胰高血糖素样肽-2与断奶仔猪肠道发育、适应的关系及作用机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
胰高血糖素样肽-2(Glucagon-like Peptide-2,GLP-2)通过促进小鼠、大鼠、胎猪、新生仔猪等动物的肠上皮细胞增殖、抑制细胞凋亡而影响肠黏膜发育、调节肠道营养、免疫功能已得到众多营养学家的认同,但能否影响断奶仔猪的肠道适应,对具有快速更新特点的断奶仔猪肠上皮细胞的作用效果尚不得而知。为回答这个问题,本研究采用以下几个实验来探讨GLP-2与断奶仔猪肠道发育的关系及对肠上皮细胞增殖、代谢、凋亡的作用特点,为进一步直接采用动物试验研究GLP-2对仔猪断奶应激综合征的调节及作用机理提供理论和试验依据。
     试验1不同基因型仔猪断奶前后GLP-2的分泌规律及与肠道发育的关系
     本试验通过考察太湖猪、大×太二杂猪和长白仔猪断奶前后GLP-2的分泌规律、肠道发育状况的差异,初步探讨具有不同生长速度仔猪的GLP-2分泌水平的高低及与肠道发育的关系。试验选择1日龄健康正常的太湖猪、大×太二杂猪和长白猪各20头,将每个不同基因型猪作为一个处理,每个处理5个重复,每个重复4头猪,仔猪饲养于环控实验室,25日龄断奶,分别于仔猪24、26和30日龄时每个重复选取一头接近平均体重的仔猪前腔静脉采血测定GLP-2浓度,并于30日龄时屠宰仔猪测定肠道发育参数,并分析30日龄小肠绒毛高度与24日龄、26日龄、30日龄血清GLP-2浓度的关系。试验结果如下:仔猪30日龄时,大×太猪小肠长、小肠相对长、小肠相对重都显著高于长白猪(P<0.05),太湖猪小肠相对重显著高于长白猪(P<0.05),而小肠相对长极显著高于长白猪(P<0.01);30同龄时,大×太猪小肠绒毛高度高于长白猪和太湖猪(P>0.05),且血清GLP-2含量极显著高于长白猪和太湖猪(P<0.01);24日龄和26日龄时,大×太猪血清GLP-2含量极显著高于太湖猪(P<0.01);26日龄时,大×太猪血清GLP-2含量显著高于长白猪(P<0.05);30日龄小肠绒毛高度与各猪种血清GLP-2含量达极显著相关水平(P<0.01)。研究结果表明,不同基因型仔猪断奶后GLP-2的活性逐渐升高,大×太猪GLP-2变化幅度最大,30日龄时其活性最高,肠道发育状况优于太湖猪和长白猪;三种猪30日龄血清GLP-2含量与30日龄小肠绒毛高度极显著相关。研究结果提示我们,选择大×太猪或其肠上皮细胞作为研究GLP-2调节仔猪断奶前后的肠道适应及可能的作用机理是可行的。
     在证实不同基因型仔猪断奶前后GLP-2的分泌水平及活性逐渐升高,而仔猪肠绒毛高度与循环中GLP-2浓度高度相关的基础上,课题组进一步研究了GLP-2对大×太断奶仔猪肠黏膜上皮细胞的营养效应(试验2),研究发现GLP-2可以剂量依赖性地促进体外培养的28d断奶仔猪小肠黏膜上皮细胞增殖,抑制细胞凋亡,维持细胞形态和功能的完整性,课题组随即进行了下列研究。
     试验3 GLP-2和DPP-Ⅳ抑制剂联合使用对对断奶仔猪肠上皮细胞的影响
     本试验旨在研究不同浓度的胰高血糖素样肽-2(GLP-2)和二肽基肽酶Ⅳ(DPP-Ⅳ)抑制剂(KR62436)联合使用对体外原代培养的28日龄断奶仔猪肠上皮细胞增殖、代谢及相关酶活力的影响。试验以体外培养的28日龄断奶仔猪回肠上皮细胞作为模型,首先采用单因子试验设计探讨不同浓度的KR62436对细胞增殖及代谢的影响;然后采用2×3因子设计,考察添加不同浓度hGLP-2(1×10~(-10)、1×10~(-9)、1×10~(-8) mol/L)和KR62436(0和1×10~(-11)mol/L)对细胞增殖、代谢及凋亡的影响,细胞培养时间共计144h。结果如下:单独添加KR62436,在倒置显微镜下观察发现细胞无明显变化,细胞数量虽有上升的趋势,但细胞MTT OD值、细胞沉积蛋白量、细胞总蛋白量呈现先增加后下降趋势(P>0.05),胞外LDH、CK活力在KR62436低剂量时呈降低趋势(P>0.05),但当其浓度较高时,细胞MTT OD值显著低于对照组(P<0.05),其胞外LDH、CK活力显著高于对照组(P<0.05),Na~+,K~+-ATP酶活力变化不明显;在培养液中同时添加KR62436和hGLP-2,随着hGLP-2浓度的增加,细胞数量极显著上升(P<0.01),MTT OD值极显著增加(P<0.01),细胞蛋白沉积量极显著增加(P<0.01),细胞总蛋白含量极显著增加(P<0.01),胞外LDH、CK活力显著降低(P<0.05),Na~+,K~+-ATP酶活力极显著增加(P<0.01)。试验结果提示我们:低浓度DPP-Ⅳ抑制剂对细胞生长的影响不显著,高浓度抑制剂虽能促进仔猪肠上皮细胞的增殖,但对细胞的代谢和完整性有负面效应;在培养液中添加DPP-Ⅳ抑制剂能够增强外源GLP-2对细胞增殖、代谢和细胞完整性的影响,两者具有明显的协同效应。试验结果提示我们应用KR62436来提高GLP-2的作用效果要慎重。
     试验4 GLP-2对β-伴球蛋白损伤的28日龄断奶仔猪肠上皮细胞的保护、修复作用
     本试验主要考察GLP-2对28日龄断奶的大×太仔猪的肠上皮细胞被β-伴球蛋白损伤后存活、增殖、代谢、凋(死)亡的影响及可能的作用机理。试验首先采用单因子设计,分别用1.2mg/ml和2.4mg/ml的β-伴球蛋白对原代培养的断奶仔猪肠上皮细胞进行攻毒,通过考察对细胞存活、增殖、代谢及凋亡的影响而建立细胞损伤模型;然后再采用2×3因子设计,考察添加不同浓度的hGLP-2(1×10~(-9)、1×10~(-8)、1×10~(-7)mol/l)对致敏的培养细胞的影响。试验结果如下:使用β-伴球蛋白提取物攻毒,细胞MTTOD值显著降低(P<0.05),细胞蛋白质沉积量和细胞消耗蛋白量极显著降低(P<0.01),胞外LDH活力极显著增加(P<0.01),Na~+,K~+-ATP酶活力显著(P<0.05)或者极显著(P<0.01)降低,Caspase-3酶活力极显著(P<0.01)升高;使用β-伴球蛋白攻毒的同时添加不同浓度的hGLP-2,细胞MTT OD值、细胞蛋白质沉积量、细胞消耗蛋白量和Na~+,K~+-ATP酶活力均显著或极显著(P<0.05或0.01)升高,且随着hGLP-2浓度的增加而升高,而胞外LDH活力则随着hGLP-2浓度的增加而逐渐下降(P<0.05或0.01),Caspase-3酶活力极显著(P<0.01)降低。研究结果表明β-伴球蛋白对断奶仔猪小肠上皮细胞的增殖和细胞完整性有不利影响,而GLP-2能够减轻或者避免β-伴球蛋白对断奶仔猪小肠上皮细胞的增殖和细胞完整性的不利影响,这种效应可能是通过调节细胞Caspase-3的活力而实现的。
     综上所述,GLP-2可影响断奶仔猪肠粘膜的发育,仔猪肠绒毛高度与GLP-2的分泌变化高度相关;GLP-2在体外可促进断奶仔猪肠上皮细胞增殖,抑制细胞凋(死)亡,这种效应具有明显的剂量依赖关系;使用DPP-Ⅳ抑制剂(KR62436)可以进一步提高GLP-2的作用效果,两者具有明显的协同效应,但单独使用KR62436可能会造成细胞完整性损伤;β-伴球蛋白对断奶仔猪小肠上皮细胞的增殖和细胞完整性有不利影响,而GLP-2能够通过细胞保护作用减轻或者避免β-伴球蛋白对断奶仔猪小肠上皮细胞的增殖和细胞凋亡的不利影响。研究结果为我们进一步探讨GLP-2对断奶仔猪的肠道适应的直接影响及相应的作用机理提高了有力支持,为使用GLP-2调节仔猪断奶应激提供了一个新思路。
Although most nutritionists acknowledge that Glucagon-like Peptide-2 affects intestinal mucosa development,regulates small intestinal adaptation and immune function by promoting proliferation and inhibiting apoptosis of intestinal enterocyte cells such as mice,rats,fetal pigs and neonatal piglets,it is not clear yet whether GLP-2 can regulate the intestinal adaptation of weaned piglets or not and what are the operative properties of GLP-2 function on the intestinal enterocyte cells of weaned piglets with the features of rapid renewal.To anwer this question,the study used 4 series experiments to explore the effects of GLP-2 on the intestinal growth of weaned piglets and the operative properties of GLP-2 function on proliferation,metabolism and apoptosis of weaned piglets' intestinal enterocyte cells,which will provide theoretical and experimental basis for further studying regulation and mechanism of GLP-2 on weanling stress by using weaned piglets in situ.
     Exp.1 The relationship between GLP-2's secretion and intestinal growth of different genotypes piglets
     The experiment preliminarily studied the relationship between GLP-2's secretion and intestinal growth of piglets with different growth rate by studying GLP-2 secretion rule and intestinal growth parameters of piglets with different genotypes during weaning.1-d old healthy piglets(20 MeiShan Pigs,20 Yorkshire×MeiShan Pigs and 20 Landraee), were assigned to three treatments with five replicates and four piglets per replicate according to Single-factor design principle.The piglets were fed in environment control laboratory and weaned on the 25~(th) day.Blood samples from 24-d,26-d and 30-d old piglets close to average weight in each replicate were collected through precaval vein for the determination of GLP-2 concentration.30-d old piglets were slaughtered for measuring intestinal growth parameters and investigating the relationship between the height of intestinal villis of 30-d piglets and serum GLP-2 concentrations of 24-d,26-d and 30-d old piglets.The results were as follows:at 30-d old,the length and the intestines length index of the Yorkshire×MeiShan Pig were longer than that of Landrace(P<0.05) and the intestines weight index also outweighed that of Landraee(P<0.05);the intestines weight index of the MeiShan Pig outweighed that of Landrace(P<0.05) and the intestines length index was also longer than that of Landrace(P<0.01).In addition,at 30-d old,the height of intestinal villis of Yorkshire×MeiShan Pigs was highter than that of Landrace and MeiShan Pig(P>0.05) and the serum GLP-2 content was higher than Landrace and MeiShan Pig(P<0.01);at 24-d old and at 26-d old,the serum GLP-2 content of Yorkshire×MeiShan Pigs was higher than MeiShan Pig(P<0.01);at 26-d old,the serum GLP-2 content of Yorkshire×MeiShan Pigs was higher than Landrace(P<0.05). Furthermore,at 30-d old,there was a significant correlation between the height of intestinal villis and serum GLP-2 content of different genotypes(P<0.01).The study showed that GLP-2 activity of piglets with different genotypes increased gradually after weaning.Yorkshire×MeiShan Pigs had the largest change range and reached the highest activity at 30-d old,with intestinal growth superior to MeiShan Pigs and Landrace.Serum GLP-2 content of the three 30-d old genotypes was significantly correlated with the height of intestinal villis at 30-d old.The experimental results suggest that it is a feasible approach to select the Yorkshire×MeiShan Pig or its intestinal enterocyte cells as model to study GLP-2's possible mechanism and its regulation on the intestinal adaptation of piglets during weaning.
     After the confirmation that the secretion level and activity of GLP-2 in different genotypes piglets during weaning increased gradually,and that the height of intestinal villis was significantly correlated with serum GLP-2 concentration in circulation,the studying team further studied nutritional effects of GLP-2 on intestinal enterocyte cells of Yorkshire×MeiShan Pigs(Exp.2).The results indicated that GLP-2 in vitro was capable of promoting the proliferation of intestinal enterocyte cells of 28-d old weaned piglets, inhibiting cell apoptosis and maintaining the integrity of cell morphology and function.On this ground,the studying team made the following studies.
     Exp.3 Effects of the combined use of Glucagon-like peptide-2 and dipeptidyl peptidase-ⅣInhibitors on Intestinal Enterocyte Cells of Weaned Piglets in Vitro
     This study was conducted to investigate in vitro the effects of the combined use of Glucagon-like peptide-2(GLP-2) and dipeptidyl peptidase-Ⅳ(DPP-Ⅳ) inhibitors with different concentrations on cell proliferation,metabolism and enzyme activity of 28-d old weaned piglets' intestinal enterocyte cells.The experiment,taking in vitro 28-d old weaned piglets' intestinal enterocyte cells as model,studied effects of DPP-Ⅳ(KR62436) inhibitors with different concentrations on the cell proliferation and metabolism according to the single-factor design principle.The method of 2×3 factorial design was adopted to study effects of the combined use of different GLP-2 concentrations(1×10~(-10),1×10~(-9) and 1×10~(-8) mol/L) and different KR62436 concentrations(0 and 1×10~(-11) mol/L) on cell proliferation,metabolism and apoptosis,with cell culture time 144h.The results were as follows:with the single use of DPP-Ⅳinhibitors,there was no significant change in cell under the observation of inverted microscope;although the cell quantity presented an increasing trend,MTT OD,protein retention and protein consumption firstly increased and then decreased(P>0.05).LDH activity and CK activity presented a decreasing trend with low dosage of KR62436(P>0.05).With higher concentration of KR62436,MTT OD value was signigicantly lower than control groups(P<0.05),LDH activity and CK activity were signigicantly higher(P<0.05),but Na~+,K~+-ATP enzyme activity changed insignificantly. When GLP-2 and KR62436 were both added into the cultura media,with the increasing of hGLP-2 concentrations,cell quantity increased signigicantly(P<0.01),MTT OD value increased signigicantly(P<0.01),total protein content and protein retention increased signigicantly(P<0.01),and Na~+,K~+-ATP enzyme activity increased signigicantly(P<0.01) but LDH activity and CK activity decreased signigicantly(P<0.01).The results indicated that DPP-Ⅳinhibitors with a lower concentration had insignificant effects on cell growth. Although the DPP-Ⅳinhibitor with a higher concentration promoted the proliferation of intestinal enterocyte cells,it had negative effects on cell metabolism and cell integrality. The addition of DPP-Ⅳinhibitors in the culture media enhanced the effects of in vitro GLP-2 on cell proliferation,cell metabolism and cell integrality.GLP-2 and DPP-Ⅳinhibitors had significant synergistic effect.The experimental results suggested that KR62436 should be cautiously used to promote GLP-2 effects.
     Exp.4 Cytoprotection and repairing effects of GLP-2 on Intestinal Enterocyte Cells of 28-d Weaned Piglets following Injury byβ-conglycinin
     The experiment was conducted to study the effects of hGLP-2 on survival, proliferation,metabolism and apoptosis of intestinal enterocyte cell in 28-day-old weaned piglets after injury byβ-conglycinin and GLP-2's possible mechanism.According to Single-factor design principle,differentβ-conglycinin concentrations of 1.2mg/ml and 2.4mg/ml were used for conteracting toxic substances to primary culture enterocyte cells of weaned piglets.The cell damage model was established on the investigation of the cell survival,proliferation,metabolism and apoptosis.The experiment of 2×3 factorial design was adopted to study the impacts of the sensitized cultured cell with different hGLP-2 concentrations of 1×10~(-9),1×10~(-8) and 1×10~(-7)mol/l.The results were as follows:when β-conglycinin were used for counteracting toxic substances,the MTT OD significantly decreased(P<0.05),especially protein retention and protein consumption extremely significantly decreased(P<0.01),Na~+,K~+-ATP enzyme activity significantly decreased (P<0.05),LDH activity and Caspase-3 significantly increased(P<0.01).Whenβ-conglycinin were used for conteracting toxic substances after addition of hGLP-2,the MTT OD,protein retention and protein consumption and Na~+,K~+-ATP enzyme activity significantly(P<0.05).LDH activity gradually decreased(P<0.05) and Caspase-3 extremely significantly decreased(P<0.01) along with the increase of hGLP-2 concentration.The results indicated thatβ-conglycinin had adverse effects on intestinal enterocyte cell proliferation and cell integrality in vitro.GLP-2 could relieve or avoid the adverse effects on intestinal enterocyte cell proliferation and cell integrality by regulating the Caspase-3 activity.
     To summarize,GLP-2 has effects on intestinal development of weaned piglets,and the height of intestinal villis is highly correlated with GLP-2 secretion levels.GLP-2 in vitro is capable of promoting the proliferation of the intestinal enterocyte cells and inhibiting their apoptosis in a dose-dependent manner.Although the single use of KR62436 may impair cell integrity,the addition of DPP-IV inhibitors enhances GLP-2 effects,which indicates that the combination of DPP-Ⅳinhibitors and GLP-2 has good synergistic effect,β-conglycinin extracts had adverse effects on proliferation and integrality of intestinal enterocyte cells.GLP-2 could relieve or avoid the adverse effects on intestinal enterocyte cell proliferation and cell apoptosis by protecting cells.The experimental results effectively support the further research and related work on in situ effects of GLP-2 on intestinal adaptation and acting mechanism of weaned piglets,and provide a fresh thinking on how to use GLP-2 to regulate weanling stress as well.
引文
[1]顾景范,杜寿玢,查良锭等.现代临床营养学.北京,科学出版社,2003.
    [2]蒋未明,吴蔚然.肠内营养.北京,人民卫生出版社,2002:429-434;
    [3]李德发.猪的营养(第二版).北京,中国农业科学技术出版社,2003:16-21;246-248;
    [4]金惠铭,卢建,殷莲华.细胞分子病理生理学.郑州,郑州大学出版社,2002:397-415;
    [5]郑世民,范春玲.动物病理生理学.哈尔滨,黑龙江教育出版社,2007:37-45;158-167:
    [6]Washizawa N.,L.H.Gu,L.Gu,et al.Comparative Effects of Glucagon-Like Peptide-2(GLP-2),Growth Hormone(GH),and Keratinocyte Growth Factor(KGF) on Markers of Gut Adaptation After Massive Small Bowel Resection in Rats.JPEN-J Parenter Enter.Nutr.,2004,28:399-409.
    [7]Murphy,K.G.,S.R.Bloom.Gut hormones and the regulation of energy homeostasis.Nature (London).2006,444:7121,854-859.
    [8]Drucker D.J.,P.Ehrlich,S.L.Asa.et al.Induction of intestinal epithelial proliferation by glucagonlike peptide 2.Proc Natl Acad Sci USA,1996,93:7911-7916.
    [9]Pedersen N.B.,K.R.Hjollund,A.H.Johnsen.et al.Porcine glucagon-like peptide-2:Structure,signaling,metabolism and effects.Regulatory Peptides,2008,146:310-320.
    [10]Lovshin J.,B.Yusta,I.Iliopoulos.et al.Ontogeny of the Glucagon-Like Peptide-2 Receptor Axis in the Developing Rat Intestine.Endocrinology,2000,141:4194-4201.
    [11]Hoyt E.C.,P.K.Lund,D.E.Winesett,et al.Effects of fasting,refeeding,and intraluminal trilyceride on proglucagon expression in jejunum and ileum.Diabetes.1996,45:434-439.
    [12]Brubaker P.L.and D.J.Drucker.Minireview:Glucagon-Like Peptides Regulate Cell Proliferation and Apoptosis in the Pancreas,Gut,and Central Nervous System.Endocrinology,2004,145:2653-2659.
    [13]Xiao Q.,R.P.Bousbey,D.J.Drucker.et al.Scretion of the intestinotrophic hormone glucagon-like peptide 2 is diferentially regulated by nutrients in humans.Gastroenterology,1999,117:99-105.
    [14]Unger R.H.,A.Ohneda,I.Valverde,A.M.Eisentraut and J.Exton.Characterization of the responses of circulating glucagon-like immunoreactivity to intraduodenal and intravenous administration of glucose.J Clin Invest.1968,47:48-65.
    [15]Ulshen M.H.,C.R.Fuller,M.A.Ghatei,et al.Increased ileal proglucagon expression after jejunectomy is not suppressed by inhibition of bowel growth.Dig Dis Sci.,1996.41:677-683.
    [16]Taylor RG B.D.,P.J.Fuller,et al.Expression of ileal glucagon and peptide tyrosine-tyrosine genes.Response to inhibition of polyamine synthesis in the presence of massive small-bowel resection..Biocbem J.1992.286:737-741.
    [17]Fuller P.J.,B.D.,K.G.Taylor,Ileal proglucagon gene expression in the rat:characterization in intestinal adaptation using in situ hybridization..Gastroenterolohy.,1993.104:459-66.
    [18]Thulesen J.,L.B.Knudsen,B.Hartmann,et al.Tbe truncated metabolite GLP-2(3-33) interacts with the GLP-2 receptor as a partial agonist.Regul.Pept.,2002,103:9-15.
    [19]Hansen L.,K.J.Hare,B.Hartmann,et al.Metabolism of glucagon-like peptide-2 in pigs:Role of dipeptidyl peptidase Ⅳ.Regulatory Peptides.2007,138:126-132.
    [20]Hartmann B.,J.Thulesen,H.Kissow,et al.Dipeptidyl peptidase Ⅳ inhibition enhances the intestinotrophic effect of glucagon-like peptide-2 in rats and mice.Endocrinology,2000a,141:4013-4020.
    [21]Aertgeerts K.,S.Ye,M.G.Tennant,et al.Crystal structure of human dipeptidyl peptidase Ⅳ in complex with a decapeptide reveals details on substrate specificity and tetrahedral intermediate formation.Protein Science,2004,13(2):412-421.
    [22]Jillian L.,P.Dunphy.m RNA levels of dipeptidyl peptidase Ⅳ decrease during intestinal adaptation.Journalof Surgical Research,1999,87:130-133.
    [23]Brubaker P.L.,A.Crivici,A.Izzo,et al.Circulating and tissue forms of the intestinal growth factor,glucagon-like peptide-2.Endocrinology,1997,138:4837-4843.
    [24]Tsai C.H.,M.Hill,D.J.Drucker.Biological determinants of intestinotrophic properties of GLP-2 in vivo.American Journal of Physiolgy Gastrointestinal and Liver Physiolgy,1997,272:662-668.
    [25]Shin E.D.,J.L.Estall,A.Izzo,et al.Mucosal adaptation to enteral nutrients is dependent on the physiologic actions of glucagon-like peptide-2 in mice.Gastroenterology,2005,128(5):1340-1353.
    [26]Petersen Y.M.,J.Elnif,M.Schmid,et al.Glucagon-like peptide 2 enhances maitase- glucoamylase and sucrase-isomaltase gene expression and activity in parenteraily fed premature neonatal piglets.Pediatric Research,2002,52:498-503.
    [27]Benjamin M.A.,D.M.Mckay,P.C.Yang,et al.Glucagon-like peptide-2 enhances intestinal epithelial barrier function of both transceilular and paracellular pathways in the mouse.Gut,2000,47:112-119.
    [28]Thulesen J.,B.Hartmann,K.J.Hare,et al.Glucagon-like peptide 2(GLP-2) accelerates the growth of colonic neoplasms in mice.Gut,2004,53:1145-1150.
    [29]Boushey R.P.,B.Yusta,J.D.Daniel.Glucagon-like peptide 2 decreases mortality and reduces the severity of indomethacin-induced murine enteritis.The American Physiological Society,1999,937-947.
    [30]Perez A.,M.Duxbury,F.G.Rocha,et al.Glucagon-like peptide 2 is an endogenous mediator of postresection intestinal adaptation.Journal of Parenteral and Enteral Nutrition,2005,29(2):97-101.
    [31]Andreassen B.U.,A.Paerregaard,K.Schmiegelow,et al.Glucagon-like peptide-2(GLP-2)response to enteral intake in children during anti-cancer treatment.Journal of Pediatric Gastroenterology and Nutrition,2005,40:(1)48-53.
    [32]Burrin D.G.,B.Stoll,R.H.Jiang,et al.GLP-2 stimulates intestinal growth in premature TPN-fed pigs by suppressing proteolysis and apoptosis.Am.J.Physiol Gastrointest Liver Physiol,2000a,279:G1249-G1256.
    [33]Chance W.T.,S.Sheriff,F.McCarter,et al.Glucagon-like peptide-2 stimulates gut mucosai growth and immune response in burned rats.J Burn Care Rehabil,2001,22(2):136-143.
    [34]朱俊东,粟永萍,程天民.胰高血糖素样肽-2对放射损伤小鼠肠上皮恢复的影响.第三军医大学学报,2001a,23(3):293-295.
    [35]陈吉,李杭,吴国豪.胰高血糖素样肽-2对短肠大鼠残留小肠代偿的影响.中华实验外科杂志,2005a,22(2):228-229.
    [36]Guan X.,B.Stoll,X.Lu,et al.GLP-2-mediated up-regulation of intestinal blood flow and glucose uptake is nitric oxide-dependent in TPN-fed piglets.Gastroenterology,2003,125(1):136-47.
    [37]Velazquez E.,M.Juan.Ruiz-Albusac,et al.Glucagon-like peptide-2 stimulates the proliferation of cultured rat astrocytes.Eur.J.Biochem,2003,270:3001-3009.
    [38]朱俊东,粟永萍,程天民.胰高血糖素样肽-2对放射损伤小鼠肠上皮丝裂素活化蛋白激酶活性的影响.第三军医大学学报,2001b,23(4):375-377.
    [39]Masur K.,F.Schwartz,F.Entschladen.DPPIV inhibitors extend GLP-2 mediated tumour promoting effects on intestinal cancer cells.Regulatory Peptides,2006,137:147-155.
    [40]Yusta B.,R.P.Boushey,D.J.Drucker.The Glucagon-like peptide-2 receptor mediates direct inhibition of cellular apoptosis via a cAMP-dependent protein kinase-independent pathway.The Journal of Biological Chemistry,2000,275(45):35345-35352.
    [41]Guan X.,H.E.Karpen,J.Stephens,et al.GLP-2 receptor localizes to enteric neurons and endocrine cells expressing vasoactive peptides and mediates increased blood flow.Gastroenterology,2006,130(1):150-164.
    [42]Bjerknes M.,H.Cheng.Modulation of specific intestinal epithelial progenitors by enteric neurons.Proc.Natl.Acad.Sci.USA,2001,98:12497-12502.
    [43]Jasleen J.,N.Shimoda,E.R.Shen,et al.Signaling mechanisms of glucagon-like peptide 2-induced intestinal epithelial cell proliferation.J.Surg.Res.,2000,90(1):13-18.
    [44]Jasleen J.,S.W.Ashley,N.Shimoda,et al.Glucagon-like peptide 2 stimulates intestinal epithelial proliferation in vitro.Dig.Dis.Sci.,2002,47(5):1135-40.
    [45]Burrin D.G.and B.Stoll.Key nutrients and growth factors for the neonatal gastrointestinal tract.Clin.Perinatol.,2002,29(1):65-96.
    [46]Estall J.L.and D.J.Drucker.Dual Regulation of cell proliferation and survival via activation of glucagon-like peptide-2 receptor signaling.J.Nutr.,2003,133:3708-3711.
    [47]Booth C.,D.Booth,S.Williamson,et al.Teduglutide([Gly2]GLP-2) protects small intestinal stem cells from radiation damage.Cell Proliferation,2004,37(6):385-400.
    [48]赵云,王凤君,王裴等.胰高血糖素样肽-2对烧伤大鼠肠粘膜细胞增殖的影响.中华烧伤杂志,2003a,19(4):209-212.
    [49]赵云,王凤君,王裴等.大鼠烧伤后补充胰高血糖素样多肽-2对其相关基因表达的影响.第三军医大学学报,2003b,25(19):1741-1744.
    [50]Boushey R.P.,B.Yusta,D.J.Drucker.Glucagon-like peptide(GLP)-2 reduces chemotherapy associated mortality and enhances cell survival in cells expressing a transfected GLP-2 receptor.Cancer Research,2001,61:687-693.
    [51]Burrin D.G.,B.Stoll,X.F.Guan,et al.Glucagon-like peptide 2 dose-dependently activates intestinal cell survival and proliferation in neonatal piglets.Endocrinology,2005,146:22-32.
    [52]张坚,朱维铭,张伟等.胰高血糖素样肽-2联合谷氨酰胺对放射损伤后肠黏膜细胞凋亡的影响.肠外与肠内营养,2008,15(2):73-76.
    [53]Yusta B.,J.Estall,D.J.Drucker.Glucagon-like peptide-2 receptor activation engages Bad and glycogen synthase kinase-3 in a protein kinase A-dependent manner and prevents apoptosis following inhibition of phosphatidylinositol 3-Kinase.The Journal of Biological Chemistry,2002,277(28):24896-24906.
    [54]Cheeseman C.I..Upregulation of SGLT-1 transport activity in rat jejunum induced by GLP-2infusion in vivo.Am.J.Physiol.Regulatory Integrative Comp.Physio10,1997,273:R1965-R1971.
    [55]Jeppesen P.B.,B.Hartmann,J.Thulesen,et al.Glucagon-like peptide 2 improves nutrient absorption and nutritional status in short-bowel patients with No Colon.Gastroenterology,2001,120: 806-815.
    [56]Iordache C.,L.Drozdowski,M.T.Clandinin,et al.Treatment of suckling rats with GLP-2 plus dexamethasone increases the ileal uptake of fatty acids in later life.American Journal of Physiology,2005a,288:1(1),G54-G59.
    [57]Kitchen P.A.,A.J.Fitzgerald,R.A.Goodlad,et al.Glucagon-like peptide-2 increases sucrase-isomaltase but not caudal-related homeobox protein-2 gene expression.Am.J.Physiol.Gastrointest Liver Physiol,2000,278:425.
    [58]Buddington R.K.,C.Malo,P.T.Sangild,J.Elnif.Intestinal transport of monosaccharides and amino acids during postnatal development of mink.Am J Physiol Regul Integr Comp Physiol,2000,279:2287-2296.
    [59]Kato Y.,D.Yu,and M.Z.Schwartz.Glucagonlike peptide-2 enhances small intestinal absorptive function and mucosal mass in vivo.J Pediatr Surg,1999,34(1):18-20;discussion 20-21.
    [60]朱俊东,粟永萍,谭春华.GLP-2和EGF对放射损伤后小鼠小肠上皮消化吸收和屏障功能恢复的影响.中国药理学通报,2002a,18(5):594-595.
    [61]朱俊东,粟永萍,程天民.胰高血糖素样肽-2对放射损伤小鼠小肠功能恢复的影响.中华放射医学与防护杂志,2002b,22(1):30-32.
    [62]朱亮,宫德正,邹原等.胰高血糖素样肽-2对移植小肠结构和功能恢复的作用.中国组织工程研究与临床康复,2008,12(18):3401-3405.
    [63]吴国豪,陈吉,李杭等.胰高血糖素样肽-2对短肠大鼠残留小肠代偿的影响.中华胃肠外科杂志,2006,9(5):441-444.
    [64]陈吉,李杭,吴国豪等.胰高血糖素样肽-2对短肠大鼠残留小肠吸收功能基因表达的影响.中华消化杂志,2005b,25(5):270-273.
    [65]Cameron H.L.,P.C.Yang,M.H.M.Perdue.Glueagon-like peptide-2-enhanced barrier function reduces pathophysiology in a model of food allergy.Am.J.Physiol.Gastrointest Liver Physiol,2003,284:905-912.
    [66]Martin G.R.,L.E.Wallace,D.L.Sigalet.Glucagon-like peptide-2 induces intestinal adaptation in parenterally fed rats with short bowel syndrome.Am.J.Physiol.Gastrointest Liver Physiol,2004,286:964-972
    [67]赵希敏,刘霞.GLP-2对大鼠颅脑外伤后肠粘膜免疫功能的影响.医学信息手术学分册,2008,21(5):434-436.
    [68]Alavi K.,M.Z.Schwartz,J.P.Palazzo,et al.Treatment of inflammatory bowel disease in a rodent model with the intestinal growth factor glucagon-like peptide-2.Journal Pediatr.Surg.,2000,35(6):847-851
    [69]Christensen T.M.,P.J.Larsen,J.Thulesen,et al.The proglucagon-derived peptide,glucagon-like peptide-2,is a neurotransmitter involved in the regulation of food intake.Nat.Med.2000,6:802-807.
    [70]Sorensen L.B.,A.Flint,A.Raben,et al.No effect of physiological concentrations of glueagon-like peptide-2 on appetite and energy intake in normal weight subjects.Int.J.Obes.Relat.Metab.Disord.,2003,27(4):450-456.
    [71]Dong G.Z.,J.R.Pluske.The Low feed intake in newly-weaned pigs:problems and possible solutions.Asian-Aust.J.Anim.Sci.,2007,20(3):440-452.
    [72]Scott R.B.,D.Kirk,W.K.MacNaughton,et al.GLP-2 augments the adaptive response to massive intestinal resection in rat.Am.J.Physiol Gastrointest Liver Physiol,1998,275:G911-G921.
    [73]Prasad R.,K.Alavi,M.Z.Schwartz.Glucagonlike peptide-2 analogue enhances intestinal mucosal mass after ischemia and reperfusion.J.Pediatr.Surg.,2000,35(2):357-359.
    [74]Tavakkolizadeh A.,R.Shen,P.Abraham,et al.Glucagon-like peptide 2:a new treatment for chemotherapy-induced enteritis.J.Surg.Res.2000,91:77-82.
    [75]Chance W.T.,T.Foley-Nelson,I.Thomas,et al.Prevention of parenteral nutrition-induced gut hypoplasia by coinfusion of glucagon-like peptide-2.Am.J.Physiol,1997,273(2 Pt 1):G559-63
    [76]Chance W.T.,S.Sheriff,T.Foley-Nelson,et al.Maintaining gut integrity during parenteral nutrition of tumor-bearing rats:effects of glucagon-like peptide 2.Nutr.Cancer,2000,37(2):215-222.
    [77]Drucker D.J.,B.Yusta,P.R.Boushey,et al.Human[Gly2]GLP-2 reduces the severity of colonic injury in a murine model of experimental colitis.Am.J.Physiol,1999,276(Gastrointest.Liver Physiol.39):G79-G91.
    [78]Kouris G.J.,Q.Liu,H.Rossi,et al.The effect of glucagon-like peptide 2 on intestinal permeability and bacterial translocation in acute necrotizing pancreatitis.Am J Surg,2001,181(6):571-575.
    [79]Burrin D.G.,B.Stoll,X.Guan.Glucagon-like peptide 2 function in domestic animals.Domestic Animal Endocrinology,2003a,24:103-122.
    [80]顾宪红,张宏福,余锐萍,李长忠,方路.断奶日龄对消化器官形态及小肠组织化学的影响.家畜生态,2003,24(1):24-30.
    [81]Petersen Y.M.,D.G.Burrin,M.Schmidt,et al.Glucagon-like peptide 2 has differential effects on small intestinal growth and function in fetal and neonatal pigs.American.Journal of Physiology-Regulatory,2001a,281:1986-1993.
    [82]Burrin D.G.,B.Stoll,R.H.Jiang,et al.Minimal enteral nutrient requirements for intestinal growth in neonatal piglets:how much is enough?.Am.J.Clin Nutr.,2000b,71:1603-1610.
    [83]Burrin D.G.,X.F.Guan,B.Stoll,et al.Glucagon-Like Peptide 2:A Key Link between Nutrition and Intestinal Adaptation in Neonates?.Journal of Nutrition,2003b,133:3712-3716.
    [84]Burrin D.G.,B.Stoll,X.F.Guan,et al.GLP-2 rapidly activates divergent intracellular signaling pathways involved in intestinal cell survival and proliferation in neonatal piglets.Am.J.Physiol Endocrinol Metab,2007,292:E281-E291.
    [85]Petersen,Y.M.,D.G.,Burrin,M.Schmidt,J.Elnif,B.Hartmann,J.J.Hoist,and P.T.Sangild.Glucagon-like peptide 2 stimulates small-intestine growth and maturation in the pig fetus and neonate.Digestive physiology in pigs.Proceedings of the 8th Symposium,Swedish University of Agricultural Sciences,Uppsala,Sweden,20-22 June 2000.2001b.23-25.
    [86]Petersen Y.M.,B.Hartmann,J.J.Holst,et al.Introduction of Enteral Food Increases Plasma GLP-2and Decreases GLP-2 Receptor mRNA Abundance during Pig Development.J.Nutr.,2003,133:1781-1786.
    [87]Niinikoski,H.,B.Stoll,X.f.Guan,K.Kansagra,B.D.Lambert,J.Stephens,B.Hartmann,J.J.Hoist and D.G.Burrin.Onset of small intestinal atrophy is associated with reduced intestinal blood flow in TPN-fed neonatal piglets.J.Nutr.,2004,134:1467-1474.
    [88]Stephens J.,B.Stoll,J.Cottrell,et al.Glucagon-like peptide-2 acutely increases proximal small intestinal blood flow in TPN-fed neonatal piglets.American Journal of Physiology Regulatory Integrative Comparative Physiology,2006,290:283-R289.
    [89]Urschel K.L.,P.B.Pencharz,R.O.Ball.Applications of neonatal pig model:GLP-2 infusion increases endogenous arginine synthesis in parenterally-fed piglets receiving an arginine deficient diet.The Federation of American Societies for Experimental Biologypublishes Journal,2006,20:A424.
    [90]Ursehel K.L.,A.R.Evans,P.B.Pencharz,et al.Infusion of glucagon-like peptide 2 with an arginine deficient diet increases endogenous arginine synthesis from proline in parenterally-fed neonatal piglets.Livestock Science,2007,108:,41-44.
    [91]Sangild P.T.,M.Christiane,M.Schmidt,et al.Glucagon-like peptide 2 has limited efficacy to increase nutrient absorption in fetal and preterm pigs.Am.J.Physiol Regul Integr Comp Physiol,2007,293:R2179-R2184.
    [92]Cottrell J.,B.Stoll,R.Buddington,et al.GLP-2 treatment during chronic tpn improves intestinal glucose uptake after re-feeding in piglets.Journal of Federation of American Societies for Experimental Biology.2005,19:A1695.
    [93]Zabielski R.Hormonal and neural regulation of intestinal function in pigs.Livestock Science,2007,108:32-40.
    [94]蒋荣川.胰高血糖素样肽-2对体外培养的断奶仔猪小肠黏膜上皮细胞形态、增殖及其酶活力的影响.[学位论文].四川省雅安市,四川农业大学,2008.
    [95]Drucker D.J.,Q.Shi,A.Crivici,et al.Regulation of the biological activity of glucagon-like peptide 2 in vivo by dipeptidyl peptidase Ⅳ.Nature Biotechnology,1997,15,673-677.
    [96]Yamazaki K.,N.Yasuda,T.Inoue,et al.The combination of metformin and a dipeptidyl peptidase Ⅳ inhibitor prevents 5-fluorouracil-induced reduction of small intestine weight.Eur.J.Pharmacol,2004,488(1-3):213-218.
    [97]Mentzel S.,H.B.P.M.Dijkman,J.P.H.F.Vanson,et al.Organ distribution of aminopeptidase A and dipeptidyl peptidase Ⅳ in normal mice.Journal of Histochemistry and Cytochemistry,1996,44:445-461.
    [98]Gorrell M.D.,V.Gysbers,G.W.McCaughan.CD26:a multifunctional integral membrane and secreted protein of activated lymphocytes.Scandinavian Journal of Immunology,2001,54(3):249-264.
    [99]Vanhoof G.,F.Goossens,M.I.De,et al.Proline motifs in peptides and their biological processing.The Federation of American Societies for Experimental Biologypublishes Journal,1995,9:736-744.
    [100]Morimoto C.,C.I.Lord,C.Zhang,et al.Role of CD26/dipeptidyl peptidase Ⅳ in human immunodeficiency virus type 1 infection and apoptosis.Proc.Natl.Acad.Sci.USA,1994,91:9960-9964.
    [101]Hildebrandt M.,W.Reutter,P.Arck,et al.A guardian angel:the involvement of dipeptidyl peptidase Ⅳ in psychoneuroendocrine function,nutrition and immune defence.Clin.Sci.(Lond),2000,99:93-104.
    [102]Hoist J.J.,C.F.Deacon.Inhibition of the activity of dipeptidyl-peptidase Ⅳ as a treatment for type 2 diabetes.Diabetes,1998,47:1663-1670.
    [103]Ahren B.,J.J.Holst,H.Martensson,et al.Improved glucose tolerance and insulin secretion by inhibition of dipeptidyl peptidase Ⅳ in mice.European.Journal of Pharmacology,2000,404:239-245.
    [104] Deacon C.F., P. Danielsen, L. Klarskov, et al. Dipeptidyl peptidase IV inhibition reduces the degradation and clearance of GIP and potentiates its insulinotropic and antihyperglycemic effects in anesthetized pigs. Diabetes, 2001,50:1588-1597.
    [105] Conarello S.L.,Z. Li, J. Ronan, et al. Mice lacking dipeptidyl peptidase IV areprotected against obesity and insulin resistance. Proc. Natl. Acad. Sci. USA, 2003,100,6825-6830.
    [106] Villhauer E.B.,J.A. Brinkman,GB. Naderi, et al. 1-[[(3-hydroxy-1-adamantyl)amino]acetyl] -2-cyano-(S)- pyrrolidine : a potent, selective, and orally bioavailable dipeptidyl peptidase IV inhibitor with antihyperglycemic properties. J. Med. Chem., 2003,46,2774-2789.
    [107] Bauvois B. A collagen-binding glycoprotein on the surface of mouse fibroblasts is identified as dipeptidyl peptidase IV. Biochem. J. 1988,252(3):723-731.
    [108] Johnson R.C., D. Zhu,H.G. Augustin-Voss, et al. Lung endothelial dipeptidyl peptidase IV is an adhesion molecule for lung-metastatic rat breast and prostate carcinoma cells. J. Cell. Biol.1993,121:1423-1432.
    [109] Cheng H.C., M. Abdel-Ghany, R.C. Elble, et al. Lung endothelial dipeptidyl peptidase IV promotes adhesion and metastasis of rat breast cancer cells via tumor cell surfaceassociated fibronectin. J. Biological Chemistry, 1998,273:24207-24215.
    [110] Abdel-Ghany M., H. Cheng, R.A. Levine, et al. Truncated dipeptidyl peptidase IV is a potent anti-adhesion and anti-metastasis peptide for rat breast cancer cells. Invasion Metastasis, 1998,18:35-43.
    [111] Mittrücker H.W., C. Steeg, B. Malissen, et al. The cytoplasmic tail of the T cell receptor zeta chain is required for signaling via CD26. Eur. J. Immunol, 1995,25:295-297.
    [112] Torimoto Y., N.H. Dang, E. Vivier, et al. Coassociation of CD26 (dipeptidyl peptidase IV) with CD45 on the surface of human T lymphocytes. J. Immunol, 1991,147,2514-2517.
    [113] Gaetaniello L., M. Fiore, S. De-Filippo, et al. Occupancy of dipeptidyl peptidase IV activates an associated tyrosine kinase and triggers an apoptotic signal in human hepatocarcinoma cells.Hepatology, 1998,27:934-942.
    [114] Ansorge S., E. Schon. Dipeptidyl peptidase IV (DP IV), a functional marker of the T lymphocyte system. Acta Histochem, 1987,82:41-46.
    [115] Tanaka T., J.S.Duke-Cohan, J. Kameoka, et al. Enhancement of antigen-induced T-cell proliferation by soluble CD26/dipeptidyl peptidase IV. Proc. Natl. Acad. Sci. USA, 1994, 91:3082-3086.
    [116] Heymann E., R. Mentlein. Does dipeptidyl peptidase IV have an effect on blood pressure and coagulation? Klin. Wochenschr, 1984,62:2-10.
    [117] Werner J.A., M. Schunke, B. Tillmann. Histochemical visualization of lymphatic capillaries in the rat: a comparison of methods demonstrated at the posterior pharyngeal surface. Arch. Histol.Jap., 1987,50:505-514.
    [118] Kato S., I. Itonaga, R.C. Ji, et al. Enzyme triple staining for differentiation of lymphatics from venous and arterial capillaries. Lymphology, 1996,29,15-19.
    [119] Koyama T., M. Gao, T. Ueda, et al. Different enzyme activities in coronary capillary endothelial cells. Adv. Exp. Med. Biol, 1997, 411: 359-364.
    [120] Koyama T., Z. Xie, M. Gao, et al. Adaptive changes in the capillary network in the left ventricle of rat heart. Jpn. J. Physiol., 1998,48: 229-241.
    [121] Sangild P.T., Y.M. Petersen, M. Schmidt, et al. Preterm birth affects the intestinal response to parenteral and enteral nutrition in newborn pigs.The Journal of nutrition,2002,132:3785-3794.
    [122]Guay F.,S.M.Donovan,N.L.Trottier.Mucosa from growing pigs fed reduced-protein diets supplemented with crystalline Biochemical and morphological developments are partially impaired in intestinal amino acids.Journal of animal science,2006,84:1749-1760.
    [123]Hana K.,K.Jirina,L.Zdenek,et al.Effect of bacterial monoassociation on brush-border enzyme activities in ex-germ-free piglets:comparison of commensal and pathogenic Escherichia coli strains.Microbes and Infection,2006,8:2629-2639.
    [124]Geier M.S.,D.Tenikoff,R.Yazbeck,et al.Development and resolution of experimental colitis in mice with targeted deletion of dipeptidyl peptidase Ⅳ.J Cell Physiol.,2005,204(2):687-692.
    [125]Miller B.G.,T.J.Newby,C.R.Stokes,et al.Creep feeding and post weaning diarrhoea in piglets.Vet.Rec.,1984,114:296-297.
    [126]Stokes C.R.,B.G.Miller,M.Bailey,et al.The immune response to dietary antigens and its influence on disease susceptibility in farm animals.Ve.Immunol Immunopathol,1987,17(1-4):413-23.
    [127]Li D.F.,J.L.Nelssen,P.G.Reddy,et al.Transient hypersensitivity to soybean meal in the early-weaned pig.J.Anim.Sci.,1990,68:1790-1799.
    [128]Newby,T.J.,B.G.Miller,D.Hampson and F.J.Bourne.Local hypersensitivity response to dietary antigens in early weaned pigs.In:D.J.Cole and W.Haresign(Ed.) Recent Developments in Pig Nutrition.Butterworths,London.1985.
    [129]Stokes C.R.et al.1988.The immune response to dietary antigens and its influence on disease susceptibility in farm animals,in Veternary Immunology(Ed.Wilkie,B.N.) London,P 413.Elsevier.
    [130]陈代文,杨凤,陈可容.补料及开食料中不同种类蛋白质对仔猪过敏反应及腹泻程度的影响.畜牧兽医学报,1995,26(3):200-206.
    [131]Castimpoolas,N.Isolation of α-,β-,and γ-conglycinins.Arch.Biochem Biophys.,1969,129:409-497.
    [132]Smith R.H.,J.W.Sisson.The effect of different feeds,including those containing soybean products,on the passage of digesta from the abomasum of the preruminant calf.Br.J.Nutr.1975,33:329
    [133]Sissons J.W.and R.H.Smith.The effect of different diets,including those containing soybean products,on digesta movement and water and nitrogen absobtion in the small intestine of the preruminant calf.J.Nutr.1976,36:421-425.
    [134]Kilshaw P.J.,J.W.Sissons.Gastrointestinal allergy to soyabean protein in preruminant calves.Allergenic constituents of soyabean products.Res.Vet.Sci.,1979,27(3):366-371.
    [135]Friesen K.G.,R.D.Goodband,J.L.Nelssen,et al.The effect of pre- and postweaning exposure to soybean meal on growth performance and on the immune response in the early-weaned pig.J.Anim.Sci.,1993,71:2089-2098.
    [136]Dreau D.,J.P.Lalles,V.Philouze-Rome,et al.Local and systemic immune responses to soybean protein ingestion in early-weaned pigs.J Animal Science,1994,72:2090-2098.
    [137]Risley,C.R.,E.T.Kornegay,K.L.Barnett,et al.Response of early weaned pigs to an Escheriehia coil challenge and their absorption of ovalbumin or xylose as influenced by creep feeding.Nutr.Rep.Int.1988,38:945.
    [138]郭林英.大豆β-伴球蛋白提取物对鲤鱼肠上皮细胞增殖及其功能的影响.[学位论文].四川省雅安市,四川农业大学,2006.
    [139]Barratt M.E.J.,P.J.Strachan,P.Porter.Antibody mechanisms implicated in digestie disturbances following ingestion of soya protein in caves and piglets.Clin.Exp.Immunol.,1978,31:305.
    [140]Mowat A.M.,A.Ferguson.Hypersensitivity in the sma lintestine.V.induction of cell mediated immunity to a dietary antigen.Clin.Exp.Immunol.,1981,43:547-580.
    [141]Stokes C.R.,T.J.Newby,B.G.Miller,et al.The immunological significance of transient cell mediated imunity to dietary antigen.In:P.J.Quinn(Ed.) Cell mediated immunity commission of the European Communnities,Luxembourg,1984:249.
    [142]Nielsen L.B.,K.B.Ploug,P.Swift,et al.Co-localisation of tbe Kir6.2/SUR1 channel complex with glucagon-like peptide-1 and glucose-dependent insulinotrophic polypeptide expression in human ileal cells and implications for glycaemic control in new onset type 1 diabetes.Eur.J.Endocrinol.,2007,156:663-671.
    [143]Boudry G.,V.Peron,H.I.Le,et aI.Weaning Induces Both Transient and Long-Lasting Modifications of Absorptive,Secretory,and Barrier Properties of Piglet Intestine.Journal of Nutrition,2004,134:2256-2262.
    [144]Burks A.W.,J.R.Brooks,H.A.Sampson.Allergenicity of major component protein of soybean determined by enzyme linked immunosorbent assay(ELISA) and immunoblotting in children with atopic dermatitis and positive soy challenges.J Allergy Clin Immumol,1988,81(6):1135-1142.
    [145]Li D.F.,J.L.Nelssen,E.P.G.Reddy,et al.Interrelationship between hypersensitivity to soybean proteins and growth performance in early-weaned pigs.J.Anim.Sci.,1991,69:4062-4068.
    [146]王纯刚.鱼粉与丁酸钠对断奶仔猪生长、肠道发育和胰高血糖素样肽-2分泌的影响的研究.[学位论文].四川雅安:四川农业大学,2008.
    [147]王丽娜,张磊,倪迎冬等.断奶前后仔猪小肠不同肠段胰高血糖素原mRNA的表达.农业生物技术学报,2007,15(4):719-720.
    [148]NRC.1988.Nutrient Requirements of Swine(9th Ed.).National Academy Press,Washington,DC.
    [149]李德发,王康宁,谯仕彦,贾刚等.中华人民共和国农业行业标准—猪饲养标准(NY/T 65-2004).中华人民共和国农业部,2004.
    [150]中国饲料数据库情报网中心.中国饲料成分及营养价值表(第16版).2005.
    [151]Vodovar N.,J.Fianzy,A.C.Francois.Intestin grele du pore.Ⅰ.Dimensions et fonction de l'age et du poids,etuded ela ju nctiond uc analch oledoquee tdu c analpa ncreatiquea c elui-ci.Biochimie Biophysique,1964,4:27-34.
    [152]Shields R.G.,K.E.Ekstrom,D.C.Mahan.Effect of weaning age and feeding method on digestive enzyme development in swine from birth to ten weeks.Jounral of Animal Science,1980,50:157-265.
    [153]Varley M.A.,J.Wiseman.The Weaner Pig Nutrition and Management.CABI Publishing.2001.
    [154]王磊.不同品种猪早期胃肠道的发育及养分利用率差异的研究.[学位论文].四川雅安:四川农业大学,2006.
    [155]宋青龙.野猪与家猪消化系统及消化机能比较.[学位论文].吉林长春:吉林农业大学,2004.
    [156]杨倩,毛卫华,赵如茜等.太湖猪与大白猪小肠发育及其免疫功能形态学比较.南京农业大学学报,2001,24(4):75-78.
    [157]Nabuurs M.I.Villus height and crypt depth in weaned and unweaned pigs reared under various circumstances in the Netherlands.Research in veterinary science,1993,55:78-84.
    [158]Nielsen T.T.,P.T.Sangild,J.Elnif,et al.Effects of GLP-2 treatment and antibiotics on gut structure and function during pig weanling diarrhea.Proceedings of the 9th International Symposium on Digestive Physiology in Pigs,2003,161-163.
    [159]Ottoand B.E.,T.Dworzecki.Glucagon-like peptides- synthesis,biological actions and certain clinical implications.Diabetologia,2004,61(9):947-950.
    [160]Hetty M.G.B.S.Van,J.A.N.Marius.Weaning and the weanling diet influence the villous height and crypt depth in the small intestine of pigs and alter the concentrations of short-chain fatty acids in the large intestine and blood.The Journal of Nutrition,1998,6(128):947-953.
    [161]Hampson D.J.,D.E.Kidder.Influence of creep feeding and weaning on brush enzyme activities in the piglet small intestine.Research in Veterinary Science,1986,40:24-31.
    [162]蒋荣川,贾刚,王康宁.胰高血糖素样肽-2对体外培养的断奶仔猪小肠黏膜上皮细胞形态、增殖及其酶活力的影响.动物营养学报,2008,20(6):699-705.
    [163]Tavares W.,D.J.Drucker,P.L.Brubaker.Enzymatic- and renal-dependent catabolism of the intestinotropic hormone glucagon-like peptide 2 in rats.American Journal of Physiology,1992,278:134-139.
    [164]Hartmann B.,M.B.Harr,P.B.Jeppesen,et al.In vivo and in vitro degradation of glucagon-like peptide 2 in humans.Journal of Clinical Endocrinology & Metabolism,2000b,85:2884-2888.
    [165]Evans G.S.,N.Flint,A.S.Somers.The development of a method for the preparation of rat intestinal cell primary cultures.Journal of Cell Science,1992,101:219-231.
    [166]姜俊.谷氨酰胺对鲤鱼肠上皮细胞增殖和分化的影响.[学位论文].四川省雅安市,四川农业大学,2005.
    [167]Koh J.Y.,D.W.Choi.Quantitative determination of glutamate mediated cortical neuronal injury in cell culture by lactate dehydrogenase efflux assay.Journal of neuroscience methods,1987,20(1):83-90.
    [168]赵梅兰,曹晓哲,王德文等.电磁脉冲辐照对培养大鼠小脑神经细胞内LDH和培养上清中LDH、CHE、K+和Na+浓度的影响.军事医学科学院院刊,2003,23(6):413-418.
    [169]苏敬泽,农一兵,温志浩等.黄芪组分配伍对乳鼠肥大心肌细胞肌酸激酶同功酶活性的影响.中国中医基础医学杂志,2008,14(3):196-198.
    [170]徐瑞成,张敏.Na~+-K~+-ATP酶抑制引起的细胞凋亡和杂合性细胞死亡.细胞生物学杂志,2004,26:467-470.
    [171]Voss O.H.,S.Batra,S.J.Kolattukudy,et al.Binding of Caspase-3 Prodomaln to Heat Shock Protein 27 Regulates Monocyte Apoptosis by Inhibiting Caspase-3 Proteolytic Activation.Journal of Biological Chemistry,2007,282(34):25088-25099.
    [172]Pospisilik J.A.,J.Martin,T.Doty,et al.Dipeptidyl peptidase Ⅳ inhibitor treatment stimulates β-Cell survival and islet neogenesis in streptozotocin-induced diabetic rats.Diabetes,2003,52:741-750.
    [173] Simonsen L., S. Pilgaard, C. Orskov, et al. Exendin-4, but not dipeptidyl peptidase IV inhibition, increases small intestinal mass in GK rats. American Journal of Physiolgy Gastrointestinal and Liver Physiolgy, 2007,293:288-295.
    [174] Kaji T, H. Tanaka, H. Redstone, et al. Temporal Changes in the Intestinal Growth Promoting Effects of Glucagon-Like Peptide 2 Following Intestinal Resection. Journal of Surgical Research, 2009, 152: 271-280.
    [175] Fleming S.E., K.L. Zambell, M.D. Fitch. Glucose and glutamine provide similar proportions of energy to mucosal cells of rat small intestine. Am. Physiol, 1997,273:968- 978.
    [176] Batytezzati A., D.J. Brillon, D.E. Matthew. Oxidation of glutamic acid by the splanchnic bed in humans. Am. Physiol, 1995,269:269- 276.
    [177] Reeds P.J., D.G. Burrin and F. Jahoor et al.Enteral glutamate is almost completely metabolized in first pass by the gastrointestinal tract of infant pigs. Am.J.Physiol,1996,270:413- 418.
    [178] Burrin D.G., Y. Petersen, B. Stoll, et al. Glucagon-like petide-2: a nutrient-responsive gut growth factor. American Society for Nutritional Sciences Journal of Nutrition, 2001,131: 709-712.
    [179] Thanh V.H., K. Shibasaki. Heterogeneity of beta-conglycinin. Biochim Biophys Acta, 1976, 439:326-338.
    [180] He Y.P., S.H.W. Chu, W.A. Walker. Nucleotide supplements alter proliferation and differentiation of cultured human (Caco-2) and rat (IEC-6) Intestinal Epithelial Cells. J Nutr, 1993, 123:1017-1027.
    [181] Lalles J.P., R. Toullec, P. Bouchez, et al. Antigenicity and digestive utilization of four soya products by the preruminant calf. Livestock Production Science, 1995,41(1): 29-38.
    [182] Maria R., L.C. Manzoni,A. Corsini. 7s Globulin from Soybean Is Metabolized in Human Cell Cultures by a Specific Yptake and Degradation. J Nutr, 1996,126:2831-2842.
    [183] Koehler J.A., H. Will, B. Maja, et al. Glucagon-like Peptide-2 Does Not Modify the Growth or Survival of Murine or Human Intestinal Tumor Cells. Cancer Res., 2008,68(19): 7897-7904.
    [184] Walsh N.A., B. Yusta, M.P. Dacambra, et al, Glucago-like peptide-2 receptor activation in the rat intestinal mucosa. Endocrinology, 2003,144:4385-4392.
    [185] Tarvid, I., P. D. Cranwell, L. Ma, et al.The early postnatal development of protein digestion in pigs. I-Pancreatic enzymes. In: Proceedings of the VIth International Symposium on Digestive Physiology in Pigs (Souffrant, W. B. & Hagemeister, H., eds.), 1994,1:199-202.
    
    [186] 王恬,钟翔. 仔猪肠黏膜营养与肠道修复。饮料工业, 2008, 29 (2): 1-7.
    
    [187] Potten C.S., J.W. Wilson, C. Booth. Regulation and significance of apoptosis in the stem cells of the gastrointestinal epithelium. Stem Cells, 1997; 15:82-93.
    [188] Hampson, D. J. 1994. Postweaning Escherichia coli diarrhoea in pigs.In Escherichia coli in Domestic Animals and Humans. C. L. Gyles, ed. CAB International, Wallingford, U.K.:171-191.
    [189] Wu G.Y., D.A. Knable. Free and protein-bound animo acids in sow's colostrum and milk. J Nutri.,1994,124:2437-2444.
    
    [190] Munroe D.G., A.K. Gupta,F. Kooshesh, et al. Prototypic G protein-coupled receptor for the intestinotrophic factor glucagon-like peptide 2. Medical Sciences, 1999,96:1569-1573.
    [191] Estall, J. L., B. Yusta, and D. J, Drucker. Lipid raft-dependent Glucagon-like peptide-2 receptor trafficking occurs independently of agonist-induced desensitization. Mol. Biol. cell. 2004, 15: 3673-3687.
    [192]杨浩,王春婷,吴玉梅等.MTT试验中细胞特性状态及细胞数与OD值的关系探讨.动物医学进展,2002,23(5):49-51.
    [193]周荣艳.谷氨酰胺及丙氨酰谷氨酰胺对早期断奶仔猪肠上皮细胞增殖和肠道免疫的影响.[学位论文].湖北省武汉市,华中农业大学,2004.
    [194]R.I.弗雷谢尼著,章静波,徐存栓等译.动物细胞培养基本技术指南(Culture of Animal Cell:a Manual of Basic Technique(4thed)).北京:科学出版社,2004.
    [195]程宝鸾.动物细胞培养技术(第二版).广州:中山大学出版社,2006.
    [196]王远孝,王恬.肠上皮细胞体外培养技术的研究进展.饲料研究,2008,12:24-26.
    [197]Quaroni A..Development of fetal rat intestine in organ and monolayer culture.J.Cell Biol.,1985,100(5):1611-1622.
    [198]Gibson P.R.,E.Van de Pol,L.E Maxwell,et al.Isolation of colonic ctypts that maintasin structural and metabolic viability in vitro.Gastroenterolgy,1989,96(2 Pt1):283-291.
    [199]Perreault N.,F.B.Jean.Use of the dissociating enzyme thermolysin to generate viable human normal intestinal epithelial cell cultures.J.Exp.Cell Res,1996,224(2):354-364.
    [200]郑婷.维生素E对鲤鱼肠上皮细胞生长发育及抗氧化能力的影响.[学位论文].四川省雅安市,四川农业大学,2007.
    [201]冯琳.大豆凝集素对鲤鱼肠道上皮细胞增殖分化及其功能的影响.[学位论文].四川省雅安市,四川农业大学,2006.
    [202]Chen Jin,Zhou Xiao-qiu,Feng Lin,Liu Yang,Jiang Jun.Effects of glutamine on hydrogen peroxide-induced oxidative damage in intestinal epithelial cells of Jian carp(cyprinus carpio var.Jian).2009.Aquaculture,(accepted,in pressing).
    [203]兰雪松.五倍子水提取物拮抗内毒素对人牙髓细胞毒性作用的实验研究.[学位论文].西安,第四军医大学,2007:22-24.
    [204]Chung Young-Shin,Choi Yun-Hee,Lee Seok-Jong,et al.Water extract of Aralia elata prevents cataractogenesis in vitro and in vivo.Journal of Ethnopharmacology,2005,101:49-54.
    [205]Lin Y.,X.Q.Zhou.Dietary glutamine supplementation improves structure and function of intestine of Juvenile Jian Carp(Cyprinus carpin Var.Jian).Aquaculture,2006,256:389-394.
    [206]Jennie Hunter-Cevera and Angela Belt.Animal cells in culture.Maintaining Cultures for Bioteehnology and Industry.California,U.S.A.,Academic press,1996:161-178.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700