玉米和芦笋中腐马素的污染分析及拟南芥对FB_1的抗性机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
腐马素(fumonisins)是由串珠镰刀菌和再誉镰刀菌等镰刀菌产生的一类真菌毒素。由于其化学结构与动植物中的神经鞘氨醇类物质类似,可以引起动物各种疾病以及植物病害。一方面,腐马素对某些牲畜有急性毒性及潜在的致癌性,如引起马脑炎、猪肺水肿或大鼠肝癌,还能引起人类食道癌和神经管缺陷,由于该毒素污染广泛,在玉米、玉米制品以及芦笋等农产品中都有报道,严重威胁食品安全及人类和动物的健康;另一方面,腐马素可以诱导植物的细胞程序化死亡以及过敏性反应,在模式植物拟南芥中腐马素诱导细胞程序化死亡是研究植物对化学胁迫的抗性、植物免疫机理以及神经鞘脂功能的良好体系。本研究中,建立了用于玉米等食品中腐马素检测的HPLC-ELSD方法,分析了我国不同地区,特别是食管癌高发区玉米和玉米制品上腐马素污染状况;结合LC-MS分析了浙江省芦笋中腐马素污染情况;并利用PCR检测和产毒培养等方法,研究了玉米及芦笋中产生腐马素的原因。此外,以拟南芥为材料,筛选并初步分析了两个抗FB_1的突变体,同时研究了芥子油苷在拟南芥对FB_1抗性中的作用。主要研究结果如下:
     利用腐马素标准品和野生型串珠镰刀菌A0149产毒培养玉米为材料,结合常规的HPLC-OPA衍生法建立了不需要衍生的快速可靠的HPLC-ELSD方法,腐马素B1(FB_1)在3-24μg之间其物质的量与峰面积分别取自然对数后有良好的线性关系,最低检出限约为60 ng,可以同时检测B系列四种腐马素。利用该方法分析了我国东北地区、中东部地区和东南部地区玉米中腐马素的污染水平,结果表明,腐马素的整体污染水平较低,只检出了FB_1,中东地区玉米阳性样品中腐马素范围在0.25-1.8μg/g(平均,0.74μg/g),检出率为66.7%(15/24),东北地区玉米阳性样品中腐马素范围在0.21-0.29μg/g(平均,0.24μg/g),检出率为28.6%(6/21),东南部地区玉米阳性样品中腐马素范围在0.30-3.13μg/g(平均,0.47μg/g),检出率为30.0%(6/20)。
     我国的河南林县被认为是世界上食道癌发生与玉米中腐马素污染密切相关的地区之一。我们利用建立的HPLC-ELSD方法,研究了该地区不同来源和不同表观特征的玉米,以及不同玉米制品中腐马素的污染状况。结果表明,来自农户、粮仓,中心市场,商店以及超市的共140份玉米样品中FB_1检出率分别为61.5%(16/26),50%(12/24),33.3%(12/36),17%(2/12),O%(0/6)。来自粮库的玉米样品中腐马素污染水平最高(0.25-1.80μg/g;平均,0.73μg/g),其次是来自农户(0.25-1.80μ/g;平均,0.73μg/g),而来自中心市场(0.25-1.10μg/g;平均,0.51μg/g)和商店较轻(0.22-0.34μg/g;平均,0.28μg/g)。对80个来自当地农户玉米样品分析后发现,24个霉变玉米样品中18个检出了较高水平的腐马素B1(0.28-3.30μg/g;平均,1.58μg/g),而56份外观健康的玉米中有20份也检出了腐马素B1(0.21-0.82μg/g;平均,0.46μg/g)。来自中心市场的11 5份玉米食品和饲料样品中,饲料中腐马素的含量最高(0.30-3.13μg/g;平均,1.50μg/g),其次是非加工食品(0.31-0.63μg/g,平均,0.47μg/g),加工食品中污染最轻(0.21-0.28μg/g,平均,0.25μg/g),其检出率分别为53.6%,33.3%和1 7.9%。总之,来自林县地区的玉米食品和玉米饲料中腐马素污染水平较低(<2μg/g),但是对粮仓和农户贮藏玉米的腐马素污染还需要采取措施加以控制。
     为了研究玉米中腐马素污染的原因,我们采用形态学鉴定和分子检测相结合的办法,研究了收集玉米中镰刀菌的污染状况,并通过产毒培养方法分析了分离菌株的产毒能力。总体看来,玉米样品中真菌,镰刀菌和腐马素产毒菌的污染率分别为42.1 8%,35.94%和29.69%,其中镰刀菌和产毒菌分别占总污染菌的74.1 9%(23/31)和61.29%(19/31)。PCR检测和产毒培养结果表明,共有三种镰刀菌在玉米培养基上产生了腐马素,分别为串珠镰刀菌、再誉镰刀菌和胶孢镰刀菌。产毒能力分析表明,不同菌种之间以及相同菌种的不同菌株之间产毒能力差异显著,产毒菌株的产毒能力从1 86μg/g到16784μg/g,平均为4637μg/g,其中FB_1占主要部分为87.1%(75.8-94.6%,平均产量4041μg/g);第二类主要毒素为FB_2,平均产量为642μg/g,范围为46-2308μg/g,而且所有的串珠镰刀菌和再誉镰刀菌也都产生FB_3,平均产量为1 89μg/g,范围为42-711μg/g。不同地区腐马素产毒菌株污染状况不同,其中以中东部地区污染最重,共从24份样品中分离到14个污染菌,其中9个为产毒菌,而且污染的镰刀菌种类也最多,除了串珠镰刀菌外,还有再誉镰刀菌、禾谷镰刀菌和木贼镰刀菌;东南部地区则最轻,从19份样品中分离到5个菌株,而且只有一株产毒菌株;东北地区21份玉米中共分离到12个菌株,所有的9个镰刀菌均为产毒菌株;包括两个产毒的胶孢镰刀菌。我们的研究表明,这些外观洁净的食用玉米中仍然存在腐马素及产毒菌的污染,这可能是采前受到产毒病原菌侵染,但采后过程中可能不适合产毒造成的,由于这些产毒菌的产毒能力较强,如果条件适宜,仍然存在大量毒素污染的可能性。
     HPLC-ELSD和LC-MS分析都表明浙江省地区食用芦笋样品中没有腐马素污染。从22份芦笋样品中共分离到9株再誉镰刀菌,5株尖孢镰刀菌,1株木贼镰刀菌和1株锐顶镰刀菌,复合PCR分析表明,所有的再誉镰刀菌均扩增出了腐马素生物合成基因FUM1和FUM8片段,而且其产毒能力较强,在玉米培养基中总腐马素的平均产量为1603.5μg/g,范围27.8-4204.0μg/g,产生FB_1为148.2-3850.2μg/g(平均,1355.9μg/g),产生FB2为21.4-543.0μg/g(平均,1 53.1μg/g),产生FB_3为0-434.2μg/g(平均,106.4μg/g),其中5株属于高产毒菌(>500μg/g),3株属于中产毒菌(50-500μg/g)。而其他菌株则只检测到镰刀菌特异的ITS片段,产毒培养和液相分析证实了存在产毒争议的尖孢镰刀菌确实不能产生FBs。我们的结果表明,浙江省食用芦笋中没有腐马素的污染,但能够产生真菌毒素的镰刀菌污染较重,这些菌株不仅可以引起芦笋的病害而且可以产生对人体有害的真菌毒素,应引起重视并加以控制。
     本研究还建立了一种拟南芥抗腐马素突变体的筛选方法,利用1μM的FB_1培养基从EMS诱变的哥伦比亚生态型Col-0突变体库中筛选得到两株抗FB_1的突变体fbr41和fbr42。在正常条件下,两个突变体表现出植株矮化,叶片边缘锯齿,以及侧根相对发达等异常表型;在1μM FB_1培养基上,根毛发达,叶片变硬,只在根等部位产生少量活性氧,其抗性远强于激素突变体jar1,ein3-1,npr1和转基因NahG,最大FB_1抗性浓度在2μM左右;遗传学分析表明,fbr41为隐性单基因突变。
     10μM FB_1外源处理野生型拟南芥Col-0后,HPLC分析表明,短链脂肪类芥子油苷含量下降,而长链脂肪类芥子油苷含量略有升高;吲哚基-3-甲基芥子油苷(Indol-3-ylmethyl GS,IM)的含量明显下降,和而4-甲氧吲哚基-3-甲基芥子油苷(4-methoxyindol-3-ylmethyl GS,4IM)和1-甲氧吲哚基-3-甲基芥子油苷(1-methoxyindol-3-ylmethyl GS,1IM)则明显升高;而长链脂肪类芥子油苷缺失但吲哚类含量高的突变体gsm1-3和所有芥子油苷组分都低的突变体gcc8同样在FB_1处理后被极大地诱导了4IM和1IM,而且gsm1-3表现出稍好的抗性,这预示不是长链脂肪类芥子油苷而可能是4IM和1IM参与了对FB_1的抗性作用。对芥子油苷生物合成途径相关基因分析表明,与抗病相关的camalexin和IAA生物合成基因(PAD3和NIT2)的表达在处理与对照之间没有明显差异,而参与吲哚类芥子油苷生物合成的CYP83B1却极大的上调;此外,我们对筛选的两个拟南芥抗FB_1突变体的芥子油苷及其生物合成相关基因也进行了分析,结果表明,两个突变体中均含有显著高于野生型的4IM和1IM含量,而且CYP83B1也被较早诱导。这些结果表明,拟南芥中吲哚类芥子油苷4IM和1IM的合成可能与拟南芥对FB_1抗性有关,但其具体作用机理尚待进一步研究来阐明。
Fumonisins (FB) are a group of mycotoxins produced by Fusarium spp.includingFusarium verticillioides and Fusarium proliferatum.Due to the structural similaritywith sphingolipids,fumonisins can cause diseases in animals and plants.Fumonsinshave been demonstrated to cause several fatal diseases in animals,such asleukoencephalomalacia in horses,pulmonary oedema and hepatic cancer in rats.Inhumans,fumonisins are associated with oesophageal cancer and birth neural tubedefects.Fumonisin contamination occurs ubiquitously-it was found in manyagricultural products,such as corn,corn products and asparagus spears,which isassociated with food safety,livestock loss and human health risks.Fumonisin B1 (FB_1)induces programmed cell death (PCD) and hypersensitive reaction (HR) in plant,providing a good system to study innate immune response,chemical stress andsphinglipids function in Arabidopsis thaliana (Arabidopsis).In present study,aneffective high-performance liquid chromatography coupled with an evaporative laserscattering detector (HPLC-ELSD) method was developed for detection of fumonisinsin food products.The method was used for the analysis of fumonisins contamination incorn products from different areas including a high-risk area for esophageal cancer.The fumonisins level was also assessed by LC-MS detection in asparagus spears fromZhejiang Province.Using PCR and fumonisin-producing culture analysis,the factorscausing fumonisin production in corn and asparagus spears were also discussed.Inaddition,two Arabidopsis FB_1-resistant mutants were isolated,and the role ofglucosinolates in FB_1-induced PCD was studied in Arabidopsis.Following are themain results.
     A new HPLC-ELSD method was developped for detection and quantification offumonisins in foods without any prior derivatization of the samples,it is simple andfast comparing to the conventional OPA derivatization method.We analyzed thefumonisins in corn-based food samples from central markets in eastern China byHPLC-ELSD method.The results showed that FB_1 was the main contaminant in thesamples.The overall level of fumonisin contamination was relatively low,with a range of 0.25 tol.80μg/g (mean 0.74μg/g) in 66.7% (16 of 24) of corn samples fromMiddle-eastern Area,0.21 to 0.29μg/g (mean 0.24μg/g) in 28.6% (6 of 21) of cornsamples from Northeastern Area,and 0.30 to 3.13μg/g (mean 0.47μg/g) in 30.0% (6of 20) of corn samples from Southeastern Area.
     The level of mycotoxin fumonisins in corn-based food and feed collected fromLinxian County,a high-risk area for esophageal cancer in China,was analyzed byHPLC-ELSD.A total of 104 corn kernel samples was obtained from local household,granary,wholesale market (central market),and retail markets (store and supermarket).Fumonisin B1 was detected in the samples from household,granary,central market,and store,with a positive rate of 61.5%,50%,33.3%,and 17%,respectively.Nofumonisin was detected in samples from supermarket.The highest FB_1 levels (0.30 to3.20μg/g;mean,1.42μg/g) were found in samples from granary,followed byhousehold (0.25 to 1.80μg/g;mean,0.73μg/g),central market (0.25 to 1.10μg/g;mean,0.51μg/g),and store (0.22 to 0.34μg/g;mean,0.28μg/g).Among the 80 cornkernel samples collected from local household,18 of 24 (75.0%) moldy samplescontained high levels of FB_1 (0.28 to 3.30μg/g;mean,1.58μg/g),and 20 of 56(35.7%) apparently healthy samples contained low levels of FB_1 (0.21 to 0.82μg/g;mean,0.46μg/g).As central market plays an important role in trade of corn-basedfood and feed in China,a total of 115 corn-based food and feed samples were collectedfrom local central market.The highest FB1 levels (0.30 to 3.13μg/g;mean,1.50μg/g)were found in feed,followed by unprocessed food (0.31 to 0.63μg/g;mean,0.47μg/g)and processed food (0.21 to 0.28μg/g;mean,0.25μg/g).The positive incidence of FB_1in feed,unprocessed,and processed food were 53.6%,33.3% and 17.9%,respectively.In conclusion,the results show that corn-based food and feed from Linxian Countycontained low level of FB_1 (<2μg/g) in general,but efforts should be made to controlthe fumonisin contamination in corn kernels stored in granary and household.
     In the survey to elucidate the relationship between fumonisin-producing fungi andfumonisin contamination in corn,morphology characterization and PCR detectionwere conducted to identifying Fusaiusm spp.Isolates,whose capacity of producingfumonisins were then analyzed by inoculating cracked maize kernels (CMK) medium. Generally,the contamination rate of fungi,Fusarium spp.and fumonisin-producingfungi is 42.18%,35.94% and 29.69%,respectively,and the proportion of Fusariumand fumonisin-producing fungi in all contamination isolates is 74.19% (23/31) and61.29% (19/31),respectively.Our results showed that three Fusarium speciesincluding F.versillioides,F.proliferatum and F.subglutinans were demonstrated tocontain FUM1 and FUM8 genes and also produce fumonisins in CMK medium.Fumonisins production tests indicated that the ability of fumonisin production variedsignificantly among different species or different strains within the same Fusariumspecie.The fumonisin level of fumonisin-producing isolates was from 186μg/g to16784μg/g (average,4637μg/g);FB_1 is the primary component and up to 4041μg/g inaverage.In addition,the occurrence of fumonisin-producing isolates was differentamong corn samples from the three different areas,the most serious fungi andfumonisin-prouducer contamination was found in samples from eastern area.Ourresearch also suggested that fumonisin contamination was detected even in clean andhealthy edible corns,the colonization of fumonisin-producer likely occurred inpre-harvest,but fumonisin-production did not occure due to the unsuitable conditionsduring post-harvest.When the environment changed,these high-fumonisin-producingstrains might produce fumonisin.toxins in infected corn samples.
     The results obtained from HPLC-ELSD and LC-MS analyses showed that theasparagus samples from different areas of Zhejiang Province did not contain adetectable level of fumonisins.All asparagus samples collected for this study wereapparently clean and healthy.However,approximately 70% of the samples werecontaminated with Fusarium,including F.proliferatum,F.oxysporum,F.acuminatumand F.equesti.Among the fungal isolates,F.proliferatum accounted for over 50%.ThePCR results showed that fungal isolates contained the FUM genes,and also producedfumonisins in cultures,ranging from 28-4204μg/g culture media.Although multipleFusarium species were identified,our results showed that F.proliferatum was the onlyfumonisin-producing contaminant in the asparagus samples,although other Fusariumspecies might produce other different class of mycotoxins.Despite the fact that theasparagus from Zhejiang Province do not have apparent fumonisin contamination,there is a potential risk for human consumption of the asparagus spears due to the high frequency of natural occurrence of Fusarium spp,which could produce toxicmycotoxins,such as fumonisins produced by F.proliferatum.
     Among 15000 ethyl methanesulfonic acid-mutagenized Arabidopsis Col-0 seedssubjected to selection on 1μM FB_1,two FB_1-resistant (for) mutantsfbr41 and for42,which exhibited the most penetrant phenotypes,were identified and characterized infurther detail.In addition to resistance to FB_1,the mutants also showed rich root hair,hard leaf and less reactive oxygen species (ROS) production when grew on the FB_1medium and the tolerance of both mutants are much stronger than those of jar1-1,ein3-1,nprl mutants and transgenic NahG plants.Moreover,they display altered plantarchitecture in the absence of FB_1,such as dwarf,enhanced leaf margin serration anddeveloped lateral roots.A chi-square goodness-of-fit test confirmed that the fbr41phenotype of the F2 progeny segregated at the expected 3:1 (sensitive:resistant) ratiofor a single recessive mutation.
     The glucosinolates content of leaves in the Arabidopsis wild-type Col-0 wereanalyzed by HPLC after leaf infiltration with 10μM FB_1.The results showed that thecontent of short-chain aliphatic glucosinolates decreased,while the content oflong-chain aliphatic glucosinolates increased.Similarly,the content of indol-3-ylmethylglucosinolate (IM) decreased,while the content of 4-methoxyindol-3-ylmethylglucosinolate (4IM) and 1-methoxyindol-3-ylmethylglucosinolate (1IM)increased significantly.The observations that 4IM and IM were also induced in bothglucosinolate mutants gcc8 and gsml-3,and gsml-3 displayed a better resistance toFB_1 than Col-0,indicated that 4IM and 1IM instead of long-chain aliphaticglucosinolates might be involved in the resistance of Arabidopsis to FB_1.Geneexpression analysis suggested that no significant difference was observed between FB_1treatment and control in expression of NIT2 and PAD3,which were involved in IAAand camalexin biosynthesis,respectively.On the contrary,CYP83B1 was greatlyup-regulated by FB_1 treatment.The content of 4IM and 1IM is higher in both fbrmutants than that of wild-type Col-0.These results indicated that the biosynthesis of4IM and IM might be related to the resistance to FB_1 in Arabidopsis.The mechanisminvolved remains to be further elucidated.
引文
1 Abbas H K,and Boyette C D.Phytotoxicity of fumonisin B_1 on weed and crop species.Weed Technology.1992,6:548-522.
    2 Abbas H K,and Riley R T.The presence and phytotoxicity of fumonisins and AAL-toxin in Alternaria alternata.Toxicon.1996,34:133-136.
    3 Abbas H K,Boyette C D,Hoagland F E,et al.Bioherbicidal potential of Fusarium moniliforme and its phytotoxin,fumonisin.Weed Sciences.1991,39:673-677.
    4 Abbas H K,Cartwright R D,Xie W,et al.Mycotoxin production by Fusarium proliferatum isolates from rice with Fusarium sheath rot disease.Mycopathologia.1999,147:97-104.
    5 Abbas H K,Ocamb C M,Xie W,et al.First report of fumonisin B_1,B_2 and B_3 production by Fusarium oxysporum var.redolens.Plant Disease.1995,79:968.
    6 Abbas H K,Shier W T,Seo J A,et al.Phytotoxicity and cytotoxicity of the fumonisin C and P series of mycotoxins from Fusarium spp.fungi.Toxicon.1998,36:2033-2037.
    7 Abbas H K,Smeda R J,Gerwick B C,et al.Fumonisin B_1 from the fungus Fusarium moniliforme causes contact toxicity in plants:evidence from studies with biosynthetically labeled toxin.Journal of Natural Toxins,2000,9:85-100.
    8 Abbas H K,Tanaka T,Duke S O,et al.Fumonisin-and AAL-toxin-induced disruption of sphingolipid metabolism with accumulation of free sphingoid bases.Plant Physiology.1994,106 (3):1085-1093.
    9 Abbas H K,Williams W P,Windham G L,et al.Aflatoxin and fumonisin contamination of commercial corn (Zea mays) hybrids in Mississippi.Journal of Agricultural and Food Chemistry.2002,50:5246-5254.
    10 Abel S,and Gelderblom W C.Oxidative damage and fumonisin B_1-induced toxicity in primary rat hepatocytes and rat liver in vivo.Toxicology.1998,131:121-131.
    11 Agerbirk N,DeVos M,Kim J H,et al.Indole glucosinolate breakdown and its biological effects.Phytochemistry Reviews.2009,8:101-120.
    12 Almeida A P,Fonseca H,Fancelli A L,et al.Mycoflora and fumonisin contamination in Brazilian corn from sowing to harvest.Journal of Agricultural and Food Chemistry.2002,50:3877-3882.
    13 Andreasson E,Jorgensen L B,Hoglund A S,et al.Different myrosinase and idioblast distribution in Arabidopsis and Brassica napus.Plant Physiology.2001,127:1750-1763.
    14 Asai T,Stone J M,Heard J E,et al.Fumonisin B_1-induced cell death in Arabidopsis protoplasts requires jasmonate-,ethylene-,and salicylate-dependent signaling pathways.Plant Cell.2000,12:1823-1836.
    15 Azcona-Oliver J I,Aborzied M M,Plattner R D,et al.Production of monoclonal antibodies to the fumonisins B_1,B_2 and B_3.Journal of Agricultural and Food Chemistry.1992,40:531-534.
    16 Bacon C W,and Williamson J W.Interaction of Fusarium moniliforme,its metabolites and bacteria with corn.Mycopathologia.1992,117:65-71.
    17 Bacon C W,Yates I E,Hinton D M,et al.Biological control of Fusarium moniliforme in maize.Environmental Health Perspectives.2001,109 (Suppl.2):325-332.
    18 Bak S,Tax F E,Feldmann K A,et al.CYP83B1,a cytochrome P450 at the metabolic branch point in auxin and indole glucosinolate biosynthesis in Arabidopsis.Plant Cell.2001,13:101-111.
    19 Bakan B,Melcion D,Richard-Molard D,et al.Fungal growth and Fusarium mycotoxin content in isogenic traditional maize and genetically modified maize grown in France and Spain.Journal of Agricultural and Food Chemistry.2002,50:728-731.
    20 Barlier I,Kowalczyk M,Marchant A,et al.The SUR2 gene of Arabidopsis thaliana encodes the cytochrome P450 CYP83B1,a modulator of auxin homeostasis.PNAS.2000,97: 14819-14824.
    21 Bartel B, and Fink G R. Differential regulation of an auxin-producing nitrilase gene family in Arabidopsis. PNAS. 1994, 91: 6649-6653.
    22 Barth C, and Jander G. Arabidopsis myrosinases TGG1 and TGG2 have redundant function in glucosinolate breakdown and insect defense. Plant Journal. 2006,46: 549-562.
    23 Bartling D, Seedorf M, Mithofer A, et al. Cloning and expression of an Arabidopsis nitrilase which can convert indoie-3-acetonitrile to the plant hormone, indole-3-acetic acid. European Journal of Biochemistry. 1992, 205: 417-424.
    24 Bednarek P, Pislewska-Bednarek M, Svatoset A, et al. A glucosinolate metabolism pathway in living plant cells mediates broad-spectrum antifungal defense. Science. 2009, 323: 101-106.
    25 Bender J, and Celenza J L. Indolic glucosinolates at the crossroads of tryptophan metabolism.Phytochemistry Reviews. 2009, 8: 25-37.
    26 Bennett G A, and Richard J L. Liquid chromatographic method for analysis of the naphthalene dicarboxaldehyde derivative of fumonisins. Journal of AOAC International. 1994, 77: 501-506.
    27 Bennett G A, Richard J L, and Eckhoff S R. Distribution of fumonisins in food and feed products prepared from contaminated corn. In Jackson L S, DeVries J W, and Bullerman L B.Fumonisins in food. New York, Plenum Press. 1996, pp: 27-38.
    28 Bezuidenhout S C, Gelderblom W C A, Gorst-Allman C P, et al. Structure elucidation of the fumonisins, mycotoxins from Fusarium moniliforme. Journal of the Chemical Society,Chemical Communications. 1988,743-745.
    29 Bezuidenhout S C, Prinsloo M, and Van der Walt A M, Multiplex PCR-based detection of potential fumonisin-producing Fusarium in traditional African vegetables. Environmental Toxicology. 2006, 21: 360-366.
    30 Bhandari N, Raghubir P, and Sharma. Modulation of selected cell signaling genes in mouse liver by fumonisin B|. Chemico-Biological interactions. 2002, 139: 317-331.
    31 Bindschedler L V, Dewdney J, Blee K A, et al. Peroxidase-dependent apoplastic oxidative burst in Arabidopsis required for pathogen resistance. Plant Journal. 2006, 47: 851-863.
    32 Bird C B, Malone B, Rice L G, et al. Determination of total fumonisins in corn by competitive direct enzyme-linked immunosorbent assay: collaborative study. Journal of AOAC International. 2002, 85: 404-410.
    33 Bittencourt A B F, Oliveira C A F, Dilkin P, et al. Mycotoxin occurrence in corn meal and flour traded in Sao Paulo, Brazil. Food Control. 2005, 16: 117-120.
    34 Blackwell B A, Edwards O E, Fruchier A, et al. NMR structural studies of fumonisin B_1 and related compounds from Fusarium moniliforme. Advances in Experimental Medicine and Biology. 1996,392:75-91.
    35 Bluhm B H, and Woloshuk C P. Amylopectin induces fumonisin B_1 production by Fusarium verticillioides during colonization of maize kernels. Molecular plant-microbe interactions. 2005,18:1333-1339.
    36 Bluhm B H, and Woloshuk C P. Fckl, a C-type cyclin-dependent kinase, interacts with Feel to regulate development and secondary metabolism in Fusarium verticillioides. Fungal Genetics and Biology. 2006,43: 146-154.
    37 Bluhm B H, Flaherty J E, Cousin M A, et al. Multiplex polymerase chain reaction assay for the differential detection of trichothecene- and fumonisin-producing species of Fusarium in cornmeal. Journal of Food Protection. 2002, 65: 1955-1961.
    38 Blum B H, Kim H, Butchko R A, et al. Involvement of ZFR1 of Fusarium verticillioides in kernel colonization and the regulation of FST1, a putative sugar transporter gene required for fumonisin biosynthesis on maize kernels. Molecular Plant Pathology. 2008, 9 (2): 203-211.
    39 Bojia R S, Cerny R L, Proctor R H, et al. Determining the biosynthetic sequence in the early steps of the fumonisin pathway by use of three gene-disruption mutants of Fusarium verticillioides. Journal of Agricultural and Food Chemistry. 2004, 52: 2855-2860.
    40 Borner G H H, Sherrier D J, Weimar T, et al. Analysis of detergent-resistant membranes in Arabidopsis. Evidence for plasma membrane lipid rafts. Plant Physiology. 2005, 137: 1 04-116.
    41 Brader G, Mikkelsen D M, Halkier B A, et al. Altering glucosinolate profiles modulates disease resistance in plants. Plant Journal. 2006, 46: 758-767.
    42 Brandwagt B F, Mesbah L A, Takken F L, et al. A longevity assurance gene homolog of tomato mediates resistance to Alternaria alternata f. sp. lycopersici toxins and fumonisin B]. PNAS,2000,97:4961-4966.
    43 Branham B E, and Plattner R D. Alanine is a precursor in the biosynthesis of fumonisin Bl by Fusarium moniliforme. Mycopathologia. 1993, 124:99-104.
    44 Broggi L E, Resnik S L, Pacin A M, et al. Distribution of fumonisins in dry-milled corn fractions in Argentina. Food Additives and Contaminants. 2002, 19: 465-469.
    45 Brown D W, Butchko R A E, Busman M, et al. The Fusarium verticillioid.es FUM gene, cluster encodes a Zn(II)2Cys6 protein that affects FUM gene expression and fumonisin production.Eukaryotic Cell. 2007, 6: 1210-1218.
    46 Brown D W, Cheung F, Proctor R H, et al. Comparative analysis of 87,000 expressed sequence tags from the fumonisin-producing fungus Fusarium verticillioides. Fungal Genetics and Biology. 2005, 42:848-861.
    47 Bullerman L B, and Tsai W-T J. Incidence and levels of Fusarium moniliforme, Fusarium porliferatum and fumonisins in corn and corn-based foods and feeds. Journal of Food Protection, 1994, 57: 541 -546.
    48 Burgess L W, Summerell B A, Bullock S, et al. Laboratory manual for Fusarium research.Sydney: University of Sydney, 1994, pp: 1-133.
    49 Burmeister W P, Cottaz S, Driguez H, et al. The crystal structures of Sinapis alba myrosinase and a covalent glycosyl-enzyme intermediate provide insights into the substrate recognition and active-site machinery of an S-glycosidase. Structure. 1997, 5: 663-675.
    50 Burow M, and Wittstock U. Regulation and function of specifier proteins in plants. Phytochemistry Reviews. 2009, 8: 87-99.
    51 Burow M, Losansky A, Muller R, et al. The genetic basis of constitutive and herbivore-induced ESP-independent nitrile formation in Arabidopsis. Plant Physiology. 2009, 149: 561-574.
    52 Burow M, Muller R, and Gershenzon J. Altered glucosinolate hydrolysis in genetically engineered Arabidopsis thaliana and its influence on the larval development of Spodoptera littoralis. Journal of Chemical Ecology. 2006, 32: 2333-2349.
    53 Burow M, Zhang Z Y, Ober J A, et al. ESP and ESM1 mediate indol-3-acetonitrile production from indol-3-ylmethyl glucosinolate in Arabidopsis. Phytochemistry. 2008, 69: 663-671.
    54 Butchko R A, Plattner R D, and Proctor R H. Deletion analysis of FUM genes involved in tricarballylic ester formation during fumonisin biosynthesis. Journal of Agricultural and Food Chemistry. 2006, 54: 9398-9404.
    55 Butchko R A, Plattner R D, and Proctor R H. FUM13 encodes a short chain dehydrogenase/reductase required for C-3 carbonyl reduction during fumonisin biosynthesis in Gibberella moniliformis. Journal of Agricultural and Food Chemistry. 2003a, 51:300O?006.
    56 Butchko R A, Plattner R D, and Proctor R H. FUM9 is required for C-5 hydroxylation of fumonisins and complements the meitotically defined Fum3 locus in Gibberella moniliformis. Applied and Environmental Microbiology. 2003b, 69: 6935-6937.
    57 Cahagnier B, Melcion D, and Richard-Moulard D. Growth of Fusarium moniliforme and its biosynthesis of fumonisin B_1 on maize grain as a function of different water acitivities. Letters of Applied Microbiology. 1995, 20: 247-251.
    58 Caldas E D, Sadilkova K., Ward B L, et al. Biosynthetic studies of fumonisin B_1 and AAL toxins. Journal of Agricultural and Food Chemistry. 1998, 46: 4734-4743.
    59 Canela R, Pujol T, Sala N, et al. Fate of fumonisin B| and B2 in steeped corn kernels. Food Additives and Contaminants. 1996, 13:511-517.
    60 Castelo M M, Sumner S S, and Bullerman L B. Stability of fumonisins in thermally processed corn products. Journal of Food Protection. 1998, 1030-1033.
    61 Celenza J L ,Quiel J A , Smolen G A, et al. The Arabidopsis ATR1 Myb transcription factor controls indolic glucosinolate homeostasis. Plant Physiology. 2005, 137: 253-262.
    62 Chatterjee S, Smith E R, Hanada K, et al. GPI anchoring leads to sphingolipid-dependent retention of endocytosed proteins in the recycling endosomal compartment. The EMBO Journal. 2001,20: 1583-1592.
    63 Chen J P, Mirocha C J, Xie W, et al. Production of the mycotoxin fumonisin Bl by Alternaria alternata f. sp. lycopersici. Applied and Environmental Microbiology. 1992, 58: 3928-3931.
    64 Chen M, Han G, Dietrich C R, et al. The essential nature of sphingolipids in plants as revealed by the functional identification and characterization of the Arabidopsis LCB1 subunit of serine palmitoyltransferase. Plant Cell. 2006, 18: 3576-3593.
    65 Chen S, Glawischnig E, Jorgensen K, et al. CYP79F1 and CYP79F2 have distinct functions in the biosynthesis of aliphatic glucosinolates in Arabidopsis. Plant Journal. 2003, 33: 923-937.
    66 Chivasa S, Ndimba B K, Simon W J, et al. Extracellular ATP functions as an endogenous external metabolite regulating plant cell viability. Plant Cell. 2005, 17(11): 3019-3034.
    67 Choi Y-E, and Shim W-B. Functional characterization of Fusarium verticillioides CPP1, a gene encoding a putative protein phosphatase 2A catalytic subunit. Microbiology. 2008, 154:326-336.
    68 Chu F S, and Li G Y. Simultaneous occurrence of fumonisin B_1 and other mycotoxins in moldy corn collected from the People's Republic of China in regions with high incidences of esophageal cancer. Applied and Environmental Microbiology. 1994, 60: 847-852.
    69 Clay N K, Adio A M, Denoux C, et al. Glucosinolate metabolism required for an Arabidopsis innate immune response. Science. 2009, 323: 95-101.
    70 Clem R J, Fechheimer M, and Miller L K. Prevention of apoptosis by a baculovirus gene during infection of insect cells. Science. 1991, 254: 1388-1390.
    71 Colvin B M, Cooley A J, and Beaver R W. Fumonisin toxicosis in swine: clinical and pathologic findings. Journal of Veterinary Diagnostic Investigation. 1993, 5: 232-241.
    72 Council for Biotechnology Information. Bt corn and mycotoxin. March, P. O. Box 34380, Washington, DC. 2001, pp: 1-2.
    73 Coursol S, Fan L M, Le Stunff H, et al. Sphingolipid signalling in Arabidopsis guard cells involves heterotrimeric G proteins. Nature. 2003, 423: 651-651.
    74 Coursol S, Le Stunff H, Lynch D V, et al. Arabidopsis sphingosine kinase and the effects of phytosphingosine-1 -phosphate on stomatal aperture. Plant Pysiology. 2005, 137(2): 724-737.
    75 Dawlatana M, Coker R D, Nagler M J, et al. A normal phase HPTLC method for the quantitative determination of fumonisin Bl in rice. Chromatographia. 1995,41: 187-190.
    76 De G A, Solfrizzo M, and Visconti A. Effect of processing on fumonisin concentration in corn flakes. Journal of Food Protection. 2001, 64: 701-705.
    77 de Jong-Van den Berg L T, Hernandez-Diaz S, Werler M M, et al. Trends and predictors of folic acid awareness and periconceptional use in pregnant women. American Journal of Obstetrics and Gynecology. 2005, 192: 121-128.
    78 De Vos M, Kriksunov K. L, and .lander G. Indole-3-acetonitrile production from indole lucosinolates deters oviposition by Pieris rapae (white cabbage butterfly). Plant Physiology.2008, 146:916-926.
    79 DeGirolamo A M, Solfrizzo M, Von Hoist C, et al. Comparison of different extraction and clean-up procedures for the determination of fumonisins in maize and maize-based food products. Food Additives and Contaminants. 2001, 18: 59-67.
    80 Demeke T, Clear R M, Patrick S K, et al. Species-specific PCR-based assays for the detection of Fusarium species and a comparison with the whole seed agar plate method and trichothecene analysis. International Journal of Food Microbiology. 2005, 103: 271-284.
    81 Desai K, Sullards M C, Allegood .J, et al. Fumonisins and fumonisin analogs as inhibitors of ceramide synthase and inducers of apoptosis. Biochimica et Biophysica Acta. 2002, 1585:188-192.
    82 Desjardins A E, and Plattner R D. Fumonisin B|-nonproducing strains of Fusarium verticillioides cause maize (Zea mays) ear infection and ear rot. Journal of Agricultural and Food Chemistry. 2000, 48: 5773-5780.
    83 Desjardins A E, Busman M, Muhitch M, et al. Complementary host-pathogen genetic analyses of the role of fumonisins in the Zea mays-Gibberella moniliformis interaction. Physiological and Molecular Plant Pathology. 2007, 70: 149-160.
    84 Desjardins A E, Plattner R D and Nelson P E. Production of fumonisin B_1, and moniliformin by Gibberella fujikuroi from rice from various geographic areas. Applied and Environmental Microbiology. 1997, 63: 1838-1842.
    85 Desjardins A E, Plattner R D, and Gordon T R. Gibberella fujikuroi mating population A and Fusarium subglutinans from teosinte species and maize from Mexico and Central America.Mycological research. 2000a, 104: 865-872.
    86 Dilkin P, Mallmann C A, de Almeida C A, et al. Robotic automated clean-up for detection of fumonisins B_1 and B_2 in corn and corn-based feed by high-performance liquid chromatography. Journal of Chromatography A. 2001,925: 151-157.
    87 Ding Y, Bojja R S, and Du L. Fum3p, a 2-ketoglutarate-dependent dioxygenase required for C-5 hydroxylation of fumonisins in Fusarium verticillioid.es. Applied and Environmental Microbiology. 2004, 70: 1931-1934.
    88 Doko M. B., Rapior S, and Visconti A. Incidence and levels of fumonisin contamination in maize genotypes grown in Europe and Africa. Journal of Agricultural and Food Chemistry.1995,43:429-434.
    89 Dombrecht B, Xue G P, Sprague S J, et al. MYC2 Differentially modulates diverse jasmonate-dependent functions in Arabidopsis. Plant Cell. 2007, 19: 2225-2245.
    90 Dombrink-Kurtzman M A, and Dvorak T J. Fumonisin content in masa and tortillas from Mexico. Journal of AOAC International. 1999, 47: 622-627.
    91 Dowd P F. Biotic and abiotic factors limiting efficacy of Bt corn in indirectly reducing mycotoxin levels in commercial fields. Journal of Economic Entomology. 2001, 94:1067-1074.
    92 Dowd P F. Indirect reduction of ear molds and associated mycotoxins in Bacillus thuringiensis corn under controlled and open field conditions: utility and limitations. Journal of Economic Entomology. 2000, 93: 1669-1679.
    93 Du L, and Shen B, Biosynthesis of hybrid peptide-polyketide natural products. Current Opinion in Drug Discovery and Development. 2001, 4: 215-228.
    94 Du L, Yu F, Zhu X, et al. Biochemical and molecular analysis of the biosynthesis of fumonisins. In: Polyketides: Biosynthesis, Biological Activities and Genetic Engineering. A. M. Rimando,S. R. Baerson, (Eds.), American Chemical Society: Washington, DC. 2007, pp: 81-96.
    95 Du L, Zhu X, Gerber R, et al. Biosynthesis of sphinganine-analog mycotoxins. Journal of Industrial Microbiology and Biotechnology. 2008, 35: 455-464.
    96 Dudas I, Rockenbauer M, and Czeizel A E. The effect of preconceptional multivitamin supplementation on the menstrual cycle. Archives of Gynecology and Obstetrics. 1995, 256:115-123.
    97 Dunn T M, Lynch D V, Michaelson L V, et al. A post-genomic approach to understanding sphingolipid metabolism in Arabidopsis thaliana. Annals of botany. 2004, 93: 483-497.
    98 Duvick J. Prospects for reducing fumonisin contamination of maize through genetic modification. Environmental Health Perspectives. 2001, 109 (Suppl. 2): 337-342.
    99 Eckardt N A. Ins and Outs of Programmed Cell Death and Toxin Action. Plant Cell. 2005, 17:2849-2851.
    100 Elmer W H, Johnson D A, and Mink G I. Epidemiology and management of the diseases causal to asparagus decline. Plant Disease. 1996, 80: 117-125.
    101 Elmer W H. Incidence of infection of asparagus spears marketed in Connecticut by Fusarium spp. Plant Disease. 2000, 84: 83 1 -834.
    102 Fahey J W, Zalcmann A T, and Talalay P. The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry. 2001, 56: 5-51.
    103 Fandohan P, Gnonlonfin B, Hell K, et al. Natural occurrence of Fusarium and subsequent fumonisin contamination in preharvest and stored maize in Benin, West Africa. International Journal of Food Microbiology.2005,99:173-183.
    104 Fandohan P,Hell K,Marasas W F O,et al.Infection of maize by Fusarium species and contamination with fumonisin in Africa.African Journal of Biotechnology.2003,2:570-579.
    105 FDA.Draft guidance for industry:fumonisin levels in human foods and animal feeds;Final Guidance.2001.http://www.fda.gov/Food/GuidanceComplianceRegulatoryInformation/Guidan ceDocuments/ChemicalContaminantsandPesticides/ucm109231.htm.
    106 Feng H,Chen Q,Feng J,et al.Functional characterization of the Arabidopsis eukaryotic translation initiation factor 5A-2 that plays a crucial role in plant growth and development by regulating cell division,cell growth,and cell death.Plant Physiology.2007,144 (3):1531-1545.
    107 Fenwick G R,Heaney R K,and Mullin W J.Glucosinolates and their breakdown products in food and food plant.Critical Reviews in Food Science and Nutrition.1983,18:123-201.
    108 Ferrari S,Galletti R,Denoux C,et al.Resistance to Botrytis cinerea induced in Arabidopsis by elicitors is independent of salicylic acid,ethylene,or jasmonate signaling but requires PHYTOALEXIN DEFICIENT3.2007,144:367-379.
    109 Flaherty J E,and C P.Woloshuk.Regulation of fumonisin biosynthesis in Fusarium verticillioides by a zinc binuclear cluster-type gene,ZFR1.Applied and Environmental Microbiology.2004,70:2653-2659.
    110 Flaherty J E,Prittila M A,Blum B H,et al.PAC1,a pH-Regulatory Gene from Fusarium verticillioides.Applied and Environmental Microbiology.2003,69:5222-5227.
    111 Fotso J,Leslie J F,and Simth J S.Production of beauvericin,moniliform,fusaproliferin,and fumonisins B_1,B_2 and B_3 by fifteen ex-type strains of Fusarium species.Applied and Environmental Microbiology.2002,68,5195-9197.
    112 Frisvad J C,Thrane U,and Samson R A.Mycotoxin producers.In:Dijksterhuis J,and Samson R A.Food mycology:a multifaceted approach to fungi and food.CRC Press.2007,pp:135-159.
    113 Fukuda H,Shima H,Vesonder R F,et al.Inhibition of protein serine/threonine phosphatases by fumonisin B1,a mycotoxin.Biochemical and Biophysical Research Communications.1996,220:160-165.
    114 Gechev T S,Ferwerda M A,Mehterov N,et al.Arabidopsis AAL-toxin-resistant mutant atr1 shows enhanced tolerance to programmed cell death induced by reactive oxygen species.Biochemical and Biophysical Research Communications.2008,375:639-644.
    115 Gechev T S,Gadjev I Z,and Hille J.An extensive microarray analysis of AAL-toxin-induced cell death in Arabidopsis thaliana brings new insights into the complexity of programmed cell death in plants.Cellular and Molecular Life Sciences.2004,61:1185-1197.
    116 Geiser D M,Jimenez-Gasco M,Kang S,et al.FUSARIUM-ID v.1.0:A DNA sequence database for identifying Fusarium.European Journal of Plant Pathology.2004,110:473-479.
    117 Gelderblom W C,Abel S,and Smuts C M.Fumonisin-induced hepatocarcinogenesis:mechanisms related to cancer initiation and promotion.Environmental Health Perspectives.2001,109 (Suppl.2):291-300.
    118 Gelderblom W C,Jaskiewicz K,Marasas W F O,et al.Fumonisins-novel mycotoxins with cancer-promoting activity produced by Fusarium moniliforme.Systematic and Applied Microbiology.1988,54:1806-1811.
    119 Gerlach W,and Nirenberg H I.The genus Fusarium-a Pictorial Atlas.Berlin-Dahlem (Heft 209):Mitteilungen aus der Biologischen Bundesanstaltf(?)r Land-und Forstwirtschaft,1982,pp:1-406.
    120 Gigolashvili T,Berger B,Mock H P,et al.The transcription factor HIG1/MYB51 regulates indolic glucosinolate biosynthesis in Arabidopsis thaliana.Plant Journal.2007,50:886-901.
    121 Gigolashvili T,Engqvist M,Yatusevich R,et al.HAG2/MYB76 and HAG3/MYB29 exert a specific and coordinated control on the regulation of aliphatic glucosinolate biosynthesis in Arabidopsis thaliana.New physiologist.2008,177:627-642.
    122 Glawischnig E,Hansen B G,Olsen C E,et al.Camalexin is synthesized from indole-3-acetaldoxime,a key branching point between primary and secondary metabolism in Arabidopsis.PNAS.2004,101:8245-8250.
    123 Glawischnig E.Camalexin.Phytochemistry.2007,68:401-406.
    124 Grimm C and Geisen R.A PCR-ELISA for the detection of potential fumonisin producing Fusar ium species.Letter of Applied Microbiology.1998,26:456-462.
    125 Grsic-Rausch S,Kobelt P,Siemens J,et al.Expression and localization of nitrilase during symptom development of the clubroot disease in Arabidopsis thaliana.Plant Physiology.2000,122:369-378.
    126 Grubb C D,and Abel S.Glucosinolate metabolism and its control.Trends in Plant Science.2006,11(2):1360-1385.
    127 Grubb C D,Gross H B,Chen D L,et al.Identification of Arabidopsis mutants with altered glucosinolate profiles based on isothiocyanate bioactivity.Plant Science.2002,162:143-152.
    128 Grubb C D,Zipp B J,Ludwig-M(?)ller J,et al.Arabidopsis glucosyltransferase UGT74B1 functions in glucosinolate biosynthesis and auxin homeostasis.Plant Journal.2004,40:893-903.
    129 Guti(?)rrez-N(?)jera N,Mu(?)oz-Clares R A,Palacios-Bahena S,et al.Fumonisin B_1,a sphingoid toxin,is a potent inhibitor of the plasma membrane H~+-ATPase.Planta.2005,221 (4):589-596.
    130 Halkier B H,and Gershenzon J.Biology and biochemistry of glucosinolates.Annual Review of Plant Biology.2006,57:303-333.
    131 Hammond-Kosack K E,and Jones J D G.Plant disease resistance genes.Annual Review of Plant Physiology and Plant Molecular Biology.1997,48,575-607.
    132 Hansen C H,Du L,Naur P,et al.CYP83B1 is the oxime-metabolizing enzyme in the glucosinolate pathway in Arabidopsis.Journal of Biological Chemistry.2001b,276:24790-24796.
    133 Hansen C H,Wittstock U,Olsen C E,et al.Cytochrome P450 CYP79F1 from Arabidopsis catalyzes the conversion of dihomomethionine and trihomomethionine to the corresponding aldoximes in the biosynthesis of aliphatic glucosinolates.Journal of Biological Chemistry.2001a,276:11078-11085.
    134 Harel R,and Futerman A H.Inhibition of splingolipid synthesis affects axonal outgrowth in cultured hippocampal neurons.Journal of Biological Chemistry.1993,268:14476-14481.
    135 Haschek W M,Gumprecht L A,Smith G,et al.Fumonisin toxicosis in swine:an overview of porcine pulmonary edema and current perspectives.Environmental Health Perspectives,2001,109 (Suppl.2):251-257.
    136 Haughn G W,Davin L,Giblin M,et al.Biochemical Genetics of Plant Secondary Metabolites in Arabidopsis thaliana:The Glucosinolates.Plant Physiology.1991,97:217-226.
    137 Headrick M,and Pataky J K.Relationship among carbohydrate content of kernels,condition of silks after pollination,and the response of sweet corn inbreed lines to infection of kernels by Fusarium moniliforme.Phytopathology.1990,80:487-494.
    138 Hemm M R,Ruegger M O,and Chapple C.The Arabidopsis ref2 mutant is defective in the gene encoding CYP83A1 and shows both phenylpropanoid and glucosinolate phenotypes.Plant Cell.2003,15:179-194.
    139 Hendricks K.Fumonisins and neural tube defects in South Texas.Epidemiology.1999,10 (2):198-200.
    140 Hirai M Y,Sugiyama K,Sawada Y,et al.Omics-based identification of Arabidopsis Myb transcription factors regulating aliphatic glucosinolate biosynthesis.PNAS.2007,104 (15):6478-6483.
    141 Hlywka J J.and Bullerman L.B.Occurrence of fumonisin B_1 and B_2 in beer.Food Additives and Contaminants,1999,16 (8):319-324.
    142 Hopkins R J,van Dam N M,and van Loon J J A.Role of glucosinolates in insect-plant relationships and multitrophic interactions.Annual Review of Entomology.2009,54:57-83.
    143 Hopmans E C,and Murphy P A.Detection of fumonisins B_1,B_2,and B_3 and hydrolyzed fumonisin B_1 in corn-containing foods Journal of Agricultural and Food Chemistry.1993,41 (10):1655-1658.
    144 Huang C,Dickman M,Henderson G,et al.Repression of protein kinase C and stimulation of cyclic AMP response elements by fumonisin,a fungal encoded toxin which is a carcinogen.Cancer Research.1995,55:1655-1659.
    145 Hue FX,Huerre M,Rouffault MA,et al.Specific detection of Fusarium species in blood and tissue by a PCR technique.Applied and Environmental Microbiology,1999,37:2434-2438.
    146 Huffaker A,and Ryan C A.Endogenous peptide defense signals in Arabidopsis dfferentially amplify signaling for the innate immune response.PNAS.2007,104:10732-10736.
    147 Hull A K,Rekha V,and Celenza J L.Arabidopsis cytochrome P450s that catalyze the first step of tryptophan-dependent indole-3-acetic acid biosynthesis.PNAS.2000,97:2379-2384.
    148 Humpf H-U,and Voss K A.Effects of thrmal food processing on the chemical structure and toxicity of fumonisin mycotoxins.Molecular Nutrition and Food Research.2004,48:255-269.
    149 Humphreys S H,Carrington C,and Bolger M.A quantitative risk assessment for fumonisin B_1 and B_2 in U.S.corn.Food Additives and Contaminants.2001,18:211-220.
    150 IARC.Fumonisin B_1,IARC monographs on the evalution of carcinogenic risk to humans:some traditional medicines,some mycotoxins,naphthalene and styrene.IARC Monogr,2002,82:301-366.
    151 Jackson L S,and Bullerman L B.Effect of processing on Fusarium mycotoxins.In:Jackson L S,Knize M,and Morgan J N.Impact of processing on food safety.New York,Kluwer Academic/Plenum publishers.1999,243-261.
    152 Jackson L S,and Jablonski J.Fumonisins.In:Magan O M.Mycotoxins in food.Boca Raton Boston New York Washington,DC:CRC Press,USA.2004,380-385.
    153 Jackson L S,Katta S K,Fingerhut D D,et al.Effects of baking and frying on the fumonsin B_1 content of corn-based foods.Journal of Agricultural and Food Chemistry.Journal of Agricultural and Food Chemistry.1997,45:4800-4805.
    154 Jurado M,Vazquez C,Marinc S,et al.PCR-based strategy to detect contamination with mycotoxigenic Fusarium species in maize.Systematic and Applied Microbiology.2006 29:681-689.
    155 Karuna R,and Sashidhar,R B.Use of ion-exchange chromatography coupled with TLC-laser scanning densitometry for the quantitation of fumonisin B_1.Talanta.1999,50,381-389.
    156 Keller S E,Sullivan T M,and Christel S,Factors affecting the growth of Fusarium proliferatum and the production of fumonisin B_1:oxygen and pH.Journal of Industrial Microbiology and Biotechnology.1997,19:305-309.
    157 Kihara A,Mitsutake S,Mizutani Y,et al.Metabolism and biological functions of two phosphorylated sphingolipids,sphingosine-1-phosphate and ceramide-1-phosphate.Progress in Lipid Research.2007,46 (2):126-144.
    158 Kim E K,Scott P M,and Lau B P-Y.Hidden fumonisin in com flakes.Food Additives and Contaminants.2003,20 (2):161-169.
    159 Kim J H,and Jander G.Myzus persicae (green peach aphid) feeding on Arabidopsis induces the formation of a deterrent indole glucosinolate.Plant Journal.2007,49:1008-1019.
    160 Kim J H,Lee B W,Schroeder F,et al.Identification of indole glucosinolate breakdown products with antifeedant effects on Myzus persicae (green peach aphid).Plant Journal.2008,54:1015-1026.
    161 Klein M,Reichelt M,Gershenzon J,et al.The three desulfoglucosinolate sulfotransferase proteins in Arabidopsis have different substrate specificities and are differentially expressed.FEBS Journal.2006,273:122-136.
    162 Kliebenstein D J,Kroymann J,and Mitchell-Olds T.The glucosinolate-myrosinase system in an ecological and evolutionary context.Current Opinion in Plant Biology.2005a,8:264-271.
    163 Kliebenstein D J,Lambrix V M,Reichelt M,et al.Gene duplication in the diversification of secondary metabolism:tandem 2-oxoglutarate-dependent dioxygenases control glucosinolate biosynthesis in Arabidopsis.Plant Cell.2001,13:681-693.
    164 Kliebenstein D J,Rowe H,and Denby K J.Secondary metaboiites influence Arabidopsis/Botrytis interactions:variation in host production and pathogen sensitivity.Plant Journal.2005b,44:25-36.
    165 Kliebenstein D J.Secondary metabolites and plant/environment interactions:a view through Arabidopsis thaliana tinged glasses.Plant Cell and Environment.2004,27:675-684.
    166 Kroken S,Glass N L,Taylor J W,et al.Phylogenomic analysis of type Ⅰ polyketide synthase genes in pathogenic and saprobic ascomycetes.PNAS.2003,100:15670-15675.
    167 Kroymann J,Donnerhacke S,Schnabelrauch D,et al.Evolutionary dynamics of an Arabidopsis insect resistance quantitative trait locus.PNAS.2003,100 (Suppl.2):14587-14592.
    168 Kroymann J,Textor S,Tokuhisa J G,et al.A gene controlling variation in Arabidopsis thaliana glucosinolate composition is part of the methionine chain elongation pathway.Plant Physiology.2001,127:1077-1088.
    169 Kuroyanagi M,Ymada K,Hatsugai N,et al.Vacuolar processing enzyme is essential for mycotoxin-induced cell death in Arabidopsis thaliana.Journal of Biological Chemistry.2005,280:323914-32920.
    170 Lambrix V,Reichelt M,Mitchell-Olds T,et al.The Arabidopsis epithiospecifier protein promotes the hydrolysis of glucosinolates to nitriles and influences Trichoplusia ni herbivory.Plant Cell.2001,13:2793-2807.
    171 Lawrence J F,Niedzwiadek B,and Scott P M.Effect of temperature and solvent composition on extraction of fumonisin B_1 and B_2 from corn products.Journal of AOAC International.2000,83:604-611.
    172 Le Bars J,Le Bar P,Dupuy J,et al.Biotic and abiotic factors in fumonisin B_1 production and stability.Association of Official Analytical Chemists.1994,77:517-521.
    173 Leslie J F,Plattner R D,Desjardins A E,et al.Fumonisin B_1 production by strains from different mating populations of Gibberella fujikuroi (Fusarium Section Liseola).Phytopathology.1992,82:341-345.
    174 Levy M,Wang Q M,Kaspi R,et al.Arabidopsis IQD1,a novel calmodulin-binding nuclear protein,stimulates glucosinolate accumulation and plant defense.Plant Journal.2005,43:79-96.
    175 Li F Q,Yoshizawa T,Kawamura O,et al.Aflatoxins and fumonisins in corn from the high-Incidence area for human hepatocellular carcinoma in Guangxi,China.Journal of Agricultural and Food Chemistry.2001,49:4122-4126.
    176 Li J,Brader G,and Palva E T.Kunitz trypsin inhibitor:An antagonist of cell death triggered by phytopathogens and fumonisin B_1 in Arabidopsis.Molecular Plant.2008,1-14.
    177 Liang H,Yao N,Song J T,et al.Ceramides modulate programmed cell death in plants.Genes and Development.2003,17 (21):2636-2641.
    178 Lin S-S,Martin R,Mongrand S,et al.RING1 E3 ligase localizes to plasma membrane lipid rafts to trigger FB_1-induced programmed cell death in Arabidopsis.The Plant Journal.2008,56:550-561.
    179 Lincoln J E,Richael C,Overduin B,et al.Expression of the antiapoptotic baculovirus p35 gene in tomato blocks programmed cell death and provides broad-spectrum resistance to disease.PNAS.2002,99 (23):15217-15221.
    180 Liu C,Liu F,Xu W,Kofoet A,et al.Occurrence of fumonisins B_1 and B_2 in asparagus from Shandong province,PR China.Food Additives and Contaminants.2005,22:673-676.
    181 Liu C,Xu W,Liu F and Jiang S.Fumonisins production by Fusarium proliferatum strains isolated from asparagus crown.Mycopathologia.2007,164:127-134.
    182 Logrieco A,Doko B,Moretti A,et al.Occurrence of fumonisin B_1 and B_2 in Fusarium proliferatum infected asparagus plants.Journal of Agricultural and Food Chemistry.1998,46:5201-5204.
    183 Logrieco A,Mul(?) G,Moretti A.et al.Toxigenic Fusarium species and mycotoxins associated with maize ear rot in Europe.European Journal of Plant Pathology.2002,108:597-609.
    184 L(?)pez-Errasquin E,V(?)zquez C,Jim(?)nez M,et al.Real-Time RT-PCR assay to quantify the expression of fum1 and fum19 genes from the Fumonisin-producing Fusarium verticillioides.Journal of Microbological Methods.2007,68:312-317.
    185 Ludwig-M(?)ller J,Piaper K,Ruppel M,et al.lndole glucosinolate and auxin biosynthesis in Arabidopsis thaliana (L.) Heynh.glucosinolate mutants and the development of club root disease.Planta.1999,208:409-419
    186 Ludwig-M(?)ller J.Glucosinolates and the clubroot disease:defense compounds or auxin precursors?.Phytochemistry Reviews.2009,8:135-148.
    187 Maragos C M,and Richard J L.Quantitation and stability of fumonisins B_1 and B_2 in milk.Journal of AOAC International.1994,77:1162-1167.
    188 Maragos C M,Bennett G A,and Richard J L.Affinity column cleanup for the anylysis of fumonisins and their hydrolysis products in corn.Food and Agricultural Immunology.1997,9:3-12.
    189 Marasas W F O,Kriek N P S,Wiggins V M,et al.Incidence,geographic distribution and toxigenicity of Fusarium species in South African com.Phytopathology.1979,69:1181-1185.
    190 Marasas W F O,Riley R T,Hendricks K A,et al.Fumonisins disrupt sphingolipid metabolism,folate transport,and neural tube development in embryo culture and in vivo:a potential risk factor for human neural rube defects among populations consuming fumonisin-contaminated maize.Journal of Nutrition.2004,134:711-716.
    191 Marasas W F O.Discovery and occurrence of the fumonisins:a historical perspective.Environ Health Perspect,2001,109 (Suppl.2):239-243.
    192 Marasas W F O.Fumonisins:their implications for human and animal health.Natural Toxins,1995,3:193-198.
    193 Marasas WEO,Nelson PE,Toussoun TA.Toxigenic Fusarium Species:Identity and Mycotoxicology;Pennsylvania State University Press:Unversity Park,PA,1984:328.
    194 Marin S,Magan N,Serra J,et al.Fumonisin B_1 production and growth of Fusarium moniliforme and Fusarium proliferanm on maize,wheat,and barley grain.Journal of Food Science.1999,64:921-924.
    195 Marin S,Sanchis V,Vinas (?),et al.Effect of water activity and temperature on growth and fumonisin B_1 and B_2 production by Fusarium proliferatum and F.moniliforme on maize grain.Letters in Application Microbiology,1995,21:298-301.
    196 Martins M L,Martins H M and Bernardo F.Fumonisins B_1 and B_2 in black tea and medicinal plants.Journal of Food Protection.2001,64:1268-1270.
    197 Meister U.Investigations on the change of fumonisin content of maize during hydrothermal treatment of maize.Analysis by means of HPLC methods and ELISA.European Food Research and Technology.2001,213:187-193.
    198 Merrill A H,van Echten G,Wang E,et al.Fumonisin B_1 inhibits sphingosine (sphinganine) N-acyltransferase and de novo sphingolipid biosynthesis in cultured neurons in situ.Journal of Biological Chemistry.1993,268:27299-27306.
    199 Merrill Jr A H,Sullards M C,Wang E,et al.Sphingolipid metabolism:roles in signal transduction and disruption by fumonisins.Environmental health perspective.2001,109 (Suppl 2):283-289.
    200 Mewis I,Tokuhisa J G,Schultz J C,et al.Gene expression and glucosinolate accumulation in Arabidopsis thaliana in response to generalist and specialist herbivores of different feeding guilds and the role of defense signaling pathways.Phytochemistry.2006,67:2450-2462.
    201 Mikkelsen M D,Hansen C H,Wittstock U,et al.Cytochrome P450 CYP79B2 from Arabidopsis catalyzes the conversion of tryptophan to indole-3-acetaldoxime,a precursor of indole glucosinolates and indole-3-acetic acid.Journal of Biological Chemsitry.2000,275:33712-33717.
    202 Mikkelsen M D,Naur P,and Halkier B A.Arabidopsis mutants in the C-S lyase of glucosinolate biosynthesis establish a critical role for indole-3-acetaldoxime in auxin homeostasis.Plant Journal.2004,37:770-777.
    203 Miller J D.Factors that affect the occurrence of fumonisin.Environmental Health Perspectives. 2001,109 (Suppl.2):321-324.
    204 Mirocha C J,Chen T,Xie W,et al.Biosynthesis of fumonisin and AAL derivatives by Alternaria and Fusarium in laboratory culture.Advances in Experimental Medicine and Biology.1996,392:213-224.
    205 Moore T,Martineau B,Bostock R M,et al.Molecular and genetic characterization of ethylene involvement in mycotoxin-induced plant cell death.Physiological and Molecular Plant Pathology.1999,54:73-85.
    206 Mul(?) G,Gonzalez-Jaen MT,Hornok L,et al.Advances in molecular diagnosis of toxigenic fumonisins species:a review,Food Additives and Contaminants.2005,22:316-323.
    207 Mul(?) G,Logrieco A,Stea G et al.Clustering of trichothecene-producing Fusarium strains determined from 28S ribosomal DNA sequences.Applied and Environmental Microbiology.1997,63:1843-1846.
    208 Mul(?) G,Susca A,Stea G,et al.Specific detection of the toxigenic species Fusarium proliferatum and F.oxysporum from asparagus plants using primers based on calmodulin gene sequences.FEMS Microbiology Letters.2004,230:235-240.
    209 Mumm R,Burow M,Bukovinszkine kiss G,et al.Formation of simple nitriles upon glucosinolate hydrolysis affects direct and indirect defense against the specialist herbivore,Pieris rapae.Journal of Chemical Ecology.2008,34:1311-1321.
    210 Munkvold G P,Hellmich R L,and Rice L G.Comparison of fumonisin concentrations in kernels of transgenic Bt maize hybrids and nontransgenic hybrids.Plant Disease.1999,83:130-138.
    211 Murphy P A,Rice L G.,and Ross P F.Fumonisin B_1,B_2 and B_3 content of Iowa,Wisconsin,and Illinois corn and corn screenings.Journal of Agricultural and Food Chemistry.1993,41:263-266.
    212 Nafisi M,Goregaoker S,Botanga C J,et al.Arabidopsis Cytochrome P450 Monooxygenase 71A13 Catalyzes the Conversion of Indole-3-Acetaldoxime in Camalexin Synthesis.Plant Cell.2007,19:2039-2052.
    213 Nagano AJ,Fukao Y,Fujiwara M,et al.Antagonistic jacalin-related lectins regulate the size of ER body-type beta-glucosidase complexes in Arabidopsis thaliana.Plant and Cell Physiology.2008,49:969-980.
    214 Naur P,Petersen B L,Mikkelsen M D,et al.CYP83A1 and CYP83B1,two nonredundant cytochrome P450 enzymes metabolizing oximes in the biosynthesis of glucosinolates in Arabidopsis.Plant Physiology.2003,133:63-72.
    215 Nelson P E,Desjardins A E,and Piattner R D.Fumonisins,mycotoxins produced by Fusarium species:biology,chemistry,and significance.Annual Review of Phytopathology.1993,31:233-252.
    216 Nelson P E,Plattner R D,Shackelford D D,et al.Fumonisin B_1 production by Fusarium species other than F.moniliforme in Section Liseola and by Some Related Species.Applied and Environmental Microbiology.1992,58:984-989.
    217 Nelson P E,Toussoun T A,and Marasas W F O.Fusarium species:an illustrated manual for identification.The Pennsylvania State University Press:University Park,PA.1983,pp:1-193.
    218 Ng C K,Carr K,McAinsh M R,et al.Drought-induced guard cell signal transduction involves sphingosine-1-phosphate.Nature.2001,410:596-599.
    219 Niessen L.PCR-based diagnosis and quantification of mycotoxin producing fungi.International Journal of Food Microbiology.2007,119:38-46.
    220 Nishimura M T,Stein M,Hou B H,et al.Loss of a callose synthase results in salicylic acid-dependent disease resistance.Science.2003,301:669-672.
    221 Noonim P,Mahakarnchanaku W,Nielsen K F,et al.Fumonisin B_2 production by Aspergillus niger in Thai coffee beans.Food Additives and Contaminants.2009,26:94-100.
    222 Norholm M H,Nour-Eldin (?),Brodersen P,et al.Expression of the Arabidopsis high-affinity hexose transporter STP13 correlates with programmed cell death.FEBS Letters.2006,580 (9):2381-2387.
    223 Normanly J, Grisafi P, Fink G R, et al. Arabidopsis mutants resistant to the auxin effects of indole-3-acetonitrile are defective in the nitrilase encoded by the NIT1gene. Plant Cell. 1997,9:1781-1790.
    224 Normanly J, Slovin J P, and Cohen J D. Auxin metabolism. In: Davies P J (ed). Plant hormones: biosynthesis, signal transduction, action!. Kluwer, Dordrecht, The Netherlands. 2005, pp: 36.
    225 Norred W P, Wang E, Yoo H, et al. In vitro toxicology of fumonisins and the mechanistic implications. Mycopathologia. 1992, 117: 73-78.
    226 Nunez G, Benedict M A, Hu Y, et al. Caspases: the proteases of the apoptotic pathway. Nature.1998. 17:3237-3245.
    227 Obayashi T, Kinoshita K., Nakai K, et al. ATTED-Ⅱ: a database of co-expressed genes and cis elements for identifying co-regulated gene groups in Arabidopsis. Nucleic Acids Research.2007,35:863-869.
    228 Omurtag G Z, and Yazicio(?)lu D. Determination of fumonisin B_1 and B_2 in herbal tea and medicinal plants in Turkey by high-performance liquid chromatography. Journal of Food Protection. 2004, 67: 1782-1786.
    229 Pasternak T, Potters G, Caubergs R, et al. Complementary interactions between oxidative stress and auxins control plant growth responses at plant, organ, and cellular level. Journal of Experimental Botany. 2005, 418: 1991-2001.
    230 Pfalz M, Vogel H, and Kroymann Juergen. The gene controlling the Indole Glucosinolale Modifier1 quntitative trait locus alters indole glucosinolate structures and aphid resistance in Arabidopsis. Plant Cell. 2009, 21: 985-999.
    231 Pineiro M, Miller J, Silva G, et al. Effect of commercial processing on fumonisin concentrations of maize-based foods. Mycotoxin Research. 1999, 15: 2-12.
    232 Piotrowski M, Schemenewitz A, Lopukhina A, et al. Desulfoglucosinolate sulfotransferases from Arabidopsis thaliana catalyze the final step in the biosynthesis of the glucosinolate core structure. Journal of Biological Chemistry. 2004, 279: 50717-50725.
    233 Plattner R D, and Shackelford D D. Biosynthesis of labeled fumonisins in liquid cultures of Fusarium moniliforme. Mycopathologia. 1992, 117: 17-22.
    234 Plattner R D, Ross P F, Reagor J, et al. Analysis of corn and cultured corn for fumonisin B_1 by HPLC and GC-MS by four laboratories. Journal of Veterinary Diagnostic Investigation. 1990,3 (4): 357-358.
    235 Pollmann S, M(?)ller A, and Weiler E W. Many roads lead to "auxin": Of nitrilases, synthases,and amidases. Plant Biology. (Stuttg.). 2006, 8: 326-333.
    236 Poulton J E, and Moller B L. Glucosinolates. Methods in Plant Biochemistry. 1993, 9:209-237.
    237 Pozzi C R, Correa B, Gambale W, et al. Post-harvest and stored corn in Brazil: mycoflora interaction, abiotic factors and mycotoxin occurrence. Food Additives and Contaminants. 1995,12:313-319.
    238 Prange A, Modrow H, Hormes J, et al. Influence of mycotoxin producing fungi (Fusarium,Aspergillus, Penicillium) on gluten proteins during suboptimal storage of wheat after harvest and competitive interactions between field and storage fungi. Journal of Agricultural and Food Chemistry. 2005, 53: 6930-6938.
    239 Preis R A and Vargas E A. A method for determining fumonisin B_1 in corn using immunoaffinity column clean-up and thin-layer chromatography/densitometery. Food Additives and Contaminants. 2000, 17: 463-468.
    240 Prelusky D B, Miller J D. and Trennolm H L. Disposition of ~14C-derived residues in tissues of pigs fed radiolabelled fumonisin B_1 Food Additives and Contaminants. 1996, 13: 155-162.
    241 Prelusky D B, Trenholm H L, and Savard M E. Pharmacokinetic fate of ~14C-labelled fumonisin B, in swine. Natural Toxins. 1994, 2: 73-80.
    242 Proctor R H, Brown D W, Plattner R D, et al. Co-expression of 15 contiguous genes delineates a fumonisin biosynthetic gene cluster in Gibberella moniliformis. Fungal Genetics and Biology.2003, 38: 237-249.
    243 Proctor R H, Busman M, Seo J-A, et al. A fumonisin biosynthetic gene cluster in Fusarium oxysporum strain O-1890 and the genetic basis for B sersus C fumonisin production. Fungal Genetics and Biology. 2008, 45: 1016-1026.
    244 Proctor R H, Desjardins A E, Plattner R D, et al. A polyketide synthase gene required for biosynthesis of fumonisin mycotoxins in Gibberella fujikuroi mating population A. Fungal Genetics Biology. 1999,27: 100-112.
    245 Proctor R H, Plattner R D, Brown D W, et al. Discontinuous distribution of fumonisin biosynthetic genes in the Gibberella fujikuroi species complex. Mycological Research. 2004,108:815-822.
    246 Proctor R H, Plattner R D, Desjardins A E, et al. Fumonisin production in the maize pathogen Fusarium verticillioid.es: genetic basis of naturally occuring chemical variation. Journal of Agricultural and Food Chemistry. 2006, 54 (6): 2424-2430.
    247 Radwanski E R, and Last R L. Tryptophan biosynthesis and metabolism: biochemical and molecular genetics. Plant Cell. 1995, 7: 921-934.
    248 Reintanz B, Lehnen M, Reichelt M, et al. bus, a bushy Arabidopsis CYP79F1 knockout mutant with abolished synthesis of short-chain aliphatic glucosinolates. Plant Cell. 2001, 13: 351-367.
    249 Rheeder J P, Marasas W F and Vismer H F. Production of fumonisin analogs by Fusarium species. Applied and Environmental Microbiology. 2002, 68: 2101-2105.
    250 Rheeder J P, Marasas W F O, Thiel P G, et al. Fusarium moniliforme and fumonisins in corn in relation to human oesophageal cancer in Transkei. Phytopathology. 1992. 82: 353-357.
    251 Rheeder J P, Sydenham E W, Marasas W F O, et al. Fungal infestation and mycotoxin contamination of South African commercial maize harvested in 1989-1990. South African Journal of Science. 1995, 91: 127-131.
    252 Rice L G, Ross P F, and Dejong J. Evaluation of a liquid chromatographic method for the determination of fumonisins in corn, poultry feed, and Fusarium culture material. Journal of AOAC International. 1995, 78: 1002-1009.
    253 Riley R T, An N H, Showker J L, et al. Alteration of tissue and serum sphinganine to sphingosine ratio: an early biomarker of exposure to fumonisin-containing feeds in pigs. Toxicology and Applied Pharmacology. 1993, 118: 105-112.
    254 Riley R T, Enongene E, Voss K. A, et al. Sphingolipid perturbations as mechanisms for fumonisin carcinogenesis. Environmental Health Perspectives. 2001, 109 (Suppl. 2): 301-308.
    255 Riley R T, Hinton D M, Chamberlain W J, et al. Dietary fumonisin B_1 induces disruption of sphingolipid metabolism in Sprague-Dawley rats: a new mechanism of nephrotoxicity. Journal of Nutrition. 1994, 124: 594-603.
    256 Ross P F, Nelson P E, Richard J L, et al. Production of fumonisins by Fusarium moniliforme and Fusarium proliferatum isolates associated with equine leukoencephalomalacia and a pulmonary edema syndrome in swine. Applied and Environmental Microbiology. 1990, 56:3225-3226.
    257 Ross P F, Rice L G, Osweiler G D, et al. A review and update of animal toxicoses associated with fumonisin-contaminated feeds and production of fumonisins by Fusarium isolates.Mycopathologia. 1992, 117: 109-114.
    258 Ross P F, Rice L G, Plattner R D, et al. Concentration of fumonisin B_1 in feeds associated with animals problems. Mycopathologica. 1991a, 114: 129-135.
    259 Ross P F, Rice L G, Reagor J C, et al. Fumonisin B_1 concentrations in feeds from 45 confirmed equine leukoencephalomalacia cases. Journal of Veterinary Diagnostic Investigation. 1991b, 3:238-241.
    260 Sagaram U S, and Shim W B. Fusarium veriicillioides GBB1,a gene encoding heterotrimeric G protein P subunit, is associated with fumonisin B_1 biosynthesis and hyphal development but not with fungal virulence. Molecular and Plant Pathology. 2007, 8: 375-384.
    261 Sagaram U S, Butchko R A E, and Shim W B. The putative monomeric G-protein GBP1 is negatively associated with fumonisin B_1 production in Fusarium verticillioides. Molecular and Plant Pathology. 2006, 7: 381-389.
    262 Samapundo S,Devliehgere F,De Meulenaer B,et al.Effect of water activity and temperature on growth and the relationship between fumonisin production and the radial growth of Fusarium verticillioides and Fusarium proliferatum on corn.Journal of Food Protection.2005,68:1054-1059.
    263 S(?)nchez-Rangel D,Anderea S J-B,and Plasencia J.Fumonisin production by Fusarium verticillioides strains isolated from maize in Mexico and development of a polymerase chain reaction to detect potential toxigenic strains in grains.Journal of Agricultural and Food Chemistry.2005,53:8565-8571.
    264 Saunders D S,Meredith F I,and Voss K A.Control of fumonisin:effects of processing,Environmental Health Perspectives.2001,109 (Suppl.2):333-336.
    265 Schmidt R,M(?)ller A,llain R,et al.Transgenic tobacco plants expressing the Arabidopsis thaliana nitrilase Ⅱ enzyme.Plant Journal.1996,9:683-691.
    266 Schuhegger R,Nafisi M,Mansourova M,et al.CYP71B15 (PAD3) catalyzes the final step in camalexin biosynthesis.Plant Physiology.2006,141:1248-1254.
    267 Scott P M,and Lawrence G A.Analysis of beer for fumonisins.Journal of Food Protection.1995,58:1379-1382.
    268 Scott P M,and Lawrence G A.Determination of hydrolyzed fumonisin B_1 in alkali-processed corn foods.Food Additives and contaminants.1996,13:823-832.
    269 Scott P M,Delgado T,Prelusky D B,et al.Determination of fumonisins in milk.Journal of Environmental Science and Health,Part B.1994,29:989-998.
    270 Seefelder W,Gossmann M,and Humpf H-U.Analysis of fumonisin B_1 in Fusarium proliferatum-infected asparagus spears and garlic bulbs from Germany by liquid chromatography-electrospray ionization mass spectrometry.Journal of Agricultural and Food Chemistry.2002.50:2778-2781.
    271 Seefelder W,Humpf H-U,Schwerdt G,et al.Induction of apoptosis in cultured human proximal tubule cells by fumonisins and fumonisin metabolites.Toxicology and Applied Pharmacology.2003,192:146-153.
    272 Sellam A,Dongo A,Guillemette T,et al.Transcriptional responses to exposure to the brassicaceous defence metabolites camalexin and allyl-isothiocyanate in the necrotrophic fungus Alternaria brassicicola.Molecular Plant Pathology,2007b,8:195-208.
    273 Sellam A,lacomi-Vasilescu B,Hudhomme P,et al.In vitro antifungal activity of brassinin,camalexin and two isothiocyanates against the crucifer pathogens Alternaria brassicicola and Alternaria brassicae.Plant Pathology.2007a,56:296-301.
    274 Seo J A,Kim J C,and Lee Y W.Isolation and characterization of two new type C fumonisins produced by Fusariurn oxysporum.Journal of Natural Products.1996,59:1003-1005.
    275 Seo J A,Proctor R H.and Plattner R D.Characterization of four clustered and coregulated genes associated with fumonisin biosynthesis in Fusarium verticillioides.Fungal Genetics and Biology.2001,34:155-165.
    276 Seo J-A,and Lee Y-W.Natural occurrence of the C series of fumonisins in moldy corn.Applied and Environmental Microbiology.1999,65:1331-1334.
    277 Sewram V,Shephard G S,Van der Merwe L,et al.Mycotoxin contamination in the Eastern Cape Province of South Africa.Journal of Agricultural and Food Chemistry.2006,54:5688-5693.
    278 Shao Y,Chin C K,Ho C T,et al.Anti-tumor activity of the crude saponins obtained from asparagus.Cancer Letters.1996,104:31-36.
    279 Shao Y,Poobrasert O,Kennelly E J,et al.Steroidal saponins from Asparagus officinalis and their cytotoxic activity.Planta Medicine.1997,63 258-262.
    280 Shaw G M,Schaffer D,Velie E M,et al.Periconceptional vitamin use,dietary folate,and the occurrence of neural tube defects.Epidemiology.1995,6:219-226.
    281 Shelby R A,White D G,and Burke E M.Differential fumonisin production in maize hybrids.Plant Disease.1994,78:582-584.
    282 Shephard G S,Sydenham E W,Thiel P G,et al.Quantitative determination of furnonisins B_1 and B_2 by high-performance chromatography with fluorescence detection.Journal of Liquid Chromatography.1990,13:2077-2087.
    283 Shephard G S,Thiel P G,Stockenstrom S,et al.Worldwide survey of fumonisin contamination of corn and corn-based products.Journal of AOAC International.1996,79:671-687.
    284 Shephard G S,Wsthuizen L,Gatyeni P M,et al.Do Fumonisin Mycotoxins Occur in Wheat? Journal of Agricultural and Food Chemsitry.2005,53:9293-9296.
    285 Shephard G S.Chromatographic determination of the fumonisin mycotoxins.Journal of Chromatography A.1998,815:31-39.
    286 Shi L,Bielawski J,Mu J,et al.Involvement of sphingoid bases in mediating reactive oxygen intermediate production and programmed cell death in Arabidopsis.Cell Research.2007,17:1030-11040.
    287 Shim W B,and Woloshuk C P.Nitrogen repression of fumonisin B_1 biosynthesis in Gibberella fujikuroi.FEMS Microbiology Letters.1999,177:109-116.
    288 Shim W B,and Woloshuk C P.Regulation of furnonisin B_1 biosynthesis and conidiation in Fusarium verticillioides by a cyclin-like (C-type) gene,FCC1.Applied and Environmental Microbiology.2001,67:1607-1612.
    289 Shim W B,Flaherty J E,and Woloshuk C P.Comparison of fumonisin B_1 biosynthesis in maize germ and degermed kernels by Fusarium verticillioides.Journal of Food Protection.2003,66:2116-2122.
    290 Shroff R,Vergara F,Muck A,et al.Nonuniform distribution of glucosinolates in Arabidopsis thaliana leaves has important consequences for plant defense.PNAS.2008,105:6196-6201.
    291 Skirycz A,Reichelt M,Burow M,et al.DOF transcription factor AtDof1.1 (OBP2) is part of a regulatory network controlling glucosinolate biosynthesis in Arabidopsis.Plant Journal.2006,47:10-24.
    292 Smith J S.and Thakur R A.Occurrence and fate of fumonisins in beef.In:Jackson L S,De Vries J W,and Bullerman L B.Fumonisins in food.New York,Plenum Press.1996,39-56.
    293 Smolen G,and Bender J.Arabidopsis cytochrome P450 cyp83B1 mutations activate the tryptophan biosynthetic pathway.Genetics.2002,160:323-332.
    294 Sohn H-B,Seo J-A,and Lee Y-W.Co-occurrence of Fusarium mycotoxins in mouldy and healthy corn from Korea.Food Additives and Contaminants.1999,16:325-329.
    295 Soledade M,Pedras C,and Okinyo D P O.Remarkable incorporation of the first sulfur containing indole derivative:another piece in the biosynthetic puzzle of crucifer phytoalexins.Organic and Biomolecular Chemistry.2008,5:51-54.
    296 Soriano J M.and Dragacci S.Intake,decontamination and legislation of fumonisins in foods.Food Research International.2004,37:367-374.
    297 Spassieva S D,Markham J E,and Hille J.The plant disease resistance gene Asc-1 prevents disruption of sphingolipid metabolism during AAL-toxin-induced programmed cell death.Plant Journal.2002,32:561-572.
    298 Spotti M,Caloni F,Fracchiolla L,et al.Fumonisin B_1 carry-over into milk in the isolated perfused bovine udder.Veterinary and Human Toxicology.2001,43:109-111.
    299 Stack M E.Analysis of fumonisin B_1 and its hydrolysis products in tortillas.Journal of AOAC International.1998,81:737-740.
    300 Stevens V L.and Tang J.Fumonisin B1-inducecl sphingolipid depletion inhibits vitamin uptake via the glycosylphosphatidylinositol-anchored folate receptor.Journal of Biological Chemistry.1997,272:18020-18025.
    301 Stone J M,Heard J E,Asai T,et al.Simulation of fungal-mediated cell death by fumonisin B_1 and selection of fumonisin B1-resistant (fbr) Arabidopsis mutants.Plant Cell.2000,12:1811-1822.
    302 Stone J M,Liang X,Nekl E R,et al.Arabidopsis AtSPL14,a plant-specific SBP-domain transcription factor,participates in plant development and sensitivity to fumonisin B_1.Plant Journal.2005,41:744-754.
    303 Sydenham E W.Shephard G S,and Thiel P G,et al.Liquid chromatographic determination of fumonisins B_1 B_2 and B_3 in corn:AOAC-IUPAC collaborative study.Journal of AOAC International.1996,79:688-696.
    304 Sydenham E W,Thiel P G,Marasas W F O,et al.Natural occurrence of some Fusarium mycotoxins in corn from low and high esophageal cancer prevalence areas of the Transkei,Southern Africa.Journal of Agricutural and Food Chemestry.1990,38:1900-1903.
    305 Sydenham E W,Van der Westhuizen L,Stockenstrom S,et al.Fumonisin-contaminated maize:physical treatment for the partial decontamination of bulk shipments.Food Additives and Contaminants.1994,11:25-32.
    306 Tantikanjana T,Mikkelsen M D,Hussain M,et al.Functional analysis of the tandem-duplicated P450 genes SPS/BUS/CYP79F1 and CYP79F2 in glucosinolate biosynthesis and plant development by Ds transposition-generated double mutants.Plant Physiology.2004,135:840-848.
    307 Teng C,Dong H,Shi L,et al.Serine palmitoyltransferase,a key enzyme for de novo synthesis of sphingolipids,is essential for male gametophyte development in Arabidopsis.Plant Physiology.2008,146:1322-1332.
    308 Textor S,Bartram S,Kroymann J,et al.Biosynthesis of methionine-derived glucosinolates in Arabidopsis thaliana:recombinant expression and characterization of methylthioalkylmalate synthase,the condensing enzyme of the chain elongation cycle.Planta.2004,218:1026-1035.
    309 Textor S,de Kraker J-W,Hause B,et al.MAM3 catalyzes the formation of all aliphatic glucosinolate chain lengths in Arabidopsis.Plant Physiology.2007,144:60-71.
    310 Thakur R A,and Smith J S.Determination of fumonisins B_1 and B_2 and their major hydrolysis products in corn,feed,and meat,using HPLC.Journal of Agricultural and Food Chemistry.1996,44:1047-1052.
    311 Thiel P G,Marasas W F O,Sydenham E W,et al.Survey of Fumonisin production by Fusarium Species.Applied and Environmental Microbiology.1991,57 (4):1089-1093.
    312 Thiel P G,Marasas W F O,Sydenham E W,et al.The implications of naturally occurring levels of fumonisins in corn for humanand animal health.Mycopathologia.1992,117:3-9.
    313 Tierens K F M J,Thomma B P H J,Brouwer M,et al.Study of the role of antirnicrobial glucosinolate-derived isothiocyanates in resistance of Arabidopsis to microbial pathagens.Plant Physiology.2001,125:1688-1699.
    314 Torres M R,Sanchis V,and Ramos V.Occurrence of fumonisins in Spanish beers analyzed by an enzyme-linked immunosorbent assay method.International Journal of Food Microbiology.1998,39:139-143.
    315 Trucksess M W,and Scott P M.Mycotoxins in botanicals and dried fruits:A review.Food Additives and Contaminants,2008;25 (2):181-192.
    316 Tsegaye Y,Richardson C G,Bravo J E,et al.Arabidopsis mutants lacking long chain base phosphate lyase are fumonisin-sensitive and accumulate trihydroxy-18:1 long chain base phosphate.Journal of Biological Chemistry.2007,282 (38):28195-28206.
    317 Ueno Y,lijima K,Wang S D,et al.Fumonisins as a possible contributory risk factor for promary liver cancer:A 3-year study of corn harvested in Haimen,China,by HPLC and ELSA.Food and chemical toxicology.1997,35:1143-1150.
    318 Villa P,Kaufmann S H,and Earnshaw W C.Caspases and caspase inhibitors.Trends in Biochemical Sciences.1997,22:388-393.
    319 Visconti A.Fumonisin in maize genotypes grown in various geographic areas.In Jackson L S,De Vries J W,and Bullerman L B.Fumonisins in food.New York,Plenum Press.1996,193-204.
    320 Vorwerk S,Biernacki S,Hillebrand H,et al.Enzymatic characterization of the recombinant Arabidopsis thaliana nitrilase subfamily encoded by the NIT2/NIT1/NIT3-gene cluster.Planta.2001,212:508-516.
    321 Voss K A,Meredith F I,and Bacon C W.Effect of baking and Frying on the in vivo toxicity to rats of cornmeal containing fumonisins.Journal of Agricultural and Food Chemistry.2003,51:5546-5551.
    322 Vudathala D K, Prelusky D B, Ayround M, et al. Pharmacokinetic fate and pathological effects of C-fumonisin B_1 in laying hens. Natural Toxins. 1994, 2: 81-88.
    323 Wang E, Norred W P, Bacon C W, et al. Inhibition of sphingolipid biosynthesis by fumonisins.Implications for diseases associated with Fusarium moniliforme. Journal of Biological Chemistry. 1991,266: 14486-14490.
    324 Wang E, Ross P F, Wilson T M, et al. Increases in serum sphingosine and sphinganine and decreases in complex sphingolipids in ponies given feed containing fumonisins, mycotoxins produced by Fusarium moniliforme. Journal of Nutrition. 1992, 122: 1706-1716.
    325 Wang H, Wei H, Ma J, et al. The fumonisin B_1 content in corn from North China, a high-risk area of oesophageal cancer. Journal of Environmental Pathology Toxicology and Oncology.2000, 19: 139-141.
    326 Wang Q M, Wang J S, Yu F G, et al. Mycotoxin fumonisins: health impacts and biosynthetic mechanism. Progress in Natural Science. 2006, 16(1): 7-15.
    327 Warfield C Y and Gilchrist D G. Influence of kernel age on fumonisin B_1 production in maize by Fusarium moniliforme. Applied and Environmental Microbiology. 1999, 65: 2853-2856.
    328 Warren H L. Comparison of normal and high-lysine maize inbreds for resistance to Fusarium moniliforme. Phytopathology. 1978,68: 1331-1335.
    329 Watanabe N, and Lam E. Arabidopsis Bax inhibitor-1 functions as an attenuator of biotic and abiotic types of cell death. Plant Journal. 2006, 45 (6): 884-894.
    330 Wattenberg E V, Badria F A, and Shier W T. Activation of mitogen-activated protein kinase by the carcinogenic mycotoxin fumonisin B|. Biochemical and Biophysical Research Communications. 1996, 227: 622-627.
    331 Webber Z, Kostecki M, von Bargen S, et al. Fusarium species colonizing spears and forming mycotoxins in field samples of asparagus from Germany and Poland. Journal of Phytopathology. 2006, 154: 209-216.
    332 Weidenborner M. Foods and fumonisins. European Food Research and Technology, 2001: 212:262-273.
    333 Wilkes J G, Sutherland J B, Churchwell M 1, et al. Determination of fumonisins B_1 ,B_2, B_3, B_4 by high performance liquid chromatography with evaporative light scattering detection.Journal of Chromatography A. 1995,695: 319-323.
    334 Williams L D, Glenn A E, Bacon C W, et al. Fumonisin production and bioavailability to maize seedlings grown from seeds inoculated with Fusurium verticillioides and grown in natural soils. Journal of Agricultural and Food Chemistry. 2006, 54: 5694-5700.
    335 Williams L D, Glenn A E, Zimeri A M, et al. Fumonisin disruption of ceramide biosynthesis in maize roots and the effects on plant development and Fusarium verticillioides-induced seedling disease. Journal of Agricultural and Food Chemistry. 2007, 55: 2937-2946.
    336 Williams L D, Meredith F 1, and Riley R T. Fumonisin-ortho-phthalaldehyde derivative is stabilized at low temperature. Journal of Chromalography B. 2004, 806: 311-314.
    337 Wilson T M, Ross P F, Rice L G, et al. Fumonisin B_1 levels associated with an epizootic of equine leukoencephalomalacia. Journal of Veterinary Diagnostic Investigation. 1990, 2:213-216.
    338 Winter C K, Gilchrist D G, Dickman M B, el al. Chemistry and biological activity of AAL toxins. Advances in Experimental Medicine and Biology. 1996, 392: 307-316.
    339 Wittstock U, and Halkier B A. Cytochrome P450 CYP79A2 from Arabidopsis thaliana L. catalyzes the conversion of L-phenylalanine to phenylacetaldoxime in the biosynthesis of benzylglucosinolate. Journal of Biological Chemistry. 2000, 275: 14659-14666.
    340 Wittstock U, Kliebenstein D J, Lambrix V, et al. Glucosinolate hydrolysis and its impact on generalist and specialist insect herbivores. In: .JT Romeo (ed). Integrative Phytochemistry:From Ethnobotany to Molecular Ecology, Vol. 37. Elsevier, Amsterdam. 2003, pp: 101-125.
    341 World-Health-Organization (WHO). Fumonisins Safty Evaluation of certain mycotoxins in food. In: Filly-sixth report of the Joint FAO/WHO Expert Committee on Food Additives (JECFA). WHO Technical Report. 2002, 906: 16-27.
    342 Worrall D,Ng C K,and Hetherington A M.Sphingolipids,new players in plant signaling.Trends in Plant Science.2003,8 (7):317-20.
    343 Xu,L,and Du L.Direct detection and quantification of Alternaria alternate lycopersici toxins using high-performance liquid chromatography-evaporative light-scattering detection.Journal of Microbiological Methods.2006,64,398-405.
    344 Yeung J M,Wang H Y,and Prelusky D B.Fumonisin B_1 induces protein kinase C translocation via direct interaction with diacylglycerol binding site.Toxicology and Applied Pharmacology.1996,141:178-184.
    345 Yi H,Bojja R S,Fu J,et al.Direct evidence for the function of FUM13 in 3-ketoreduction of mycotoxin fumonisins in Fusarium verticillioides.Journal of Agricultural and Food Chemistry.2005,53:5456-5460.
    346 Yin J J,Smith M J,Eppley R M,et al.Effects of fumonisin B_1 on lipid peroxidation in membranes.Biochimica et BiophysicaActa.1998,1371:134-142.
    347 Yoo H S,Norred W P,Wang E,et al.Fumonisin inhibition of de novo sphingolipid biosynthesis and cytotoxicity are correlated in LLC-PK1 cells.Toxicology and Applied Pharmacology.1992,114:9-15.
    348 Yoshizawa T,Yamashita A,and Luo Y.Fumonisin occurrence in corn from high-and low-risk areas for human esophageal cancer in China.Applied and Environmental Microbiology.1994,60:1626-1629.
    349 Zabala Mde T,Grant M,Bones A M,et al.Characterisation of recombinant epithiospecifier protein and its over-expression in Arabidopsis thaliana.Phytochemistry.2005,66:859-867.
    350 Zaleta-Rivera K,Xu C,Yu F,et al.A bidomain nonribosomal peptide synthetase encoded by FUM14 catalyzes the formation of tricarballylic esters in the biosynthesis of fumonisins.Biochemistry.45:2561-2569.
    351 Zhang Z,Ober J A,and Kliebenstein D J.The gene controlling the quantitative trait locus EPITHIOSPECIFIER MODIFIERI alters glucosinolate hydrolysis and insect resistance in Arabidopsis.Plant Cell.2006,18:1524-1536.
    352 Zhao Y,Christensen S K,Fankhauser C,et al.A role for flavin monooxygenase-like enzymes in auxin biosynthesis.Science.2001,291:306-309.
    353 Zhao Y,Hull A K,Gupta N R,et al.Trp-dependent auxin biosynthesis in Arabidopsis:involvement of cytochrome P450s CYP72B2 and CYP79B3.Genes and Development.2002,16:3100-3112.
    354 Zhu X C,Vogeler C,and Du L.Functional complementation of fumonisin biosynthesis in FUM1-disrupted Fusarium verticillioides by the AAL-Toxin polyketide synthase gene ALT1 from Alternaria alternata f.sp.Lycopersici.2008,71:957-960.
    355 陈鸿逵和王拱辰.浙江镰刀菌志.浙江科技出版社.1992.
    356 陈亚州和阎秀峰.芥子油苷在植物-生物环境关系中的作用.生态学报.2007,27:2584-2593.
    357 丁志宽,钱爱林,杨秋萍等.芦笋主要灾害性病害及其综合控制技术.植物医生.2000,13(4):23-24.
    358 宫慧芝,那磊,李岩溪等.玉米中伏马菌素B_1高效液相色谱检测.中国公共卫生.2008,24(3):381-382.
    359 郭云昌,刘秀梅和刘江.伏马菌素B_1免疫检测方法的研究.卫生研究.1999,28 (4):238-240.
    360 何树森,辛又川,刘金秀等.四川省部分主粮中霉菌及其毒素污染状况调查.预防医学情报杂志.1999,15(4):199-201.
    361 何祖法.芦笋常见病害的发生与防治.农业科技通讯.2000,11:28.
    362 胡文权和经虹.琐谈“芦笋”.蔬菜.2002,10:41-42.
    363 李超,伏盛博,刘华玲等.细胞凋亡研究进展.世界科技研究与发展.2007,29(3):45-53.
    364 廖兴广,张秀丽,王爱月等.河南省粮食中伏马菌素、杂色曲霉素和烟曲霉震颤素污染状 况研究.1999,18:46-47.
    365 刘承兰.镰刀菌侵染对芦笋产品中伏马菌素B_1,B_2污染的影响及芦笋中农药残留分析.博士学位论文,北京:中国农业大学.2005.
    366 刘江,邱茂峰,刘秀梅等.高效液相色谱法测定玉米中伏马菌素B_1.中华预防医学杂志.1999,33(6):373-374.
    367 刘秀梅,王晓英,邱茂锋等.串珠镰刀菌伏马菌素产毒基因及毒力的测定.中华预防医学杂志.2005,39(4):249-252.
    368 孙姝兰和左建儒.拟南芥抗凋亡突变体fbr136的分离鉴定与分析.生物化学与生物物理进展.2008,35(3):283-289.
    369 孙武长,刘桂华,黄美子等.串珠镰刀菌及腐马素在吉林省主要粮食中的生态学分布调查.中国卫生检验杂志.2003,13(1):80.
    370 汪俏梅,王建升,余凤安等.真菌毒素腐马素对健康的影响及其生物合成机理.自然科学进展.2006,16(2):190-197.
    371 汪俏梅和曹家树.芥子油苷研究进展及其在蔬菜育种上的应用前景.园艺学报.2001,28:669-675.
    372 王拱辰,郑重,叶琪明等.常见镰刀菌鉴定指南.中国农业科技出版社.1996.
    373 王海涛,魏慧娟,马吉林等.食管癌高发区玉米中伏马菌素B_1的检测.肿瘤防治研究.1999,26(3):168-170.
    374 王连平,梁训义,陶荣祥等.国外芦笋品种在浙江的适应性表现.浙江农业学报.2004,16(2):68-71.
    375 王颖,朱彤霞.HPLC法检测食管癌高发区林县井头村玉米中的腐马素B1(FB_1).中国农业大学学报.2002,7(1):9-13.
    376 王颖,朱彤霞.食管癌高发区林县井头村玉米样品的真菌区系分析.中国农业大学学报.2002,7(1):5-8.
    377 王志刚,高雯洁,李秀芳等.粮食中伏马菌素污染及产生源相关性研究.中国卫生检验杂志.2001,11(1):9-12.
    378 王志刚,刘秀梅,丛黎明等.串珠镰刀菌产伏马菌素和二相性真菌特性.中华预防医学杂志.2000,34(1):44-46.
    379 颜燕,张玉琴和李瑞英.山东省主粮中伏马菌素污染状况及其产毒真菌产毒能力观察.中国公共卫生.1999,15(5):201-202.
    380 余蓉,陈大义和刘蓉.部分市售粮食中伏马素污染状况调查.预防医学情报杂志.1999,15(2):80-81.
    381 张海峰,袁晶和汪俏梅.植物激素与芥子油苷在生物合成上的相互作用.细胞生物学杂志.2005,27:423-426.
    382 张海峰.芥蓝芥子油苷组分及其醌还原酶诱导活性和抗虫性分析.硕士学位论文.杭州:浙江大学.2005.
    383 张宏宇.我国六省玉米中伏马菌素B_1的污染水平调查.硕士学位论文.沈阳:中国医科大学.2007.
    384 张向民.镰刀菌属分类学研究历史与现状.菌物系统.2005,3(2):59-62.
    385 张志良和瞿伟菁.植物生理学实验指导.高等教育出版社.2004.
    386 章红.食管癌高发区伏马菌素含量的检测.卫生研究.1998,27:22.
    387 钟海秀,陈亚州和阎秀峰.植物芥子油苷代谢及其转移.生物技术通报.2007,3:44-48.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700