapore, 1995:91~95
    [129] Hiskens P J, Pai M A. Trajectory Sensitivity Analysis of Hybrid Systems. IEEE Trans. on Circuits and Systems, 2000,47(2): 204~220
    [130] Koutsoukos X D, Antasklis PJ, et al. Programmable Timed Petri Nets in the Analysis and Design of Hybrid Control Systems. Proc. Of the 37th Conference on Decision and Control, Tamp, USA, 1998:1617~1622
    [131] Stephen Boyd, Laurent El Ghaoui, Eric Feron, Venkataramanan Balakrishnan. Linear Matrix Inequalities in System and Control Theory. Philadelphia, Pennsylvania: SIAM, 1994
    [132] Stefan Pettersson. Analysis and Design of Hybrid Systems [Doctoral Dissertation]. Department of Signals and Systems, Chalmers University of Technology, G(?)teborg, Sweden, 1999
    [133] 刘则毅,唐万生,李光泉,等.带约束的时变的非线性系统的可解性.系统工程理论与实践,1996,16(7):25~30
    [134] H.H. Rosenbrock. Structural Properties of Linear Dynamical Systems. Int. J. Control, 1974, 20(2): 191~202
    [135] 陈潮填,刘永清.非线性微分一代数系统稳定性的几个判据.系统工程理论与实践,1999,19(7):77~82
    [136] D.J. Hill, I. M. Y. Mareels. Stability theory for differential/algebraic systems with application to power systems. IEEE Trans. Circuits and Systems, 1990, 37(11): 1416~1423
    [137] Philippos Peleties. Asymptotic Stability of m-Switched Systems Using Lyapunov-like Functions. Proceedings of American Control Conference, Boston, 1991:1679~1684
    [138] Qingyi Tong, Gangfeng Yan. Non-modal Control Scheme for Industrial Processes with Uncertain Time-Delay. 2002 IEEE Region 10 conference on Computers, Communications, Control and Power Engineering Proceedings, Beijing, China, Oct. 2002, Vol. 1: 244~248
    [139] 仝庆贻,李辉,颜钢锋.一种新型大纯滞后过程控制方案的鲁棒稳定性分析.江南大学学报(自然科学版),2003,2(3):245~249
    [140] Tatsushi Ooba, Yasuyuki Funahashi. Commends on. Robust Stability of Linear systems with Delayed Perturbations. IEEE Transactions on Automatic Control, 1999,44(8): 1582-1583
    [141] Mao-Lin Ni, Meng Joo Er, Yun Chung Chu. An LMI Approach to robust Stability of Linear Delayed Systems. Proceedings of the 40th IEEE Conference on Decision and Control, Orlando, Florida USA, 2001:1003~1004
    [142] 孙洪飞,赵军,高晓东.带有时滞摄动的线性切换系统的稳定性.控制与决策,2002,17(4):431~434
    [143] Decarlo R A, Branicky M S, Pettersson S, Lennartson B. Perspectives and results on the stability and stabilizability of hybrid systems. Proceedings of the IEEE, 2000, 88(7): 1069~1082
    
    
    [144] Ye H, Michel A N, HOU L. Stability theory of hybrid dynamical systems. IEEE Trans. Automat. Contr, 1998, 43(4): 461~474.
    [145] 仝庆贻,颜钢锋.混杂系统及其在电力系统中的应用.电力系统及其自动化学报,2003,15(2):14~18
    [146] 赵洪山,米增强,牛东晓,等.利用混杂系统理论进行电力系统建模的研究.中国电机工程学报,2003,23(10):20~25
    [147] Zhao Hongshan, Mi Zengqiang, Song Wei, Yang Qixun. Multiple Lyapunov Functions Analysis of Hybrid Power Systems with Discrete Event Actions. PowerCon2002 [C]. Kunming: Yunnan Science and Technology Press, 2002. 2026~2029
    [148] 赵洪山,米增强,任惠,等.含有OLTC的电力系统的模型与分析.华北电力大学学报,2003,30(2):1~5
    [149] 廖晓昕.动力系统的稳定性理论和应用.北京:国防工业出版社,2000:4~6
    [150] 王梅义,吴竞昌,蒙定中.大电网系统技术(第二版).北京:中国电力出版社,1995
    [151] 韩祯祥.电力系统稳定.北京:中国电力出版社,1995
    [152] 袁季修.电力系统安全稳定控制.北京:中国电力出版社,1996
    [153] 吴浩.电力系统电压稳定研究(博士学位论文).浙江大学,2002
    [154] 王杰,陈陈.电力系统微分代数模型的非线性控制.中国电机工程学报,2001,21(8):15~18
    [155] CIGRE Task Force 38.02.10. Criteria and countermeasures for voltage collapse. CIGRE, October 1995
    [156] CIGRE Working Group. Protection against voltage collapse. Edited by D. Karlsson, CIGRE, 21 rue d'Artois-F-75008 PARIS
    [157] CIGRE Task Force 38.02:10, Cigre technical brochure: Modeling of voltage collapse including dynamic phenomena. ELECTRA No. 147, April 1993
    [158] [5]中华人民共和国电力行业标准.电力系统安全稳定导则(DL 755-2001).中国电力出版社,2001年6月
    [159] 马尔科维奇,张钟俊译.动力系统及其运行情况(上册).北京:电力工业出版社,1956
    [160] 段献忠,何仰赞,陈德树.电力系统电压稳定性的研究现状.电网技术,1995,19(4):20~24
    [161] 潘文霞,陈允平,沈阻诒.电力系统电压稳定性研究综述.电网技术,2001,25(9):51~54
    [162] J. Deuse, M. Smbbe. Dynamic Simulation of Voltage Collapse. IEEE Transactions on Power Systems, 1993, 8(3): 894~904
    [163] Miroslav M. Begovic, Arun G. Phadke. Dynamic Simulation of Voltage Collapse. IEEE Transactions on Power Systems, 1990, 5(4): 1529~1534
    [164] T. Nagao, K. Tanaka, K. Takenaka. Development of Static and Simulation Programs for Voltage Stability Studies of Bulk Power System. IEEE Transactions on Power Systems, 1997, 12(1): 273~281
    [165] W.R. Lachs, D. Sutanto. Voltage Instability in Interconnected Power Systems: a Simulation Approach. IEEE Transactions on Power Systems, 1992, 7(2):753~759
    [166] B. H. Chowdhury, C. W. Taylor. Voltage Stability Analysis: V-Q Power Flow Simulation Versus Dynamic Simulation. IEEE Transactions on Power Systems, 2000, 15(4):1354~1359
    [167] B. Lee, V. Ajjarapu. A Piecewise Global Small-disturbance Voltage Stability Analysis
    
    of Structure Preserving Power System Models. IEEE Transactions on Power Systems,1995, 10(4): 1963~1971
    [168] 贾宏杰.电力系统小扰动稳定域的研究[博士学位论文].天津大学,2001
    [169] N. Narasimhamurthi, M. T. Musavi. A Generalized Energy Function for Transient Stability Analysis of Power Systems. IEEE Transactions on Circuits and Systems, 1985, 32(10): 1041~1049
    [170] I.A. Hiskens, D. J. Hill. Energy Functions, Transient Stability and Voltage Behavior in Power Systems with nonlinear loads. IEEE Transactions on Power Systems, 1989, 4(4): 1525~1533
    [171] T. J. Overbye, C. L. Demaco. Improved Techniques for Power System Voltage Stability Assessment Using Energy Methods. IEEE Transactions on Power Systems, 1991,6(4): 1446~1452
    [172] T.J. Overbye, M. A. Pai, P. W. Sauer. Some Aspects of the Energy Function Approach to Angle and Voltage Stability Analysis in Power Systems. Proceedings of the 31st Conference on Decision and Control, Tucson, Artzons, Dec. 1992:2941~2946
    [173] H. G. Kwatny, A. K. Pasrija, L. Y. Bahar. Static Bifurcations in Electric Power Networks Loss of Steady-state Stability and Voltage Collapse. IEEE Transactions on Circuits and Systems, 1986, 33(10): 981~991
    [174] 彭志炜.基于分岔理论的电力系统电压稳定性研究[博士学位论文].浙江大学,1998
    [175] V. Venkatasubramanian, H. Schattler, J. Zaborszky. Local Bifurcations and Feasibility Regions in Differential-algebraic Systems. IEEE Transactions on Automatic Control, 1995, 40(12): 1992~2013
    [176] S. Arnborg, G. Andersson, D. J Hill, et al. On undervoltage load shedding in power systems. Electrical Power and Energy Systems, 1997, 19(2): 141~149
    [177] D. Popovié, I. A. Hiskens, D. J. Hill. Investigations of load-tap changer interaction. Electrical Power & Energy system, 1996, 18(2): 81~97
    [178] 段献忠,何仰赞,陈德树.有载调压变压器与电压稳定性的动态分析.电力系统自动化,1995,19(1):14~19
    [179] W.S. Peter, M. A. Pai. A Comparison of Discrete vs Continuous Dynamic Models of Tap Changing Under Load Transformer, the Bulk Power System Voltage Phenomenon-Seminar on Voltage Stability. Davos (Switzerland): Security & Control, 1994:22~26
    [180] 丛屾,鞠平,吴峰.关于静态电压稳定中有载调压变压器的作用与控制.电力系统及其自动化学报,2002,14(2):4~7

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700