AtSDG26基因在植物抗逆中的功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
SDG26(SET domain group26)是一个组蛋白甲基转移酶基因。拟南芥SDG26基因功能缺失突变体sdg26具有莲座叶数量增多,叶片肥大,茎杆增粗,分枝增加,晚花和生长周期延长等表型。本研究以sdg26突变体为研究对象,观察其细胞学特征,对SDG26基因起始密码子上游序列进行了生物信息学分析。在此基础上对突变体sdg26在干旱和盐胁迫下,SOD、MDA、可溶性糖和脯氨酸含量等生理生化指标进行测定,观察分析根系的发育状况,阐明其在干旱和盐胁迫下生理生化指标变化规律和抗逆能力。获得了如下试验结果:
     1对突变体sdg26进行表型和组织切片观察发现:与Col相比,突变体的植株整体变得粗壮,侧枝增多,结实率增加。sdg26茎部的维管束数量增加,表皮细胞的层数增多,说明突变体茎杆的增粗是由于细胞数目的增多而引起的。
     2对SDG26基因启动子及其上游序列的分析发现:在启动子序列中存在多个能够响应逆境信号的顺式反应元件,他们分别是:8个WRKY710S、16、7个NODCON2GM和27个DOFCOREZM,暗示SDG26可能与逆境胁迫响应存在较密切的关系。
     3在干旱胁迫试验中,随着干旱时间(3、6、9、12、15天)的持续,sdg26中的SOD活性、MDA、可溶性糖和脯氨酸含量都表现出明显提高的趋势,且总体的上升水平显著高于对照Col中相应指标的上升水平。在干旱持续20天的条件下,对照Col失水死亡,而sdg26能正常生长,表现出良好的生长势,具有较强的抗旱能力。
     4在不同浓度(0、50、100、150、200mmol/LNaCl)盐胁迫下,突变体sdg26的萌发率分别为:98%、58%、17%、7%和1%;Col的萌发率分别为:98%,32%、7%、0.5%和0,sdg26在盐胁迫下的萌发率均高于Col。同时,sdg26中的SOD活性、MDA和游离脯氨酸的含量均高于Col,说明在受到盐害胁迫时,突变体sdg26的抗盐害能力强于Col。
     5根系的发育程度是植物抗逆能力的标志之一。在100mmol/LNaCl浓度的胁迫下,Col在受到胁迫的第5天后,根的生长发育趋势明显减缓,根系生长受到抑制,主根较短,侧根数目少,根长维持在6-8mm之间;而突变体sdg26仍能保持生长势,根长不断伸长,侧根数目较多,说明sdg26根系的抗盐能力高于Col。
SDG26(SET domain group26) is a gene encoding histone methytransferase. In the background of sdg26defective mutants, plants shows phenotypes of increased number of rossete leaves, thicker leaf lamina, robust bolt, more branching, delayed flowering and expansion of growth period. This study investigate the cellular characteristics in sdg26and analyze the sequence upstream of SDG26gene initiation codon in bioformatics. Furthermore, The content level of SOD, MDA, soluble carbohydrate and proline been investigated in sdg26upon drought or salinity stress and studied the development of root system, elucidating the changes physical and chemical parameters and resistance upon drought and salinity. The results are listed followingly,
     1At the beginning, the study obtained homozygous sdg26mutant by T-DNA insertion, followed by observing phenotypes and tissue dissection. Compared to Col ecotype, the mutant shows robustness, more lateral branching and higher fertility.In the paraffin dissection of shoot, we found a increase of vascular bundle in sdg26. It suggest that the thickeness of shoot may be caused by the increase of cell number.
     2Via investigating the sequence upstream of SDG26gene initiation codon in bioformatics, we found that there are numerous adversity-responding cis-elements in the promoter, including8WRKY710S,16ARR1AT,7NODCON2GM and27DOFCOREZM. It suggests SDG26may respond to stress closely.
     3In the drought stress assessment, SOD activity, MDA, soluble carbohydrate and proline level showed obvious increase in sdg26with the drought continuation(3,6,9,12,15d), furthermore, the global level of these parameters is evidently higher than that in Col control. After20days drought, Col died of dehydration while sdg26showed normal growth and enhanced resistance to drought stress.
     4Upon a variety of concentration of salt stress (0,50,100,150,200mmol/L NaCl), the GR of sdg26is98%,58%,17%,7%and1%respectively while GR of Col is98%,32%,7%,0.5%and0. The sdg26shows pleiotropicly higher GR than Col upon salinity stress. At the same time, SOD activity, MDA, soluble carbohydrate and proline level showed full-scale increase in sdg26compared to Col, indicating resistance in sdg26is enhanced compared to Col under salt stress.
     5The development of root system is one of the markers in plant resistance. At5days post exposure100mmol/L NaCl stress. Col showed retained development of root system and shorter main root fewer lateral roots than normal. And the root length reached a plateau at6to8mm, in the contrast, sdg26remained normal growth and continuous elongation of roots and more lateral roots. That indicates resistance to high salinity in sdg26is enhanced compared to Col.
引文
[1]Luger K,Mader AW,Richmond RK. Crystal structure of the nucleosome core particle at 2.8 A resolution[J]. Nature.1997,389:251-260.
    [2]Cinzia Allegrucci,Alexandra Thurston,Emma Lucas and Lorraine Young,Epigenetics and the germline[J].Reproduction,2005.129:137-149.
    [3]Soppe W J,Jasencakova Z,Houben A, etal. DNA methylation contrals histone H3 lysine 9 methylation and heterochromatin assembly in Arabidopsis[J]. EMBO,2002. 21:6549-6559.
    [4]Tamaru H,Selker E U. A histone H3 methyltransferase controls DNA methylation in Neurospora crassa[J]. Nature,2001.414:277-283.
    [5]杜婷婷,黄秋花.组蛋白赖氨酸甲基化征表观遗传调控中的作用[J].遗传,2007,4:387-392.
    [6]Strahl B D,Allis C D. The language of covalent histone modifications[J]. Nature,2000. 403:41-45.
    [7]张永彪,褚嘉佑.表观遗传学与人类疾病的研究进展[J].遗传,2005,27(3):466-472.
    [8]Brown R,Strathdee G. Epigenomics and epigenetic herapy of cancer[J]. Trends Mol Med,2002.8(suppl 4):43-48.
    [9]Jiang Y,Bressler J,Beaudet A L. epigenetics and human disease[J]. Annual Review of Genomics and Human Genetics,2004.5:479-510.
    [10]Margueron R,Trojer P,Reinberg D. The key to development:interpreting the histion code? [J],Current Opinion in Genetics & Development,2005.15:163-176.
    [11]翟中和.细胞生物学[M].北京:高等教育出版社,2000,247-301.
    [12]孙开胜,徐克前.组蛋白乙酰化/去乙酰化与基因的表达调控[J].生命科学研究,2004,8(2):102-105.
    [13]Lin Xu,Zhong Zhao,Aiwu Dong,Ludivine Soubigou-Taconnat,Jean-Pierre Renou, Andre Steinmetz, and Wen-Hui Shen,Di- and Tri- but Not Monomethylation on Histone H3 Lysine36 Marks Active Transcription of Genes Involved in Flowering Time Regulation and Other Processes in Arabidop sisthaliana[J],Moleculer and Cellular Biology,2008,1348-1360.
    [14]旺本勤.拟南芥晚花突变体CS188的耐逆性研究[J].安徽科技学院学报,2007,21(3):7-10.
    [15]J Vieira Da Silva,Water stress,ultrastructure and enzymatic activity. In lange Ecological studies,1976.
    [16]Willemot C,Pelletier L,Effect of drought on frost resistance and fatty acid content of young winter wheat plant[J]. Canadian Journal of Plant Science,1979.59:639-643.
    [17]王洪春.植物抗性生理[J].植物生理学通讯,1981,(6):72-81.
    [18]Liming Xiong,Karen S,Schumaker and Jian-Kang Zhu. Cell Signaling During Cold,Drought and Salt Stress[J]. Plant Cell,2002.14:165-183.
    [19]简令成,吴素萱.植物抗寒性的细胞学研究小麦越冬过程中细胞结构的变化[J].植物学报,1965,1:13-15.
    [20]张永恩,李湖海,王群.植物抗旱相关功能基因研究进展[J].中国农学通报,2004.
    [21]B.D.Mckersic,S.R.B.,E.Harjantoand,O.Leprince.Water Deficit Tolerance and Field Performance of Transgenic Alfalfa Overexpressing Superoxide Dismutase[J]. Plant Physiology.1996,111:1177-1181.
    [22]李合生.现代植物生理学[M].北京:高等教育出版社,2006:336-337.
    [23]赵福庚,何龙飞,罗庆云.植物逆境生理生态[J].北京:化学工业出版社,2004.
    [24]刘艳,赵虎成,李雄.梨枝条中淀粉、还原糖及脂类物质动态变化和抗寒性的关系[J].内蒙古大学学报:自然科学版,2002,57-60.
    [25]李广敏,唐连顺,商振清,等.渗透胁迫对玉米幼苗保护酶系统的影响及其与抗旱性的关系[J].河北农业大学学,1994,17(2):1-5
    [26]朱抗申,黄丕生.土壤水分胁迫与水稻活性氧代谢[J].南京农业大学学报,1994,17(2):7-11.
    [27]Mittler R. Oxidative stress,antioxidants and stress tolerance[J]. Trends Plant Sci, 2002,7:405-410.
    [28]Pitzschke A,Forzani C,Hirt H. Reactive oxygen species signaling in plants[J]. Antioxid Redox Signal,2006,8:1757-1764.
    [29]Shen B,Jensen R G,Bohnert H J,Mannitol protects against oxidation by hydroxyl radicals[J]. Plant Physiol,1997,115:527-532.
    [30]蒋明义.水分胁迫下植物体内-OH的产生与细胞的氧化损伤[J].植物学报,1999,41(3):229-234.
    [31]宋纯鹏,梅慧生,储钟稀,等.Ca2+对叶绿体中超氧化物自由基产生以及由ACC形成乙烯的影响[J].植物生理学报,1992,18(2):55-62.
    [32]Martin G M,Austad S N,Johnson T E. Genetic analysis of ageing:role of oxidative damage and environmental stresses. Nat Genet,1996,13:25-34.
    [33]Paul Hasty,Judith Campisi,Jan Hoeijmakers,Harry van Steeg,Jan Vijg,Aging and genome maintenance:lessons from the mouse?[J]. Science,2003,299:1355-1359.
    [34]Franceschi C,Olivieri F,Marchegiani F,Cardelli M,Cavallone L,Capri M,Salvioli S,Valensin S,de Benedictis G,diIorio A,Caruso C,Paolisso G,Monti D. Genes involved in immune response/inflammation,IGF1/insulin path-way and response to oxidative stress play a major role in the genetics of human longevity,the lesson of centenarians. Mechanisms of Ageing and Development,2005,126:351-361.
    [35]Cao SQ,Xu QT,Zhou HJ,Cao YJ,Zhu Y,Yu F,Kuai BK,Screening for lifespan-extension mutants with paraquat in Arabidopsis[J]. Shi Yan Sheng Wu Xue Bao,2003, 36(3):233-237.
    [36]张宏一,等.植物干旱诱导蛋白研究进展[J].植物遗传资源学报,2004.
    [37]Weretilnyk E A, Hanson A D,Molecular cloning of a plant betaine aldehyde dehydrogenase,an enzyme implicated in adaption to salinity and drough[J]t. Proc Natl Acad Sci USA,1990,87(7):2245-2249.
    [38]刘风华,郭岩,谷冬梅,等.转甜菜碱醛脱氢酶基因植物的耐盐性研究[J].遗传学报,1997,24(1):54-58.
    [39]Ishitani M,Nakamura T,Han S Y,Express of the betaine aldehyde dehydrogenase gene in barley in response to osmotic stress and abscisic acid[J]. Plant Mol Biol,1995, 27(2):307-315.
    [40]Nguyen H T,Babu R C,Blum A,Breeding for drought resistance in rice:physiology and molecular genetics considerations[J]. Crop Sci,1997,37(5):1426-1434.
    [41]Kishitani S,Takanami T,Suzuki M,Oikawa M,Yokoi S,Ishitani M,Alvarez-Nakase A M,Takabe T,Compatibility of glycinebetaine in rice plants:evaluation using transgenic rice plants with a gene forperoxisomal betaine aldehyde dehydrogenase frome balley[J]. Plant Cell Environ,2000,23:107-114.
    [42]Liang Z,Ma D,Tang L,Hong Y,Luo A.Zhou J,Dai X,Expression of the spinach betaine aldehyde dehydrogenase (BADH) gene in transgenic tobacco plants[J]. Chin J Biotechnol.1997,13(3):153-9.
    [43]Alexandre Berr,Emily J. McCallum2,Abdelmalek Alioua,Dimitri Heintz,Thierry Heitz,and Wen-Hui Shen. Arabidopsis Histone Methyltransferase SET DOMAIN GROUP 8 Mediates Induction of the Jasmonate/Ethylene Pathway Genes in Plant Defense Response to Necrotrophic Fungi [J]. Plant Physiology,2010,154:1403-1414.
    [44]Yanagisawa S,Schmidt RJ Diversity and similarity among recognition sequences of Dof transcription factors [J],Plant J,1999,17:209-214.
    [45]Gowik U,Burscheidt J,Akyildiz M,Schlue U,Koczor M,Streubel M,Westhoff P. cis-Regulatory elements for mesophyll-specific gene expression in the C4 plant Flaveria trinervia,the promoter of the C4 phosphoenolpyruvate carboxylase gene. Plant Cell.2004,16:1077-1090.
    [46]张永恩,李潮海,王群.植物抗旱相关功能基因研究进展[J].中国农学通报,2004,66-70.
    [47]Sakai H,Aoyama T,Oka A. Arabidopsis ARR1 and ARR2 response regulators operate as transcriptional activators. Plant J.2000,24:703-711.
    [48]Zhang ZL,Xie Z,Zou X,Casaretto J,Ho TH,Shen QJ.A rice WRKY gene encodes a transcriptional repressor of the gibberellin signaling pathway in aleurone cells.Plant Physiol.2004,134:1500-1513.
    [49]宋钰,荆邵娟,余迪求.水稻WRKY转录调控因子基因功能研究进展[J].中国水稻科学,2009,23(5):447-455.
    [50]康雯,刘晓东,何淼.失水胁迫对五叶地锦生理生化指标的影响[J].东北林业大学学报,2009,34-36.
    [51]李玲,余光辉.水分胁迫下植物脯氨酸累积的分子机理[J].华南师范大学学报:自然科学版,2003,1:126-134.
    [52]吴冬云,朱碧岩,李玲.拟南芥反应调节因子研究进展[J].植物学通报,2002,65-69.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700