氨基酸外运系统MsiAR在中慢生型天山根瘤菌和其宿主甘草初期信号交流中的生态学作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中慢生型天山根瘤菌可以在其宿主甘草根部共生结瘤固氮,为植物提供生长所需的氮源。共生关系的建立需要根瘤菌和豆科植物之间复杂的信息交流,两者间的信息交流在豆科植物种子萌发时就已经开始了。种子萌发时产生大量的营养物质,包括糖类、氨基酸类的小分子物质,可以诱导土壤中细菌的趋化作用。
     根瘤菌在豆科植物根部形成侵入线并最终结瘤固氮的过程是目前研究的热点,根瘤菌中大量基因的表达或抑制是这一过程所必须的。但对于根瘤菌和豆科植物互作初期的研究却很少,特别是在根瘤菌吸附在根部之前的过程。本文旨在研究甘草在萌发时对天山根瘤菌基因表达的影响。
     在琼脂平板中添加不同浓度的甘草种子分泌物来模拟萌发时种子周围的化学环境。通过转座子插入的方法,筛选得到5株转座子插入可被甘草种子分泌稳定诱导的突变株(MsiA,B,C,D,E),其中MsiA可以被甘草种子分泌物诱导50倍。随机引物PCR(Arbitrary PCR)方法证明MsiA中转座子插入的基因属于LysE家族
     甘草种子分泌物对MsiA的诱导作用需要MsiA上游基因msiR, MsiR属于LysR调控蛋白家族。对于甘草种子分泌物中的有效成分进行质普测定,发现能诱导MsiA基因表达的物质为刀豆氨酸。刀豆氨酸是精氨酸的类似物,可以竞争性地掺入氨基酸序列中,形成无功能蛋白,最终导致细菌的死亡,是一种抗菌物。精氨酸和赖氨酸可以诱导大肠杆菌(Escherichia coli)和谷氨酸棒杆菌(Corynebacterium glutamicum)中LysE基因的表达,但是不能诱导MsiA基因的表达。
     在体外酵母粉含量低于0.005%(W/V)的情况下,刀豆氨酸对msiA或msiR缺失突变株的毒性要比野生型高近一万倍。检测不同突变株胞内刀豆氨酸浓度发现msiA和msiR缺失突变株胞内刀豆氨酸的浓度要高于野生型,间接说明MsiA的功能是将胞内的刀豆氨酸运输到胞外,将胞内刀豆氨酸的浓度维持在对菌体无害的水平。根毛吸附实验发现msiA突变株在甘草根毛上的吸附量要比野生型低100倍。
     从甘草根部取得根际土,分离细菌并对其对刀豆氨酸的耐受性进行检测,发现甘草根际土壤菌群中耐受刀豆氨酸菌株数(NCR)与刀豆氨酸敏感菌株数(NcS)的比值(NCR/NCS比空白土样中的高八倍。这说明,甘草分泌的刀豆氨酸对其根际菌群具有一定的筛选作用。
     天山根瘤菌MsiAR系统和其宿主甘草种子萌发初期互作模型:在甘草萌发初期,种子和植株分泌的抗菌物质刀豆氨酸对根际菌群进行一次初步筛选,杀死植株周围可能的有害细菌;而MsiAR系统的存在使得天山根瘤菌可以在甘草根际选择性的环境下继续繁殖,成为优势菌群,为后来的结瘤共生提供有力条件。
Mesorhizobium tianshanense is a nitrogen-fixing bacterium which can establish symbiotic associations with Glycyrrhiza uralensis. Complicated Signal communication are required for Establishment of symbiosis, this communication may occur as early as seed germination. During germination, seeds secret a lot of nutrient small molecular, including sugars, amino acid, which can induce chemotaxis of bacteria in soil.
     Formation of invasion thread, nodulation and nitrogen fixation are studied significantly, many genes are found necessary for these procedures. But there are few study on the early interaction between Rhizobium and their host plant, especially before attachment of bacteria on root hair. So my project was focused on how the compounds secreted during Glycyrrhiza uralensis seed germination affect M. tianshanense gene transcription profile, those genes whose transcription changed may play important roles in the early interaction between Rhizobium and plants.
     We put exude of Glycyrrhiza uralensis seed into agar plates to imitate the chemical surroundings of seed germination. Five genes(msiA,B,C,D,E) were identified to be induced by seed exude, by using a transposon containing a promoterless kanamycin resistant gene. msiA, which can be induced 50 times by seed exude, belongs to lysE family which encoding amino acid exporter protein.
     The induction of seed exude on msiA promoter needs the product of msiR, which located upstream of msiA, MsiR belongs to LysR regulation family. MS result showed that the functional compound in seed exude is canavanine, which is an analogue of arginine and can be misintegrated into polypepetide to form unfuntional protein, leading death of bacteria finally. Arginine and lysine, which can induce the expression of lysE in Escherichia coli and Corynebacterium glutamicum separately, cannot induce msiA expression.
     Canavanine was 104 times more toxic to msiA or msiR mutant than to wild type strain under culture condition where yeast extract was as low as 0.005%(W/V), also the intracellular canavanine concentration of msiA or msiR mutant was higher than wild type strain, suggesting that MsiA/R system may act as canavanine exporter to maintain intracellular canavanine to a nontoxic level. Root hair attachment experiment showed that the amount of msiA mutant attached to root hair is 100 times lower than wild type strain.
     We also separated stains from rhizosphere of blank soil or soil in which Glycyrrhiza uralensis were planted, tested the resistance of these strains and calculated the ratio(NCR/ NCS) of canavanine resistant strains(NCR) and canavanine sensitive strains(NCR) from different samples. We found that the ratio ratio(NCR/NCS) from plant soil is 8 times higher than from blank soil, suggesting that Glycyrrhiza uralensis may secret canavanine to change bacteria population in rhizosphere.
     Based on these data, we put forward the model for early interaction between M. tianshanense MsiA/R system and Glycyrrhiza uralensis:during germination, seed can secret canavanine as an antimicrobial to optimize the bacteria population in the rhizosphere, killing or repressing the potential hazard bacteria. But beneficial bacteria such as M. tianshanense can propagate to be the dominant population paving the way for further symbiosis, cause of MsiA/R system.
引文
1, Ashby, A. M., M. D. Watson, G.J. Loake, and C. H. Shaw.1988. Ti plasmid-specified chemotaxis of Agrobacterium tumefaciens C58C1 toward vir-inducing phenolic compounds and soluble factors from monocotyledonous and dicotyledonous plants. J. Bacteriol.170:4181-4187.
    2, Cangelosi, G. A., R. G.Ankenbauer, and E. W. Nester.1990. Sugars induce the Agrobacterium virulence genes through a periplasmic binding protein and a transmembrane signal protein. Proc. Natl. Acad. Sci. USA 87:6708-6712.
    3, Hawes. M. C., and L. Y. Smith.1989. Requirement for chemotaxis in pathogenicity of Agrobacterium tumefaciens on roots of soil-grown pea plants. J. Bacteriol.171:5668-5671.
    4, Hirsch. A. M.1999. Role of lectins (and rhizobial exopolysaccharides) in legume nodulation. Curr. Opin. Plant Biol. 2:320-326.
    5, Matthysse, A. G., and S. McMahan.1998. Root colonization by Agrobacterium tumefaciens is reduced in cel, attB,attD, and attR mutants. Appl. Environ. Microbiol.64:2341-2345.
    6, Doty. S. L., M. Chang, and E. W. Nester.1993. The chromosomal virulence gene, chvE, of Agrobacterium tumefaciens is regulated by a LysR family member. J. Bacteriol.175:7880-7886.
    7, Goodner. B.,G.Hinkle. S. Gattung, N. Miller, M. Blanchard, B. Qurollo, B. S. Goldman, Y. W. Cao, M. Askenazi. C. Hailing, L. Mullin, K. Houmiel. J. Gordon. M. Vaudin. O. lartchouk, A. Epp, F. Liu, C. Wollam, M. Allinger, D. Doughty, C. Scott, C. Lappas, B. Markelz, C. Flanagan, C. Crowell. J. Gurson, C. Lomo, C. Sear, G.Strub, C. Cielo, and S. Slater.2001. Genome sequence of the plant pathogen and biotechnology agent Agrobacterium tumefaciens C58. Science 294:2323-2328.
    8, Li. L. P., Y. H. Jia, Q. M. Hou, T. C. Charles, E. W. Nester. and S. Q. Pan.2002. A global pH sensor: Agrobacterium sensor protein ChvG regulates acid-inducible genes on its two chromosomes and Ti plasmid. Proc. Natl. Acad. Sci. USA 99:12369-12374.
    9, Bladergroen, M. R., and H. P. Spaink.1998. Genes and signal molecules involved in the rhizobia-Leguminoseae symbiosis. Curr. Opin. Plant Biol.1:353-359.
    10, Cullimore, J. V., R. Ranjeva, and J. J. Bono.2001. Perception of lipochitooligosaccharidic Nod factors in legumes. Trends Plant Sci.6:24-30.
    11, Downie, J. A.1998. Functions of rhizobial nodulation genes, p.387-402. In H. P. Spaink. A. Kondorosi, and P. J. J. Hooykaas (ed.), The Rhizobiaceae. Kluwer Academic Publishers, Dordrecht, The Netherlands.
    12, Kape, R., M. Parniske, and D. Werner.1991. Chemotaxis and nod gene activity of Bradyrhizobium japonicum in response to hydroxycinnamic acids and isoflavonoids. Appl. Environ. Microbiol.57:316-319.
    13, Schell, M. A.1993. Molecular biology of the LysR family of transcriptional regulators. Annu. Rev. Microbiol. 47:597-626.
    14, Cren. M.. A. Kondorosi. and E. Kondorosi.1995. NoIR controls expression of the Rhizobium meliloti nodulation genes involved in the core Nod factor synthesis. Mol. Microbiol.15:733-747.
    15, Becker. A., and A. Puhler.1998. Production of exopolysaccharides. p.97-118. In H. P. Spaink. A. Kondorosi. and P. J. J. Hooykaas (ed.), The Rhizobiaceae. Kluwer Academic Publishers, Dordrecht,The Netherlands.
    16, Yao. S. Y.. L. Luo. K. J. Har, A. Becker. S. Ruberg. G. Q. Yu, J. B. Zhu. and H. P. Cheng.2004. Sinorhizobium meliloti ExoR and ExoS proteins regulate both succinoglycan and flagellum production. J. Bacteriol.186:6042-6049.
    17, Kaminski, P. A., J. Batut and P. Boistard,1998. A survey of symbiotic nitrogen fixation by rhizobia, p.431-460. In H. P. Spaink, A. Kondorosi. and P. J. J. Hooykaas (ed.). The Rhizobiaceae. Kluwer Academic Publishers. Dordrecht, The Netherlands.
    18, Soupene. E., M. Foussard, P. Boistard, G. Truchet. and J. Batut.1995. Oxygen as a key developmental regulator of Rhizobium meliloti N2-fixation gene expression within the alfalfa root nodule. Proc. Natl. Acad. Sci. USA 92:3759-3763.
    19, Galan, J. E.. and A. Collmer.1999. Type Ⅲ secretion machines: bacterial devices for protein delivery into host cells. Science 284:1322-1328.
    20, Gilles-Gonzalez. M. A.,G. S. Ditta. and D. R. Helinski.1991. A haemoprotein with kinase activity encoded by the oxygen sensor of Rhizobium meliloti. Nature 350:170-172.
    21, Hertig, C., R. Y. Li, A. M. Louarn. A. M. Garnerone, M. David, J. Batut, D. Kahn. and P. Boistard.1989. Rhizobium meliloti regulatory gene fixJ activates transcription of R. meliloti nifA and fixK genes in Escherichia coli. J. Bacteriol. 171:1736-1738.
    22, Fischer, H. M.1996. Environmental regulation of rhizobial symbiotic nitrogen fixation genes. Trends Microbiol. 4:317-320.
    23, Kahn, M. L., T. R. McDermott, and M. K. Udvardi.1998. Carbon and nitrogen metabolism in rhizobia, p.461-485. In H. P. Spaink, A. Kondorosi. and P. J. J. Hooykaas (ed.). The Rhizobiaceae. Kluwer Academic Publishers. Dordrecht The Netherlands.
    24, Schlaman, H. R., B. Horvath. E. Vijgenboom, R. J. Okker. and B. J. Lugtenberg.1991. Suppression of nodulation gene expression in bacteroids of Rhizobium leguminosarum biovar viciae. J. Bacteriol,173:4277-4287.
    25, Giblin, L., B. Boesten. S. Turk, P. Hooykaas. and F. O'Gara.1995. Signal transduction in the Rhizobium meliloti dicarboxylic acid transport system. FEMS Microbiol. Lett.126:25-30.
    26, Murphy, P. J., N. Heycke. S. P. Trenz, P. Ratet, F. J. de Bruijn, and J. Schell.1988. Synthesis of an opine-like compound, a rhizopine. in alfalfa nodules is symbiotically regulated. Proc. Natl. Acad. Sci. USA 85:9133-9137.
    27, Murphy, P. J., N. Heycke, Z. Banfalvi, M. E. Tate. F. Debruijn, A. Kondorosi, J. Tempe. and J. Schell.1987. Genes for the catabolism and synthesis of an opine-like compound in Rhizobium meliloti are closely linked and on the Sym plasmid. Proc. Natl. Acad. Sci. USA 84:493-497.
    28, Kado, C. I.1998. Agrobacterium-mediated horizontal gene transfer. Genet. Eng.20:1-24.
    29, Ullrich, M. S., M. Schergaut, J. Boch,and B. Ullrich.2000. Temperatureresponsive genetic loci in the plant pathogen Pseudomanas syringae pv. glycinea. Microbiology 146:2457-2468.
    30, Christie, P. J.2001. Type Ⅳ secretion:intercellular transfer of macromolecules by systems ancestrally related to conjugation machines. Mol. Microbiol.40:294-305.
    31, Zupan. J., T. R. Muth, O. Draper, and P. Zambryski.2000. The transfer of DNA from Agrobacterium tumefaciens into plants: a feast of fundamental insights. Plant J.23:11-28.
    32, Vrljic M, GargJ, Bellmann A, Wachu S. Freudl R, Malecki MJ. Sahm H, Kozina VJ. Eggeling L, Saier MH Jr.1999. The LysE superfamily: Topology of the lysine exporter LysE of Corynebacterium glutamicum, a paradyme for a novel superfamily of transmembrane solute translocators. J Mol Microbiol Biotechnol 1:327-336
    33, Stachel, S. E., G. An, C. Flores, and E. W. Nester.1985. A Tn3 lacZ transposon for the random generation of beta-galactosidase gene fusions: application to the analysis of gene expression in Agrobacterium. EMBO J. 4:891-898.
    34, Stachel, S. E.. E. Messens, M. Vanmontagu, and P. Zambryski.1985. Identification of the signal molecules produced by wounded plant cells that activate T-DN A transfer in Agrobacterium tumefaciens. Nature 318:624-629.
    35, Ankenbauer. R. G., and E. W. Nester.1990. Sugar-mediated induction of Agrobacterium tumefaciens virulence genes: structural specificity and activities of monosaccharides. J. Bacteriol.172:6442-6446.
    36, Dixon, R. A., and N. L. Paiva.1995. Stress-induced phenylpropanoid metabolism. Plant Cell 7:1085-1097.
    37, Marschner. H.1995. Mineral nutrition of higher plants,2nd ed. Academic Press, Ltd., London,United Kingdom.
    38, Leroux, B., M. F. Yanofsky, S. C. Winans, J. E. Ward, S. F. Ziegler, and E. W. Nester.1987. Characterization of the virA locus of Agrobacterium tumefaciens: a transcriptional regulator and host range determinant. EMBO J. 6:849-856.
    39, Pan, S. Q., T. Charles, S. G.Jin, Z. L. Wu, and E. W. Nester.1993.Preformed dimeric state of the sensor protein VirA is involved in plant-Agrobacterium signal transduction. Proc. Natl. Acad. Sci. USA 90:9939-9943.
    40, Tanaka, T., S. K. Saha, C. Tomomori, R. Ishima, D. Liu, K. I. Tong, H. Park, R. Dutta, L. Qin. M. B. Swindells, T. Yamazaki, A. M. Ono, M. Kainosho, M. Inouye, and M. Ikura.1998. NMR structure of the histidine kinase domain of the E. coli osmosensor EnvZ. Nature 396:88-92.
    41, Lee, K. H., M. W. Dudley, K. M. Hess, D. G.Lynn, R. D. Joerger, and A. N. Binns.1992. Mechanism of activation of Agrobacterium virulence genes: identification of phenol-binding proteins. Proc. Natl. Acad. Sci. USA 89:8666-8670
    42, Truchet, G., P. Roche, P. Lerouge, J. Vasse, S. Camut, F. Debilly, J. C. Prome, and J. Denarie.1991. Sulfated lipo-oligosaccharide signals of Rhizobium meliloti elicit root nodule organogenesis in alfalfa. Nature 351:670-673.
    43, Jin, S. G., Y. N. Song, W. Y. Deng, M. P. Gordon, and E. W. Nester.1993. The regulatory VirA protein of Agrobacterium tumefaciens does not function at elevated temperatures. J. Bacteriol.175:6830-6835.
    44, Lohrke. S. M.. H. J. Yang, and S. G. Jin.2001. Reconstitution of acetosyringone-mediated Agrobacterium tumefaciens virulence gene expression in the heterologous host Escherichia coli. J. Bacteriol.183:3704-3711.
    45, Brencic. A.. Q. Xia. and S. C. Winans.2004. VirA of Agrobacterium tumefaciens is an intradimer trasphosphorylase and can actively block vir gene expression in the absence of phenolic signals. Mol. Microbiol.52:1349-1362.
    46, Chang, C. H.. and S. C. Winans.1992. Functional roles assigned to the periplasmic, linker, and receiver domains of the Agrobacterium tumefaciens VirA protein. J. Bacteriol.174:7033-7039.
    47, Powell, B. S., and C. I. Kado.1990. Specific binding of VirG to the vir box requires a C-terminal domain and exhibits a minimum concentration threshold. Mol. Microbiol.4:2159-2166.
    48, Han. D. C., and S. C. Winans.1994. A mutation in the receiver domain of the Agrobacterium tumefaciens transcriptional regulator VirG increases its affinity for operator DNA. Mol. Microbiol.12:23-30.
    49, Brencic, A., Q. Xia, and S. C. Winans.2004. VirA of Agrobacterium tumefaciens is an intradimer trasphosphorylase and can actively block vir gene expression in the absence of phenolic signals. Mol. Microbiol.52:1349-1362
    50, Mantis, N. J.. and S. C. Winans.1993. The chromosomal response regulatory gene chvl of Agrobacterium tumefaciens complements an Escherichia coli phoB mutation and is required for virulence. J. Bacteriol.175:6626-6636.
    51, Dessaux. Y., A. Petit, S. K. Farrand. and P. J. Murphy.1998. Opines and opine-like moecules involved in plant/Rhizobiaceae interactions, p.173-197. In H. P. Spaink. A. Kondorosi. and P. J. J. Hooykaas (ed.). The Rhizobiaceae.Kluwer Academic Publishers, Dordrecht. The Netherlands.
    52, Zhu, J., P. M. Oger, B. Schrammeijer, P. J. J. Hooykaas. S. K. Farrand. and S. C. Winans.2000. The bases of crown gall tumorigenesis. J. Bacteriol.182:3885-3895.
    53, Farrand. S. K.1998. Conjugal plasmids and their transfer, p.199-233. In H. P. Spaink. A. Kondorosi. and P. J. J. Hooykaas (ed.), The Rhizobiaceae. Kluwer Academic Publishers, Dordrecht. The Netherlands.
    54, Fuqua, W. C. and S. C. Winans.1994. A LuxR-LuxI type regulatory system activates Agrobacterium Ti plasmid conjugal transfer in the presence of a plant tumor metabolite. J. Bacteriol.176:2796-2806.
    55, Lyi, S. M.. S. Jafri, and S. C. Winans.1999. Mannopinic acid and agropinic acid catabolism region of the octopine-type Ti plasmid pTi 15955. Mol. Microbiol.31:339-347.
    56, Wang, L.. C. L. Bender.and M. S. Ullrich.1999. The transcriptional activator CorR is involved in biosynthesis of the phytotoxin coronatine and binds to the cmaABT promoter region in a temperature-dependent manner. Mol. Gen. Genet.262:250-260.
    57, Wang, L., J. D. Helmann. and S. C. Winans.1992. The A. tumefaciens transcriptional activator OccR causes a bend at a target promoter, which is partially relaxed by a plant tumor metabolite. Cell 69:659-667.
    58., Wang, L., and S. C. Winans.1995. High angle and ligand-induced low angle DNA bends incited by OccR lie in the same plane with OccR bound to the interior angle. J. Mol. Biol.253:32-38
    59, Collmer, A., and N. T. Keen.1986. The role of pectic enzymes in plant pathogenesis. Annu. Rev. Phytopathol. 24:383-409.
    60, Salmond, G P. C.1994. Secretion of extracellular virulence factors by plant-pathogenic bacteria. Annu. Rev. Phytopathol.32:181-200.
    61, Hugouvieux-Cotte-Pattat, N., S. Reverchon, and J. Robert-Baudouy.1989. Expanded linkage map of Erwinia chrysanthemi strain 3937. Mol. Microbiol.3:573-581.
    62, Beaulieu, C., M. Boccara, and F. Van Gijsegem.1993. Pathogenic behavior of pectinase-defective Erwinia chrysanthemi mutants on different plants. Mol. Plant-Microbe Interact.6:197-202.
    63, Ried, J. L.. and A. Collmer.1988. Construction and characterization of an Erwinia chrysanthemi mutant with directed deletions in all of the pectate lyase structural genes. Mol. Plant-Microbe Interact.1:32-38.
    64, Tsuyumu, S.1977. lnducer of pectic acid lyase in Erwinia carotovora. Nature 269:237-238.
    65, Condemine, G, and J. Robert-Baudouy.1987. Tn-5 insertion in KdgR, a regulatory gene of the polygalacturonate pathway in Erwinia chrysanthemi. FEMS Microbiol. Lett.42:39-46.
    66, Thomson, N. R., W. Nasser, S. McGowan, M. Sebaihia, and G P. C. Salmond.1999. Erwinia carotovora has two KdgR-like proteins belonging to the IclR family of transcriptional regulators:identification and characterization of the RexZ activator and the KdgR repressor of pathogenesis. Microbiology 145:1531-1545
    67, Reverchon, S., W. Nasser, and J. Robert-Baudouy.1994. pecS: a locus controlling pectinase, cellulase and blue pigment production in Erwinia chrysanthemi. Mol. Microbiol.11:1127-1139.
    68, Praillet, T., W. Nasser. J. Robert-Baudouy. and S. Reverchon.1996. Purification and functional characterization of PecS. a regulator of virulencefactor synthesis in Erwinia chrysanthemi. Mol. Microbiol.20:391-402.
    69, Rouanet, C., S. Reverchon, D. A. Rodionov,and W. Nasser.2004. Definition of a consensus DNA-binding site for PecS. a global regulator of virulence gene expression in Erwinia chrysanthemi, and identification of new members of the PecS regulon. J. Biol. Chem.279:30158-30167.
    70, Surgey, N., J. Robert-Baudouy, and G Condemine.1996. The Erwinia chrysanthemi pecT gene regulates pectinase gene expression. J. Bacteriol.178:1593-1599.
    71, Castillo, A., W. Nasser, G Condemine, and S. Reverchon.1998. The PecT repressor interacts with regulatory regions of pectate lyase genes in Erwinia chrysanthemi. Biochim. Biophys. Acta 1442:148-160.
    72, Reverchon, S., D. Expert. J. Robert-Baudouy, and W. Nasser,1997. The cyclic AMP receptor protein is the main activator of pectinolysis genes in Erwinia chrysanthemi. J. Bacteriol.179:3500-3508.
    73, Pissavin, C., J. Robert-Baudouy. and N. Hugouvieux-Cotte-Pattat.1996. Regulation of pelZ, a gene of the pelB-pelC cluster encoding a new pectate lyase of Erwinia chrysanthemi 3937. J. Bacteriol.178:7187-7196.
    74, Lojkowska. E.. C. Masclaux, M. Boccara, J. Robert-Baudouy, and N. Hugouvieux-Cotte-Pattat.1995. Characterization of the pelL gene encoding a novel pectate lyase of Erwinia chrysanthemi 3937. Mol. Microbiol.16:1183-1195.
    75, Tamaki, S. J., S. Gold, M. Robeson, S. Manulis, and N. T. Keen.1988. Structure and organization of the pel genes from Erwinia chrysanthemi EC 16. J. Bacteriol.170:3468-3478.
    76, Kelemu. S.. and A. Collmer.1993. Erwinia chrysanthemi EC 16 produces a second set of plant-inducible pectate lyase isozymes. Appl. Environ. Microbiol.59:1756-1761.
    77, Bourson, C., S. Favey, S. Reverchon. and J. Robert-Baudouy.1993. Regulation of the expression of a pelA::uidA fusion in Erwinia chrysanthemi and demonstration of the synergistic action of plant extract with polygalacturonate on pectate lyase synthesis. J. Gen. Microbiol.139:1-9.
    78, Nomura, K., W. Nasser. H. Kawagishi, and S. Tsuyumu.1998. The pir gene of Erwinia chrysanthemi EC16 regulates hyperinduction of pectate lyase virulence genes in response to plant signals. Proc. Natl. Acad. Sci. USA 95:14034-14039.
    79, Nomura, K... W. Nasser, and S. Tsuyumu.1999. Self-regulation of pir, a regulatory protein responsible for hyperinduction of pectate lyase in Erwinia chrysanthemi EC16. Mol. Plant-Microbe Interact.12:385-390.
    80, Murata, H., J. L. Mcevoy. A. Chatterjee. A. Collmer, and A. K. Chatterjee.1991. Molecular cloning of an aepA gene that activates production of extracellular pectolytic, cellulolytic. and proteolytic enzymes in Erwinia carotovora subsp carotovora. Mol. Plant-Microbe Interact.4:239-246.
    81, Liu, Y., H. Murata. A. Chatterjee. and A. K. Chatterjee.1993. Characterization of a novel regulatory gene aepA that controls extracellular enzyme production in the phytopathogenic bacterium Erwinia carotovora subsp carotovora. Mol. Plant-Microbe Interact.6:299-308.
    82, Franza. T., I. Michaud-Soret. P. Piquerel, and D. Expert.2002. Coupling of iron assimilation and pectinolysis in Erwinia chrysanthemi 3937. Mol. Plant-Microbe Interact.15:1181-1191.
    83, Franza. T., C. Sauvage. and D. Expert.1999. Iron regulation and pathogenicity in Erwinia chrysanthemi 3937:role of the Fur repressor protein. Mol. Plant-Microbe Interact.12:119-128.
    84, Nachin, L., and F. Barras.2000. External pH: an environmental signal that helps to rationalize pel gene duplication in Erwinia chrysanthemi. Mol. Plant-Microbe Interact.13:882-886.
    85, Preston, J. F., J. D. Rice. L. O. Ingram, and N. T. Keen.1992. Differential depolymerization mechanisms of pectate lyases secreted by Erwinia chrysanthemi EC16. J. Bacteriol.174:2039-2042.
    86, Hugouvieux-Cotte-Pattat, N., G. Condemine. W. Nasser, and S. Reverchon.1996. Regulation of pectinolysis in Erwinia chrysanthemi. Annu. Rev. Microbiol.50:213-257.
    87, Hugouvieux-Cotte-Pattat, N., H. Dominguez, and J. Robert-Baudouy.1992. Environmental conditions affect transcription of the pectinase genes of Erwinia chrysanthemi 3937. J. Bacteriol.174:7807-7818.
    88, Flego. D., R. Marits, A. R. B. Eriksson, V. Koiv, M. B. Karlsson, R. Heikinheimo, and E. T. Palva.2000. A two-component regulatory system, PehR-PehS, controls endopolygalacturonase production and virulence in the plant pathogen Erwinia carotovora subsp carotovora. Mol. Plant-Microbe Interact.13:447-455.
    89, Flego, D., M. Pirhonen. H. Saarilahti, T. K. Palva, and E. T. Palva.1997. Control of virulence gene expression by plant calcium in the phytopathogen Erwinia carotovora. Mol. Microbiol.25:831-838.
    90, Liu,Y., A. Chatterjee,and A. K. Chatterjee.1994. Nucleotide sequence, organization and expression of rdgA and rdgB genes that regulate pectin lyase production in the plant-pathogenic bacterium Erwinia carotovora subsp carotovora in response to DNA-damaging agents. Mol. Microbiol.14:999-1010.
    91, Liu, Y., Y. Cui,A. Mukherjee, and A. K. Chatterjee.1997. Activation of the Erwinia carotovora subsp. carotovora pectin lyase structural gene pnlA: a role for RdgB. Microbiology 143:705-712.
    I, Paul EF.Ford BW. Nitrogen fertilizers: M eeting Contempo rary Challenges. AMB 10.2002.31 (2):169-176
    2,朱兆良.合理使用化肥充分利用有机肥.发展环境友好的施肥体系.中国科院院刊.2003,2
    3, Werner D. Physiology of Nitrogen-fixing Legume Nodules: Compartments and Functions. In:Stacey G. Burris R,Evans H, eds. Bio logical N itrogen F ixation. N ew Yo rk:Chapman and Hall,1992:399-431
    4,陈文新,汪恩涛,陈文峰.根瘤菌-豆科植物共生多样性与地理环境的关系.中国农业科学.2004.37(1):81-86
    5, Spaink HP. Root nodulation and infection factors produced by rhizobial bacteria Annu. Rev. Microbiol 2000(54):257-88
    6, D'Haeze W, Holsters M. Surface polysaccharides enable bacteria to evade plant immunity. Trends in Microbiol 2004(12):555-561
    7, Fraysse N. Couderc F, Poinsot V. Surface polysaccharide involvement in establishing the rhizobium-legume symbiosis. Eur. J. Biochem 2003(270):1365-1380
    8, Chen WE, Wang S, Wang Y. Li X. Chen. Y Li. Characteristics of Rhizobium tianshanense sp. nov., a moderately and slowly growing root nodule bacterium isolated from an arid saline environment in Xinjiang. People's Republic of China. Int. J. Syst. Bacteriol.1995(45):153-159.
    9, Sambrook J, Fritsch EF, Maniatis T. Molecular cloning. New York.Cold Spring Harbor Laboratory Press.1989
    10, Vincent JM. A manual for the practical study of root nodule bacteria. Oxford: Blackwell Scientific Publications.1970
    11, Saxena B, Desai A. Modi VV. Recovery of Tn5 mutants by using pGS-9 suicide vector in Rhizobium sp. (Cajanus cajan) strain S2 and Azospirillum lipoferum D-2. Indian Journal of Experimental Biology 1989(27):210-213
    12, Judson N, Mekalanos JJ. Transposon-based approaches to identify essential bacterial genes. Trends Microbiol 2000(8):521-526
    13, Miller J H. Experiments in molecular genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.1972
    1, Spaink. HP. Root nodulation and infection factors produced by rhizobial bacteria. Annu. Rev. Microbiol,2000(54): 257-288
    2, Chen W E, Wang S, Wang Y, Li X, Chen, Y Li. Characteristics of Rhizobium tianshanense sp. nov., a moderately and slowly growing root nodule bacterium isolated from an arid saline environment in Xinjiang, People's Republic of China. Int. J. Syst. Bacteriol.1995(45):153-159.
    3, Chiang SL. JJ Mekalanos. rfb mutations in Vibrio cholerae do not affect surface production of toxin-coregulated pili but still inhibit intestinal colonization. Infect Immun 1999(67):976-80.
    4, Kalogeraki VS, SC Winans. Suicide plasmids containing promoterless reporter genes can simultaneously disrupt and create fusions to target genes of diverse bacteria. Gene 1997(188):69-75.
    5, Quandt J.Hynes MF.versatile suicide vectors which allow direct selection for gene replacement in Gram-negative bacteria.Gene 1993(127):15-21
    6, Sambrook J. Fritsch EF, Maniatis T. Molecular cloning. New York,Cold Spring Harbor Laboratory Press.1989
    7,Vincent JM. A manual for the practical study of root nodule bacteria. Oxford: Blackwell Scientific Publications.1970
    8. Fuqua WC. SC Winans. A LuxR-LuxI type regulatory system activates Agrobacterium Ti plasmid conjugal transfer in the presence of a plant tumor metabolite. J. Bacteriol.1994(176):2796-2806.
    9. Boesten B, Schluter A, Prell J, Kramer M, Lipka V, Priefer UB. Identifying genes suitable for constructing pH and salt tolerant Rhizobium inoculants for improving French bean cultivation under semiarid conditions. In: Proceedings of the Fourth European Nitrogen Fixation Conference (Olivares J.Palomares AJ, Eds).2000
    10. Beau J F, Ravi PT, Wayne GR, Michael JD, Andrew RG. Sinorhizobium medicae genes whose regulation involves the ActS and/or ActR signal transduction proteins. Microbiology Letters 2004(236):21-31
    11. Bauer E, Kaspar T. Fischer HM, Hennecke H. Expression of the fixR-nifA operon in Bradyrhizobium japonicum depends on a new response regulator RegR. J. Bacteriol 1998(180):3853-3856
    1, Spaink. HP. Root nodulation and infection factors produced by rhizobial bacteria. Annu. Rev. Microbiol,2000(54): 257-288
    2, Chen W E. Wang S. Wang Y, Li X. Chen. Y Li. Characteristics of Rhizobium tianshanense sp. nov.. a moderately and slowly growing root nodule bacterium isolated from an arid saline environment in Xinjiang. People's Republic of China. Int. J. Syst. Bacteriol.1995(45):153-159.
    3, Chiang SL. JJ Mekalanos. rfb mutations in Vibrio cholerae do not affect surface production of toxin-coregulated pili but still inhibit intestinal colonization. Infect Immun 1999(67):976-80.
    4. Kalogeraki VS. SC Winans. Suicide plasmids containing promoterless reporter genes can simultaneously disrupt and create fusions to target genes of diverse bacteria. Gene 1997(188):69-75.
    5. Quandt J.Hynes MF.versatile suicide vectors which allow direct selection for gene replacement in Gram-negative bacteria.Gene 1993(127):15-21
    6. Sambrook J. Fritsch EF. Maniatis T. Molecular cloning. New York.Cold Spring Harbor Laboratory Press.1989
    7.Vincent JM. A manual for the practical study of root nodule bacteria. Oxford: Blackwell Scientific Publications.1970
    8. Fuqua WC, SC Winans. A LuxR-LuxI type regulatory system activates Agrobacterium Ti plasmid conjugal transfer in the presence of a plant tumor metabolite. J. Bacteriol.1994(176):2796-2806.
    9. Boesten B. Schluter A, Prell J. Kramer M. Lipka V. Priefer UB. Identifying genes suitable for constructing pH and salt tolerant Rhizobium inoculants for improving French bean cultivation under semiarid conditions. In: Proceedings of the Fourth European Nitrogen Fixation Conference (Olivares J,Palomares AJ. Eds).2000
    10. Beau J F. Ravi PT. Wayne GR, Michael JD. Andrew RG. Sinorhizobium medicae genes whose regulation involves the ActS and/or ActR signal transduction proteins. Microbiology Letters 2004(236):21-31
    11, Bauer E. Kaspar T. Fischer HM. Hennecke H. Expression of the fixR-nifA operon in Bradyrhizobium japonicum depends on a new response regulator RegR. J. Bacteriol 1998(180):3853-385
    12, ELIZABETH A. B. EMMERT. JOCELYN L. MILNER,JULIE C. LEE. KRISTIE L. PULVERMACHER. HEIDI A. OLIVARES. JON CLARDY. JO HANDELSMAN. Effect of Canavanine from Alfalfa Seeds on the Population Biology of Bacillus cereus. APPLIED AND ENVIRONMENTAL MICROBIOLOGY.1998:4683-4688
    1, Spaink. HP. Root nodulation and infection factors produced by rhizobial bacteria. Annu. Rev. Microbiol,2000(54): 257-288
    2, Chen W E. Wang S. Wang Y. Li X. Chen. Y Li. Characteristics of Rhizobium tianshanense sp. nov., a moderately and slowly growing root nodule bacterium isolated from an arid saline environment in Xinjiang. People's Republic of China. Int. J. Syst. Bacteriol.1995(45):153-159.
    3, Chiang SL. JJ Mekalanos. rfb mutations in Vibrio cholerae do not affect surface production of toxin-coregulated pili but still inhibit intestinal colonization. Infect Immun 1999(67):976-80.
    4, Kalogeraki VS. SC Winans. Suicide plasmids containing promoterless reporter genes can simultaneously disrupt and create fusions to target genes of diverse bacteria. Gene 1997(188):69-75.
    5. Quandt J.Hynes MF.versatile suicide vectors which allow direct selection for gene replacement in Gram-negative bacteria.Gene 1993(127):15-21
    6. Sambrook J, Fritsch EF, Maniatis T. Molecular cloning. New York,Cold Spring Harbor Laboratory Press.1989
    7. Vincent JM. A manual for the practical study of root nodule bacteria. Oxford: Blackwell Scientific Publications.1970
    8, Fuqua WC. SC Winans. A LuxR-LuxI type regulatory system activates Agrobacterium Ti plasmid conjugal transfer in the presence of a plant tumor metabolite. J. Bacteriol.1994(176):2796-2806.
    9. Boesten B. Schluter A. Prell J. Kramer M, Lipka V. Priefer UB. Identifying genes suitable for constructing pH and salt tolerant Rhizobium inoculants for improving French bean cultivation under semiarid conditions. In: Proceedings of the Fourth European Nitrogen Fixation Conference (Olivares J.Palomares AJ. Eds).2000
    10. Beau J F, Ravi PT, Wayne GR, Michael JD. Andrew RG. Sinorhizobium medicae genes whose regulation involves the ActS and/or ActR signal transduction proteins. Microbiology Letters 2004(236):21-31
    11. Bauer E,Kaspar T,Fischer HM,Hennecke H, Expression of the fixR-nifA operon in Bradyrhizobium japonicum depends on a new response regulator RegR. J. Bacteriol 1998(180):3853-3856

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700