基于联合残基模型的蛋白折叠模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蛋白质结构预测和蛋白质折叠机制的研究是相当有挑战性并且吸引人的研究方向。尽管在过去的几十年里面,蛋白质折叠研究已经取得了相当大的进步,但是,直至现在,蛋白折叠的研究里仍有相当多未能完全解决的问题。本论文主要是采用一种用以研究蛋白质折叠的简化模型——联合残基模型(UNRES)来研究蛋白质的折叠路径,并在研究折叠路径的同时来改进我们所使用的联合残基模型。我们的工作有助于对蛋白质折叠机制的进一步认识和联合残基模型的改进。具体的讲,我们做了以下几个方面的工作:
     1)采用联合残基模型对Trptophan Zipper 2(Trpzip2)蛋白的折叠路径进行了研究。我们发现对Trpzip2这样一个由12个氨基酸组成的小肽段,它从直链结构(非天然态)折叠到天然结构有两种折叠机制:拉链模式和拉链—疏水塌缩同时发生的模式,而每种路径是以一定概率出现的。拉链模式发生的概率约为72%,这也说明了为什么实验上观察到的都是拉链模式,因为实验上总是观测到出现概率最大的事件。另外,我们发现Trpzip2的折叠过程可能是二态的过程,也可能是三态的过程。我们的研究有助于理清目前β发卡折叠机制中存在的矛盾。
     2)采用联合残基模型研究了较大蛋白的折叠过程。我们选取了长度为120个氨基酸的6螺旋蛋白1Q2Z,模拟了48条长为110纳秒的1Q2Z折叠的独立分子动力学轨道,并且所有这些模拟轨道均从直链开始。这个蛋白成功折叠到它的天然结构并且整个折叠过程可以用以下几步来描述。首先是迅速地在局部形成二级结构同时伴以疏水塌缩,然后各个局域螺旋片段之间开始聚合在一起,最后再把各个聚合体拼装成正确的三级结构。我们同时发现这个蛋白的前半段(前三个螺旋)和后半段(后三个螺旋)能独立折叠到它们的天然结构。我们还发现如果把这个6螺旋蛋白切成三段,每个片段都有一定独立折叠的能力。这说明这个蛋白很可能是由更小的蛋白或多肽片段进化而来的。
     3)将1Q2Z蛋白切成不同长度的片段,并采用联合残基模型对这些片段进行了独立的动力学模拟。从我们的模拟中可以看出,三个螺旋组成的片段的稳定性好于两个螺旋组成的片段。从我们序列比对的结果中也可以看出,1Q2Z具有两对称性。所以,我们有理由推断1Q2Z可能是有两个三螺旋结构单元组成的。并且,在这些1Q2Z片段折叠的过程中,这些片段展现出了与1Q2Z蛋白相似的折叠过程。
     4)研究了联合残基模型可能的权重参数空间的范围。因为一些新的能量项参数和温度依赖性的加入使得联合残基模型拥有更高的精度和可靠性,但是同时使得我们必须要重新确定联合残基力场各项的权重参数。因此,必须有一个用以力场优化的初始点。为了这个目标,我们随机在力场权重构成的参数空间里取了一百个初始点,并采用了分层次的筛选机制来得到理想的初始点。一个包含13个测试蛋白的测试集用来测试随机产生的初始点的折叠能力。利用我们筛选出的力场权重集,大部分测试集里的蛋白可以产生类天然结构。而且,从我们的结果可以看出,随机搜索力场参数空间是可行的,并且我们设计的分层次的筛选法则也是有效的,它可以用于力场参数的粗选。同时,我们建议进行更大规模的筛选以获得更好的初始点
Study protein folding and protein folding mechanisms is a very difficult but also attractive task. In the past decades, protein folding research has achieved lots of successes, but there are still many problems need to be solved. My research is focused on studying protein folding mechanisms with United-Residue (UNRES) model and improving UNRES force field. Our research can help people understanding both small peptides and real proteins folding mechanisms. We also did some researches about UNRES force field. More detiales about my research are listed as following:
     1) We employed UNRES to study a short peptide: Trptophan Zipper 2(Trpzip2) folding mechanisms. We find that this small peptide folds from extended structure to native structure following two folding mechanisms: zipper and simultaneously zipper & hydrophobic collapse. Each folding mechanism appears with different probabilty. The "Zipper" mechanism appears with a probabilty around 72%, this may explain why only "zipper" mechanism observed in the experimental research, since the experimental research always oberved the most probable events. We also find that the folding process of trpzip2 is not only a two states process but also a three states process. Our results may help to clarify the inconsistencies in the current picture of the folding mechanisms ofβhairpins.
     2) In the following, we extended the application of UNRES to real protein. We employed UNRES approach to study folding processes of a Six-helix protein domain (the C-terminal domain of Ku86 protein, PDB ID: 1Q2Z). We simulated 48 110-ns independent molecular dynamics trajectories with UNRES starting from extended conformations of this protein. This protein successfully folds into its native state and the results show that its folding process is relatively simple: firstly the secondary structures form very fast with the hydrophobic collapse, then helix pairs form and finally these pairs assemble into the tertiary structure. We also find the first-half (the first three helices) and last-half (the last three helices) parts of this protein can fold into their native conformations independently and this suggests that this protein may be evolved from smaller polypeptides or proteins.
     3) We cut six helix-bundle protein (PDB ID:1Q2Z) into slices by different ways. Then a series of molecular dynamics simulations with these slices were carried out by UNRES. The results shows that the slices containing three helices are more stable than the slices containing two helices. As shown in our sequence alignment results, the first half of 1Q2Z has sequence similarity to the second half. So we have reason to suppose that 1Q2Z may consist of two parts/fragments. Besides, all these slices show the same folding behaves as the whole 1Q2Z protein.
     4) We also did something on UNRES force field. UNRES force field is more and more elaborate, lots of energy term parameters have been changed, so this new UNRES force field needs to be reparameterized. Based on Prof. Liwo's unpublished work, we knew the parameter space of UNRES. We introduced a method which can be used to decide initial parameter sets for UNRES optimization. Recently, temperature-dependence and new energy term parameters have been applied to UNRES in order to develop a more powerful and reliable force field and thus the UNRES force field parameters (weight of energy terms) must be reparameterized. Therefore, a good initial parameter set for UNRES force field optimization will be needed. With this goal, we randomly generated parameter sets in the parameter space and applied a hierarchical selection procedure to obtain appropriate initial parameter sets for UNRES force field optimization. A training set which contains 13 proteins was used to test the folding ability of these parameter sets. The results show that most proteins in our training set reach native-like structures with the parameter sets selected by our procedure. Our results suggest that it is possible to randomly search the force field parameter space to find good initial parameter sets and our procedure could be used for gross selection of good initial parameter sets for UNRES force field optimization. We also suggest that it is possible to find a better force field directly though further extensively searching of UNRES parameter space.
     This work is supported by the National Natural Science Foundation of China under Grant No.30525037 and No.30470412.
引文
[1] 来鲁华.蛋白质的结构预测与分子设计.北京大学出版社,1993
    [2] Chambers, I., et al. The structure of the mouse glutathione peroxidase gene: the selenocysteine in the active site is encoded by the 'termination' codon TGA.EMBO J., 1986, 5:1221-1227
    [3] Zinoni, F., et al. Nucleotide sequence and expression of the selenocysteine-containing polypeptide of formate dehydrogenase (formate-hydrogen-lyase- linked)from Escherichia coli. Proc. Natl. Acad. Sci. U. S. A., 1986, 83:4650-4654
    [4] Bairoch, A. The ENZYME database in 2000. Nucleic Acids Res., 2000, 28:304-305.
    [5] Radzicka, A. and Wolfenden, R. A proficient enzyme. Science, 1995, 6 (267):90-93
    [6] Staudinger, J., Zhou, J., Burgess, R., Elledge, S. J., Olson, E. N. PICK1: a perinuclear binding protein and substrate for protein kinase C isolated by the yeast two-hybrid system. J. Cell Biol., 1995, 128: 263-271.
    [7] Elkins, J. M., Papagrigoriou, E., Berridge, G., Yang, X., Phillips, C., Gileadi, C.,Savitsky, P., Doyle, D. A.. Structure of PICK1 and other PDZ domains obtained with the help of self-binding C-terminal extensions. Protein Sci., 2007, 16(4):683-94.
    [8] Daw, M. I., Chittajallu, R., Bortolotto, Z. A., Dev, K. K., Duprat, F., Henley, J. M.,Collingridge, G L., Isaac, J. T.. PDZ proteins interacting with C-terminal GluR2/3 are involved in a PKC-dependent regulation of AMPA receptors at hippocampal synapses. Neuron, 2000, 28: 873-886.
    [9] Xia, J., Chung, H. J.,Wihler, C., Huganir, R. L., Linden, D. J. Cerebellar long-term depression requires PKC-regulated interactions between GluR2/3 and PDZ domain-containing proteins. Neuron, 2000, 28:499-510.
    [10] Branden, C. and Tooze, J. Introduction to Protein Structure 2nd ed, 1999
    
    [11] Wuthrich, K. Protein structure determination in solution by NMR spectroscopy. J. Biol. Chem., 1990,265(36):22059-22062
    [12] Barlow, W. Probable nature of the internal symmetry of crystals. Nature, 1883, 29:186-188.
    [13] Anfinsen, C. B. and Edgar Haber. Studies on the Reduction and Re-formation of Protein Disulfide Bonds. J. Biol. Chem. 1960,236: 1361-1363.
    [14] Creighton, T. E. Disulfide bonds as probes of protein folding pathways. Methods Enzymol., 1986, 131:83-106.
    [15] Anfinsen, C. B. Principles that govern the folding of protein chains. Science, 1973, 181:223-230.
    [16] Anfinsen, C. B. and Scheraga, H. A. Experimental and theoretical aspects of protein folding. Adv. Protein Chem., 1975, 29: 205-300
    [17] Irb(a|¨)ck, A., Sjunnesson, F. and Wallin, S. Three-helix-bundle protein in a Ramachandran model. Proc. Natl. Acad. Sci. USA, 2000, 97:13614-13618
    [18] Irb(a|¨)ck, A., Samuelsson, B., Sjunnesson, F. and Wallin S. Thermodynamics of α- and β-structure formation in proteins. Biophyscal J., 2003, 85:1466-1473
    [19] Irb(a|¨)ck, A. and Sjunnesson, F. Folding thermodynamics of three β-sheet peptides: a model study. Proteins, 2004, 56:110-116
    [20] Liwo, A., Oldziej, S., Pincus, M. R., Wawak, R. J., Rackovsky, S. and Scheraga, H. A. A united-residue force field for off-lattice protein-structure simulations. I: Functional forms and parameters of long-range side-chain interaction potentials from protein crystal data. J. Comput. Chem., 1997, 18:849-873.
    [21] Liwo, A., Pincus, M. R., Wawak, R. J., Rackovsky, S., Oldziej, S. T. And Scheraga, H. A. A united-residue force field for off-lattice protein-structure simulations.Ⅱ:Parameterization of local interactions and determination of the weights of energy terms by Z-score optimization. J. Comput. Chem., 1997, 18:874-887
    [22] Liwo, A., Kazmierkiewicz, R., Czaplewski, C, Groth, M., Oldziej, S., Wawak, R. J., Rackovsky, S., Pincus, M. R. and Scheraga, H. A. United-residue force field for off-lattice protein-structure simulations.Ⅲ. Origin of backbone hydrogen-bonding cooperativity in united-residue potentials. J. Comput. Chem., 1998, 19:259-276.
    
    [23] Liwo, A., Czaplewski, C, Pillardy, J. and Scheraga, H. A. Cumulant-based expressions for the multibody terms for the correlation between local and electrostatic interactions in the united-residue force field. J. Chem. Phys., 2001, 115:2323-2347.
    
    [24] Lee, J., Ripoll, D. R., Czaplewski, C, Pillardy, J., Wedemeyer, W. J. and Scheraga, H. A. Optimization of parameters in macromolecular potential energy functions by conformational space annealing. J. Phys. Chem. B, 2001, 105:7291-7298
    
    [25] Pillardy, J., Czaplewski, C, Liwo, A., Wedemeyer, W. J., Lee, J., Ripoll, D. R., Arlukowicz, P., Oldziej, S., Arnautova, Y. A. and Scheraga, H. A. Development of physics-based energy functions that predict medium-resolution structures for proteins of the alpha, beta, and alpha/beta structural classes. J. Phys. Chem. B, 2001,105:7299-7311.
    
    [26] Liwo, A., Arlukowicz, P., Czaplewski, C, Oldziej, S., Pillardy, J. and Scheraga, H. A. A method for optimizing potential-energy functions by a hierarchical design of the potential-energy landscape: Application to the UNRES force field. Proc. Natl. Acad. Sci. USA., 2002: 99:1937-1942.
    
    [27] Oldziej, S., Kozlowska, U., Liwo, A. and Scheraga, H. A. Determination of the Potentials of Mean Force for Rotation about C-C Virtual Bonds in Polypeptides from the ab Initio Energy Surfaces of Terminally Blocked Glycine, Alanine, and Proline J. Phys. Chem. A(Article), 2003, 107(40):8035-8046.
    
    [28] Liwo, A., Odziej, S., Czaplewski, C, Kozowska, U. and Scheraga, H. A. Parametrization of Backbone-Electrostatic and Multibody Contributions to the UNRES Force Field for Protein-Structure Prediction from Ab Initio Energy Surfaces of Model Systems. J. Phys. Chem. B, 2004,108(27):9421-9438.
    
    [29] Liwo, A., Arlukowicz, P., Oldziej, S., Czaplewski, C, Makowski, M. And Scheraga, H. A. Optimization of the UNRES Force Field by Hierarchical Design of the Potential-Energy Landscape. 1. Tests of the Approach Using Simple Lattice Protein Models. J. Phys. Chem. B(Article), 2004,108(43):16918-16933.
    
    [30] Oldziej, S., Liwo, A., Czaplewski, C, Pillardy, J. and Scheraga, H. A. Optimization of the UNRES Force Field by Hierarchical Design of the Potential-Energy Landscape. 2. Off-Lattice Tests of the Method with Single Proteins. J. Phys. Chem. B(Article), 2004, 108(43):16934-16949.
    
    [31] Oldziej, S., Lagiewka, J., Liwo, A., Czaplewski, C, Chinchio, M., Nanias, M. and Scheraga, H. A. Optimization of the UNRES Force Field by Hierarchical Design of the Potential-Energy Landscape. 3. Use of Many Proteins in Optimization. J. Phys. Chem. B(Article), 2004,108(43):16950-16959
    
    [32] Liwo, A., Khalili, M. and Scheraga, H. A. Ab initio simulations of protein-folding pathways by molecular dynamics with the united-residue model of polypeptide chains. Proc. Natl. Acad. Sci. USA, 2005,102:2362-2367:
    
    [33] Khalilil, M., Liwo, A. and Scheraga, H. A. Kinetic Studies of folding of the B-domain of Staphylococcal ProteinA with molecular dynamics and a United-residue (UNRES) Model of Polypeptide Chains. J. Mol. Biol, 2006,355:536-547
    
    [34] Khalili, M., Liwo, A., Rakowski, F., Grochowski, P. and Scheraga, H. A. Molecular dynamics with the united-residue(UNRES) model of polypeptide chains. I. Lagrange equations of motion and tests of numerical stability in the microcanonical mode. J. Phys. Chem. B, 2005, 109:13785-13797.
    
    [35] Khalili, M., Liwo, A., Jagielska, A. and Scheraga, H. A.. Molecular dynamics with the united-residue(UNRES) model of polypeptide chains. Ⅱ. Langevin and Berendsen-bath dynamics and tests on model a-helical systems. J. Phys. Chem. B, 2005, 109:13798-13810
    [36] Liwo, A., Khalili, M., Czaplewski, C, Kalinowski, S., Oldziej, S., Wachucik, K. and Scheraga, H. A. Modification and Optimization of the United-Residue (UNRES) Potential Energy Function for Canonical Simulations. I. Temperature Dependence of the Effective Energy Function and Tests of the Optimization Method with Single Training Proteins. J. Phys. Chem. B, 2007, 111: 260-285
    [37] Munoz, V., Thompson, P. A., Hofrichter J and Eaton W. A. Folding dynamics and mechanism of P-hairpin formation. Nature 2003, 390:196-199.
    [38] Munoz, V., Henry, E. R., Hofrichter, J. and Eaton, W. A. A statistical model for p-hairpin kinetics. Proc. Natl. Acad. Sci. USA, 1998, 95:5872-5879.
    [39] Snow, C. D., Nguyen, H., Pande, V. S. and Gruebele, M. Absolute comparison of simulated and experimental protein-folding dynamics. Nature, 2002,420:102-106.
    [40] Snow, C. D., Qiu, L., Du, D., Gai, F., Hagen, S. J. and Pande, V. S. Trp zipper folding kinetics by molecular dynamics and temperarture-jump spectroscopy. Proc. Natl. Acad. Sci. USA, 2004,101:4077-4082.
    [41] Dinner, A. R., Lazaridis, T. and Karplus, M. Understanding P-hairpin formation. Proc. Natl. Acad. Sci. USA, 1999, 96:9068-9037.
    [42] Pande, V. S. and Rokhsar, D. S. Molecular dynamics simulations of unfolding and refolding of a P-hairpin fragment of protein G Proc. Natl. Acad. Sci. USA, 1999,96:9062-9067.
    [43] Du, D. G, Zhou, Y. J., Huang, C. Y. and Gai, F. Understanding the key factors that control the rate of p-hairpin folding. Proc. Natl. Acad. Sci. USA, 2004, 101:15915-15920.
    [44] Kolinski, A., IIkowski, B. and Skolnick, J. Dynamics and thermodynamics of P-hairpin assembly: insights from various simulation techniques. Biophys J., 1999,77:2942-2952.
    [45] Zhang, J., Qin, M and Wang W. Folding mechanism of P-hairpins studied by replica exchange molecular simulations. Proteins, 2006, 62:672-685
    [46] Zhou, R., Berne, B. J. and Germain, R. The free energy landscape for β-hairpin folding in explicit water. Proc. Natl. Acad. Sci. USA, 2001, 98:14931-14936.
    [47] Zhou, Y. Q. and Linhananta, A. Role of hydrophilic and hydrophobic contacts in folding of the second p-hairpin fragment of protein G: molecular dynamics simulation studies of an all-atom model. Proteins, 2002, 47:154-162.
    [48] Lee, J. and Shin, S. Understanding P-hairpin formation by molecular dynamics simulations of unfolding. Biophys J., 2001, 81:2507-2516.
    [49] Russell, S. J., Blandl, T., Skelton, N. J. and Cochran, A. G Stability of cyclic P-hairpins: asymmetric contributions from side chains of a hydrogen-bonded cross-strand residue pair. J. AM. Chem. Soc, 2003, 125:388-395
    [50] Fesinmeyer, R. M., Hudson, F. M. and Andersen, N. H. Enhanced hairpin stability through loop design: the case of the protein G B1 domain hairpin. J. AM. Chem. Soc, 2004, 126:7238-7243
    [51] Cochran, A. G, Skelton, N. J. and Starovasnik, M. A. Tryptophan zippers: stable, monomeric P-hairpins. Proc. Natl. Acad. Sci. USA, 2001, 98:5578-5583
    [52] Snow, C. D., Qiu, L. L., Du, D. G, Gai, F., Hagen, S. J. and Pande, V. S. Trp zipper folding kinetics by molecular dynamics and temperature-jump spectroscopy. Proc. Natl. Acad. Sci. USA, 2004, 101:4077-4082
    [53] Ulmschneider, J. P. and Jorgensen, W. L. Polypeptide folding using monte carlo sampling, concerted rotation, and continuum solvation. J. AM. Chem. Soc, 2004,126:1849-1857
    [54] Yang, W. Y, Pitera, J. W., Swope, W. C. and Gruebele, M. Heterogeneous folding of trpzip hairpin: full atom simulation and experiment. J. Mol. Biol., 2004,336:241-251
    [55] Dempsey, C. E., Piggot, T. J. and Mason, P. E. Dissecting contributions to the denaturant sensitivities of proteins. Biochemistry, 2005, 44:775-781
    [56] Ulmschneider, J. P., Ulmschneider, M. B. and Nola, A. D. Monte carlo vs molecular dunamics for all-atom polypeptide folding simulations. J. Phys. Chem.B, 2006, 110:16733-16742
    
    [57] Cochran, A. G, Skelton, N. J. and Starovasnik, M. A. Tryptophan zippers: stable, monomeric β-hairpins. Proc. Natl. Acad. Sci. USA, 2001, 98:5578-5583
    
    [58] Hansmann, U. H. E. and Okamoto, Y. in Annual Reviews of Computational Physics, Vol. VI, ed. D. Stauffer (World Scientific, Singapore, 1998), p. 179.
    
    [59] Duan, Y. and Kollman, P. A. Pathways to a protein folding intermediate observed in a 1-microsecond simulation in aqueous solution. Science, 1998, 282, 740-744
    [60] Armen, R. S. and Daggett, V. Characterization of two distinct β_2-microglobulin unfolding intermediates that may lead to amyloid fibrils of different morphology. Biochemistry, 2005,44: 16098-16107
    [61] Day, R. and Daggett, V Ensemble versus single-molecule protein unfolding. Proc. Natl Acad. Sci. USA, 2005, 102,13445-13450.
    [62] Day, R. and Daggett, V. Sensitivity of the folding/unfolding transition state ensemble of chymotrypsin inhibitor 2 to changes in temperature and solvent. Protein Science, 2005, 14:1242-1252
    [63] Day, R., Bennion, B. J., Ham, S. and Daggett, V. Increasing Temperature Accelerates Protein Unfolding without Changing the Pathway of Unfolding. J. Mol. Biol., 2002,322:189-203.
    [64] Ho, S. P. and DeGrado, W. F. Design of a 4-helix bundle protein: synthesis of peptides which self-associated into a helical protein. J. Am. Chem. Soc, 1987, 109:6751-6758
    [65] Boczko, E. M. and Brooks, C. L. 3rd. First-principles calculation of the folding free energy of a three-helix bundle protein. Science, 1995, 269(5222):393-396.
    [66] Melikyan, G B., Markosyan, R. M., Hemmati, H., Delmedico, M. K., M.Lambert, D. and Cohen, F. S. Evidence that the transition of HIV-1gp41 into a six-helix bundle,not the bundle configuration,induces membrane fusion. J.Cell Biol., 2000,151:413-423.
    [67] Hecht, M. H., Richardson, J. S., Richardson D. C. and Ogden, R. C. De novo design, expression, and characterization of Felix: a four-helix bundle protein of native-like sequence. Science, 1990,249:884-891
    [68] Choma, C. T., Lear, J. D., Nelson, M. J., Dutton, P. L., Robertson D. E. and Degrado, W. F. Design of a heme-binding four-helix bundle. J. Am. Chem. Soc, 194,116:856-865
    [69] Guo, Z. Y., Brooks, C. L. and Boczko, E. M. Exploring the folding free energy surface of a three-helix bundle protein. Proc. Natl Acad. Sci. USA, 1997,94:10161-10166.
    [70] Yang, J. S., Wallin S. and Shakhnovich, E. I. Universality and diversity of folding mechanics for three-helix bundle proteins. Proc. Natl. Acad. Sci. USA, 2008, 105:895-900
    [71] Zhou, Y. Q. and Karplus, M. Folding thermodynamics of a model three-helix-bundle protein. Proc. Natl. Acad. Sci. USA, 1997, 94:14429-14432.
    [72] Harris, R., Esposito, D., Sankar, A., Maman, J. D., Hinks, J. A., Pearl, L. H. and Driscoll, P. C. The 3D solution structure of the C-terminal region of Ku86 (Ku86CTR). Journal of Molecular Biology, 2004, 335(2):573-582.
    [73] Levinthal, C. Are there pathways for protein folding. Journal de Chimie Physique et de Physico-Chimie Biologique, 1986, 65: 44-45
    [74] Voelz, V. A. and Dill, K. A. Exploring zipping and assembly as a protein folding principle. Proteins, 2007, 66: 877-888
    [75] zkan, S. B., Wu, G A., Chodera, J. D. and Dill, K. A. Protein folding by zipping and assembly. Proc. Natl. Acad. Sci. USA, 2007, 104: 11987-11992
    [76] Dyson, H. J., Merutka, G, Waltho, J. P., Lerner, R. A. and Wright, P. E. Folding of peptide fragments comprising the complete sequence of proteins. Models for initiation of protein folding I. Myohemerythrin. J. Mol. Biol., 1992, 226: 795-817 [77] Shin, H. C, Merutka, G, Waltho, J. P., Tennant, L. L., Dyson, H. J. and Wright, P. E. Peptide models of protein folding initiation sites. 3. The GH helical hairpin of myoglobin. Biochemistry, 1993, 32: 6356-6364
    [78] Waltho, J. P., Feher, V. A., Merutka, G, Dyson, H. J. and Wright, P. E. Peptide Models of Protein Folding Initiation Sites.1.Secondary Structure Formation by Peptides Corresponding to the G- and H- Helices of Myoglobin. Biochemistry, 1993,32:6337-6347
    [79] Ramirez-Alvarado, M., Serrano, L., Blanco, F. J. Conformational analysis of peptides corresponding to all the secondary structure elements of protein L B1 domain: Secondary structure propensities are not conserved in proteins with the same fold. Protein Sci., 1997, 6: 162-174
    [80] Eliezer, D., Chung, J., Dyson, H. J. and Wright, P. E. Native and non-native structure and dynamics in the pH 4 intermediate of apomyoglobin. Biochemistry, 2000, 39: 2894-2901
    [81] Mohana-Borges, R., Goto, N. K., Kroon, G J., Dyson, H. J. and Wright, P. E. Structural characterization of unfolded states of apomyoglobin using residual dipolar couplings. J. Mol. Biol., 2004, 340: 1131-1142
    [82] Marqusee, S., Robbins, V. H. and Baldwin, R. L. Unusually stable helix formation in short alanine-based peptides. Proc. Natl. Acad. Sci. USA, 1989, 86: 5286-5290
    [83] Munoz, V. and Serrano, L. Elucidating the folding problem of helical peptides in solution. Nat. Struct. Biol., 1994, 1: 399-409
    [84] Blanco, F. J., Rivas, G and Serrano, L. A short linear peptide that folds into a native stable beta-hairpin in aqueous solution. Nat. Struct. Biol., 1994, 1: 584-590
    [85] Searle, M. A., Williams, D. H. and Packman, L. C. Folding of a short linear peptide into a water-stable β-hairpin: non-native structure in a peptide derived from the N-terminal sequence of ubiquitin. Nat. Struct. Biol., 1995,2: 999-1006
    [86] Zerella, R., Evans, P. A., Ionides, J. M., Packman, L. C, Trotter, B. W., Mackay, J. P. and Williams, D. H. Autonomous folding of a peptide corresponding to the N-terminal beta- hairpin from ubiquitin. Protein Sci., 1999, 8: 1320-1331
    [87] Espinosa, J. F., Munoz, V. and Gellman, S. H. Interplay between hydrophobic cluster and loop propensity in beta-hairpin formation. J. Mol. Biol., 2001, 306:397-402
    [88] Rotondi, K. S. and Gierasch, L. M. The Role of Local Sequence in the Folding of Cellular Retinoic Acid-Binding Protein 1: Structural Propensities of Reverse Turns. Biochemistry, 2003,42: 7976-7985
    [89] Bystroff, C, Simons, K. T., Han, K. F. and Baker, D. Local sequence-structure correlations in proteins. Curr. Opin. Biotechnol, 1996, 7: 417-421
    [90] Bystroff, C. and Baker, D. Prediction of local structure in proteins using a library of sequence-structure motifs. J. Mol. Biol., 1998, 281: 565-577
    [91] Ho, B. K. and Dill, K. A. Folding very short peptides using molecular dynamics. Comput. Biol., 2006, 2: 228-234
    [92] Forrer, P., Binz, H.K., Stumpp, M.T. and A. Pliickthun. Consensus design of repeat proteins. Chem. Bio. Chem., 2004, 5: 183-189.
    [93] McLachlan, A.D. Repeating sequences and gene duplication in proteins. J. Mol. Biol., 1972, 64:417-437
    [94] Chothia, C, Gough, J., Vogel, C. and S.A. Teichmann. Evolution of the Protein Repertoire. Science, 2003, 300:1701-1703.
    [95] Soding, J., and Lupas., A.N. More than the sum of their parts: on the evolution of proteins from peptides. Bioessays., 2003, 25: 837-846.
    [96] Lang, D., Thoma, R., Henn-Sax, M., Sterner, R. and Wilmanns, M. Structural Evidence for Evolution of the B/a Barrel Scaffold by Gene Duplication and Fusion. Science, 2000, 289: 1546-1550.
    [97] H(o|¨)cker, B., Beismann-Driemeyer, S., Hettwer, S., Lustig, A. and R. Sterner. Dissection of a (αβ)_8-barrel enzyme into two folded halves. Nature Struct. Bio., 2001, 8: 32-36.
    [98] Vriend, G., and Sander, C. Detection of common three-dimensional substructures in proteins. Proteins, 1991,11: 52-58.
    [99] Taylor, W. R., Heringa, J., Baud, F. and Flores, T. P. A Fourier analysis of symmetry in protein structure. Protein Eng., 2002, 15: 79-89.
    [100] Heger, A. and Holm, L. Many large proteins have evolved by internal duplication and many internal sequence repeats. Proteins. 2000, 41: 224-237.
    [101] Xu, R. and Xiao, Y. A common sequence-associated physicochemical feature for proteins of beta-trefoil family. Comput. Biol. & Chem. 2005, 29: 79-82.
    [102] Szklarczyk, R. and Heringa, J. Tracking repeats using significance and transitivity. Bioinformatics. 2004,20: 1311-1317.
    [103] Huang, Y. and Xiao, Y. Detection of gene duplication signals of Ig folds from their amino acid sequences. Proteins, 2007, 68:267-272.
    [104] Anfinsen, C. B. Principles that govern the folding of protein chains. Science, 1973,181:223-230.
    [105] Bradley, P., Chivian, D., Meiler, S. Misura, J., K. M., Rohl, C. A., Schief, W. R.,Wedemeyer, W. J., Schueler-Furman, O., Murphy, P., Schonbrun, J., Strauss, C. E.M. and Baker, D. Rosetta predictions in CASP5: Successes, failures, and prospects for complete automation. Proteins, 2003, 53:457-468.
    [106] Skolnick, J., Zhang, Y., Arakaki, A. K., Koli'nski, A., Boniecki, M., Szilagyi, A. and Kihara, D. TOUCHSTONE: A unified approach to protein structure prediction. Proteins, 2003, 53:469-479.
    [107] Scheraga, H. A., Liwo, A., OAldziej, S., Czaplewski, C, Pillardy, J., Ripoll, D. R., Vila, J., Ka'zmierkiewicz, R., Arnautova, Y. A., Jagielska, A., Chinchio, M. and Nanias, M. The Protein Folding Problem: Force Field and Global Optimization. Frontiers in Bioscience, 2004, 9:3296-3323.
    [108] Simmerling, C, Strockbine, B. and Roitberg, A. E. All-atom structure prediction and folding simulations of a stable protein. J. Am. Chem. Soc., 2002,124:11258-11259
    [109] Jang, S., Kim, E., Shin, S. and Pak, Y. Ab initio folding of helix bundle proteins using molecular dynamics simulations. J. Am. Chem. Soc, 2003, 125:14841-14846.
    [110] Vila, J. A., Ripoll, D. R. and Scheraga, H. A. Atomistically detailed folding simulations of the B-domain of staphylococcal protein A from random structures. Proc. Natl. Acad. Sci. U.S.A., 2003, 100:14812-12816.
    [111] Schug, A. and Wenzel, W. An evolutionary strategy for all-atom folding of the 60-amino-acid bacterial ribosomal protein L20. Biophys. J., 2006, 90:4273-4280.
    [112] KozAlowska, U., Liwo, A. and Scheraga, H. A. Determination of virtual-bond-angle potentials of mean force for coarse-grained simulations of protein structure and folding from ab initio energy surfaces of terminally-blocked glycine, alanine, and proline. J. Phys.: Cond. Matter, 2007,19:285203-285218.
    [113] KozAlowska, U., Maisuradze, G., Liwo, A. and Scheraga, H. A. Determination of side-chain-rotamer potentials of mean force for coarse-grained simulations of protein structure and folding from AM1 energy surface of terminally-blocked amino-acid residues. Prot. Sci., 2007, 16, Suppl.1:92.
    [114] Liwo, A., Czaplewski, C., OAldziej, S., KozAlowska, U., Makowski, M., Kalinowski, S., Ka'zmierkiewicz, R., Shen, H., Maisuradze, G. and Scheraga, H. A. Optimization of the physics-based united-reisdue force field (UNRES) for protein folding simulations. In D. W. G. M¨unster, and M. Kremer, editors, NIC Series, NIC Symposium 2008, 20-21 February 2008, J¨ulich, Germany. John von Neumann Institute for Computing(NIC), volume 39, 63-70.
    
    [115] Macias, M. J., Gervais, V., Civera, C. and Oschkinat, H. Structural analysis of WW domains and design of a WW prototype. Nat. Struct. Biol, 2000, 7:375-379.
    [116] Clarke, N. D., Kissinger, C. R., Desjarlais, J., Gilliland, G. L. and Pabo, C. O. Structural studies of the engrailed homeodomain. Protein Sci., 1994, 3:1779-1787.
    [117] Hansmann, U. H. E. Parallel Tempering Algorithm for Conformational Studies of Biological Molecules. Chem. Phys. Lett., 1997, 281:140-150.
    [118] Sugita, Y. and Okamoto, Y. Replica-exchange molecular dynamics method for protein folding. Chem. Phys. Lett., 1999, 314:141-151.
    [119] Nanias, M., Czaplewski, C. and Scheraga, H. A. Replica Exchange and Multicanonical Algorithms with the Coarse-Grained United-Residue (UNRES) Force Field. J. Chem. Theor. Comput., 2006, 2:513-528.
    [120] Neidigh, J. W., Fesinmeyer, R. M. and Andersen, N. H. Designing a 20-residue protein. Nat. Struct. Biol., 2002, 9:425-430.
    [121] Rhee, Y. M., and Pande, V. S. Multiplexed-replica exchange molecular dynamics method for protein foldin g simulation. Biophys. J., 2003, 84:775-786.
    [122] Gallagher, T et al. Two crystal structures of the B1 immunoglobulin-binding domain of streptococcal protein G and comparison with NMR.. Biochemistry, 1994,33,4721-4729..
    [123] Johansson, M. U. et al. Solution structure of the albumin-binding GA module: a versatile bacterial protein domain.. J Mol Biol, 1997,266, 859-865.
    [124] Dahiyat, B. I. and Mayo, S. L. De novo protein design: fully automated sequence selection.. Science, 1997, 278, 82-87.
    [125] Bateman, A. and Bycroft, M. The structure of a LysM domain from E. coli membrane-bound lytic murein transglycosylase D (MltD). J. Mol. Biol., 2000, 299,1113-1119.
    [126] Skelton, N. J. et al. Determination of the solution structure of Apo calbindin D9k by NMR spectroscopy. J Mol Biol, 1995, 249, 441-462.
    [127] Dai, Q. H. et al. Structure of a de novo designed protein model of radical enzymes. J. Am. Chem. Soc, 2002, 124, 10952-10953.
    [128] Aramini, J. M. et al. Solution NMR structure of the SOS response protein YnzC from Bacillus subtilis.. Proteins, 2008, 72, 526-530.
    [129] N.Assa-Munt et al. The solution structure of the Oct-1 POU-specific domain reveals a striking similarity to the bacteriophage lambda repressor DNA-binding domain. Cell, 1993,73, 193-205.
    
    [130] Gouda, H. et al. Three-dimensional solution structure of the B domain of staphylococcal protein A: comparisons of the solution and crystal structures. Biochemistry, 1992, 31, 9665-9672.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700