嗜碱芽孢杆菌N16-5碱性甘露聚糖酶的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
β-甘露聚糖酶是第二大半纤维素酶类,在食品、医药、纺织、洗涤剂、造纸、饲料、石油开采等方面具有广泛的应用前景,碱性β-甘露聚糖酶具有特殊的应用优势,从碱湖嗜碱微生物资源中发掘新的碱性β-甘露聚糖酶具有很大的发展潜力。本文从分析我国碱湖微生物资源入手,进行了新型的碱性甘露聚糖酶产生菌的筛选、发酵条件优化、酶学表征、基因克隆、嗜碱机制以及工业应用评价等方面的研究,为我国工业用酶的开发提供新的思路与途径。论文取得的主要结果如下:
    (1)应用分子生态学的方法评估了我国碱湖中细菌的多样性,发现了碱湖环境中存在革兰氏阴性菌中变形菌纲α和β两个亚群及革兰氏阳性菌4个新的分类单位。在此基础上对来自我国内蒙、西藏等碱湖样品进行了嗜碱菌的分离培养与系统发育学分析,获得了嗜碱细菌106株,其最适生长pH范围集中在9-10之间,完成了其中32株嗜碱菌的系统发育学分析,有21株菌的16S rDNA序列同源性低于97%,可能是新的分类单位。分离获得的菌株N10是变形菌纲γ-3亚群中的成员,做为一个新属的模式菌,定名为淀粉水解嗜碱单胞菌(Alkalimonas amylolytica)。首次证明了Halomonas和BacillusrRNA第7类群是碱湖中主要的多糖水解酶产生者。从上述嗜碱菌中筛选获得了22株β-甘露聚糖酶产生菌,其中嗜碱菌N16-5能够高水平产生碱性甘露聚糖酶,经鉴定表明该菌属于Bacillus属的一新种,定名为解甘露聚糖芽孢杆菌Bacillus mannanolyticus sp.nov.。
    (2)研究了嗜碱菌N16-5产碱性甘露聚糖酶的营养及环境条件的优化及放大工艺,在优化条件下该菌株在250L和1000L罐中产酶水平可达470U/mL;该菌株发酵液粗酶的最适反应pH为9.5-10.0,最适反应温度为70℃,水解魔芋粉和槐豆胶的产物以寡糖为主。
    (3)对菌株Nl6-5的β-甘露聚糖酶进行了分离纯化与表征,获得了三种不同分子量的β-甘露聚糖酶M1、M2和M3,其分子量分别为51kD、38kD和34.7kD,最适作用pH分别为9.0、10.0和10.0。其中,M1和M3在pH10.0条件下最为稳定,而M2在pH8.0-10.0范围内稳定。上述三种酶的最适作用温度皆为70℃,对大部分金属离子不敏感,对魔芋葡萄甘露聚糖底物的Km值分别为2.9、1.7和12.5mg/mL。。
    (4)克隆了菌株N16-5的碱性甘露聚糖酶A(M1)基因,基因片段全长为1479 bp,编码493个氨基酸残基,推断分子量为54215 Da,属于糖苷水解酶家族5的A8亚族,
β-mannanase has extensive applications in the food, pharmaceutical, textile,detergent, paper-making, feedstock and petroleum industry. Alkaline β-mannanases provideobvious advantages for the applications in the processes that demand extreme conditions,such as in laundry detergents, paper pulp bleaching and hydraulic fracturing of oil well. Itwill be with great potential to discovery the alkaline β-mannanase from alkaliphilicmicroorganisms in soda lakes. This study describes the alkaliphilic resources in soda lakes ofChina, isolation and identification of alkaliphiles producing mannanase, optimization offermentation conditions, purification and properties of the mannanase, cloning and expressionof the mannanase gene, alkaline adaptation of the mannanase and evaluation ofbiotechnological potential of the mannanase.
    (1)The bacterial diversity of the soda lakes in China was investigated usingculture-dependent and culture-independent approaches. Phylogenetic analysis of 16S rRNAgene sequences cloned showed the presence of members of the α and β subdivision ofProteobacteria, which were not found previously among cultivated soda lake isolates, and thepresence of novel taxa, which have not been recognized before. Some 106 alkaliphilic isolateswere got under aerobic conditions and grew optimally between pH 9 and 10. Thephylogenetic analysis of 16S rDNA sequences from thirty-two isolates revealed that over 60%of soda lake isolates represent potentially novel species or genera (<97% sequence similarity).Of them, strain N10 was differentiated from currently recognized genera and proposed as thetype species of the new genus Alkalimonas within the gamma subdivision of theProteobacteria, named Alkalimonas amylolytica sp. nov. The members of Halomonas andBacillus rRNA group 7 were identified for the first time as the main polysaccharide-hydrolaseproducers in soda lakes. Twenty-two alkaliphilic isolates, exhibiting extracellular mannanaseactivity at pH 10, were screened from all of soda lake isolates. The results of polyphasictaxonomy revealed that β-mannanase producing strain N16-5 represented a new specieswithin the genus Bacillus, named Bacillus mannanolyticus sp. nov.
    (2)The effects of nutritional and environmental factors on the production of alkalineβ-mannanase by N16-5 were investigated and optimized, the enzyme activity can reach 470U/mL in 250L and 1000L fermentor. The pH and temperature optima of the crude mannanaseof strain N16-5 were 9.5 and 70 oC, respectively. The hydrolysates of Konjac powder andlocust bean gum by this enzyme were a series of oligosaccharides.
    (3)Three extracellular β-mannanase (M1, M2, M3) were purified to homogeneity fromthe culture broth of strain N16-5. Their molecular weights were estimated to be 51, 38 and 35
    kD by SDS-PAGE, respectively. These enzymes exhibited maximal activity at pH 9.0 and70oC (M1) and pH 10.0 and 70oC (M2 and M3), and the enzymes were stable at the range ofpH 8.0 to 10.0. The enzymes were resistant to some metals and surfactants. The Km values ofthe three β-mannanases for konjac β-glucomannan were 2.9, 1.7 and 12.5 mg ml-1,respectively.(4)The gene of alkaline β-mannanase A(M1) was cloned from the genome DNA ofstrain N16-5, the full length of the gene is 1479bp encoding 493 amino acids residue with adeduced molecular weight 54215 Da. M1 belongs to glycosyl hydrolase Family 5, SubfamilyA8. M1 gene is the firstly reported alkaline β-mannanase gene which belongs to Family 5.The amino acid sequence of strain N16-5 ManA deduced from the manA ORF showed highhomology to family 5 β-mannanases: 59% to ManG of Bacillus circulans, 42% to ManA ofThermobifida fusca, 36% to ManA of Vibrio sp. MA-138 and 35% to ManA of Streptomyceslividans 66. No significant similarity was found to the alkaline β-mannanases from Bacillussp AM001(19%), only one extensively characterized among alkaline β-mannanases reportedto date. The manA has been expressed extracellularly in Pichia pastoris. The recombinantstrain secreted 100.8 U/ml of active ManA after 96 h of growth in a complex medium, and theratio of extracellular enzyme is 73%.(5)The analysis of the amino acid sequence of M1 showed that M1 has high content ofA and G. Its C-terminal region (less than 160aa) showed no significant relevant with itsalkaline-adaptation characteristics by deletion mutation analysis. A pH-acid-shifting mutantwas obtained by Error-prone PCR technique. The optimal pH of the mutant is shift down from9.5 to 8.5, and it shows no activity at pH 10.0, while the wild type M1 retains 75% activity atpH 10.0. Compared the nucleotide sequence of the mutant with that of the wild type, threesites of the nucleotide acid sequence changed, which lead to two amino acid residues changed:133rd amino acid residue, Ala, was substituted by Val, 327th amino acid residue, Thr, wassubstituted by Ala. Only Ala-133→Val mutation was responsible for the shift of optimal pH,indicating that the Ala-133 residue was essential for catalytic activity of the β-mannanase inalkaline conditions.(6)The conditions for the products of enzymatic hydrolysis from konjac polysaccharidewere optimized and the hydrolysate were analyzed. The enzyme efficiently hydrolyzed konjacpolysaccharide producing a series of manno-oligosaccharides. The contents of mannobiose,mannotriose, and mannotetraose in the hydrolysate were 14%, 25% and 21.7%, respectively.In pilot-scale experiment of 10 M3 tank, the rate of substrate hydrolysis can reach more than90%, oligomer recovery rate more than 80% and the 1 to 6mer range is from 60% to 80%.The alkaline β-mannanase from the strain N16-5 was effective to degrade thepolysaccharide in hydraulic fracturing fluids within a certain pH and temperature range. Theresidual viscosity and percent residue-after-break of the fracturing fluids were reduced to lessthan 10 mPa.s and about 6-7 %. It suggested the β-mannanase, as a alkaline and thermostableenzyme breaker, can be advantageously employed during enhancing oil recovery operations.
引文
1. Adams MWW, Peter FB, Kelly RM. Extremozymes: expanding the limits of biocatalysis. Bio/Technology 1995, 13:662–668.
    2. Dekker RF, Richards GN. Hemicellulases: their occurrence, purification, properties, and mode of action. Adv Carbohydr Chem Biochem. 1976, 32: 277-352.
    3. Reid JS, Edwards ME, Gidley MJ, et al. Mechanism and regulation of galactomannan biosynthesis in developing leguminous seeds. Biochem Soc Trans. 1992, 20(1): 23-26.
    4. Egorov AV, Mestechkina NM, Shcherbukhin VD. Composition and structure of galactomannan from the seed of Gleditsia ferox Desf.. Prikl Biokhim Mikrobiol. 2004, 40(3): 370-375.
    5. Mestechkina NM. Fractional isolation and study of the structure of galactomannan from sophora (Styphnolobium japonicum) seeds. Prikl Biokhim Mikrobiol. 2004, 40(5): 596-601.
    6. Edwards ME, Choo TS, Dickson CA, et al. The seeds of Lotus japonicus lines transformed with sense, antisense, and sense/antisense galactomannan galactosyltransferase constructs have structurally altered galactomannans in their endosperm cell walls. Plant Physiol. 2004, 134(3): 1153-1162.
    7. Stepanenko BN, Afanas'Eva EM, Baksova RA. Chemical nature of eremuran, a new polysaccharide from Eremurus regelii roots. Biokhimiia. 1958, 23(5): 713-720.
    8. Nakajima T, Sasaki H, Sato M, et al. A cell wall proteo-heteroglycan from Piricularia oryzae: further studies of the structure. J Biochem (Tokyo). 1977, 82(6): 1657-1662.
    9. Dey PM, Del Campillo E. Biochemistry of the multiple forms of glycosidases in plants. Adv Enzymol Relat Areas Mol Biol. 1984, 56: 141-249.
    10. McCleary, BV. β-Mannanase. Methods Enzymol. 1988.160:596–610.
    11. McCleary, BV., Matheson NK. Action patterns and substratebinding requirements of b-D-mannanase with mannosaccharides and mannan-type polysaccharides. Carbohydr. Res. 1983.119:191–219.
    12. McCleary BV, Matheson NK. Enzymic analysis of polysaccharide structure, In R. S. Tipson and D. Horton (ed.), Advances in carbohydrate chemistry and biochemistry. Academic Press Ltd., London,United Kingdom.1986, 147–276.
    13. McCleary BV. Exo-β-D-mannanase from cyamopsis tetragonolobus guar seed. Methods in Enzymol. 1988,160:589-595
    14. Numao S, Kuntz DA, Withers SG, Rose DR. Insights into the mechanism of Drosophila melanogaster Golgi alpha-mannosidase II through the structural analysis of covalent reaction intermediates. J Biol Chem. 2003, 278(48): 48074-48083.
    15. McCleary BV. a-Galactosidase from lucerne and guar seed. Methods Enzymol. 1988.160:627–632.
    16. Millane RP,. Hendrixson TL. Crystal structures of mannan and glucomannans. Carbohydr. Polym. 1994, 25:245–251.
    17. Hazlewood GP, Gilbert HJ.. Molecular biology of hemicellulases, In M. P. Coughlan and G. P. Hazlewood (ed.), Hemicellulose and hemicellulases. Portland Press Research Monograph. Portland Press Ltd., Chapel Hill, N.C. 1993, 103–126
    18. Hashimoto Y, Fukumoto J.. Studies on the enzyme treatment of coffee beans. Purification of mannanase from Rhizopus niveus and its action on coffee mannan. Nippon Nogeikagaku Kaishi 1969, 43:317–322.
    19. Oda Y, Komaki T, Tonomura K. Purification and properties of extracellular b-mannanases produced by Enterococcus casseliflavus FL2121 isolated from decayed konjac. J. Ferment. Bioeng. 1993, 76:14–18.
    20. Oda Y, Komaki T, Tonomura K. Production of b-mannanase and b-mannosidase by Enterococcus casseliflavus FL2121 isolated from decayed Konjac. Food Microbiol. 1993, 10:353–358.
    21. Dahal P, Nevins DJ, Bradford KJ. Relationship of Endo-[beta]-D-Mannanase Activity and Cell Wall Hydrolysis in Tomato Endosperm to Germination Rates. Plant Physiol. 1997, 113(4): 1243-1252.
    22. Marraccini P, Rogers WJ, Allard C, et al. Molecular and biochemical characterization of endo-beta-mannanases from germinating coffee (Coffea arabica) grains. Planta. 2001, 213(2): 296-308.
    23. McCleary BV. beta-D-Mannosidase from Helix pomatia. Carbohydr Res. 1983, 111(2): 297-310.
    24. Yamaura I, Nozaki Y, Matsumoto T, et al. Purification and some properties of an endo-1,4-beta-D-mannanase from a marine mollusc, Littorina brevicula. Biosci Biotechnol Biochem. 1996, 60(4): 674-676.
    25. Xu B, Sellos D, Janson JC. Cloning and expression in Pichia pastoris of a blue mussel (Mytilus edulis) beta-mannanase gene. Eur J Biochem. 2002, 269(6): 1753-1760.
    26. Kataoka N, Tokiwa Y. Isolation and characterization of an active mannanase-producing anaerobic bacterium, Clostridium tertium KT-5A, from lotus soil. J Appl Microbiol. 1998, 84(3): 357-367.
    27. Li W, Dong Z, Cui F. Purification and characterization of an endo-beta-1, 4-mannanase from Bacillus subtilis BM9602. Wei Sheng Wu Xue Bao. 2000, 40(4): 420-424.
    28. Politz O, Krah M, Thomsen KK, et al. A highly thermostable endo-(1,4)-beta-mannanase from the marine bacterium Rhodothermus marinus. Appl Microbiol Biotechnol. 2000, 53(6): 715-721.
    29. Parker KN, Chhabra SR, Lam D, et al. Galactomannanases Man2 and Man5 from Thermotoga species: growth physiology on galactomannans, gene sequence analysis, and biochemical properties of recombinant enzymes. Biotechnol Bioeng. 2001, 75(3): 322-333.
    30. Zakaria MM, Ashiuchi M, Yamamoto S, et al. Optimization for beta-mannanase production of a psychrophilic bacterium, Flavobacterium sp. Biosci Biotechnol Biochem. 1998, 62(4): 655-660.
    31. Akita, M,Takeda N. Crystallization and preliminary X-ray study of alkaline mannanase from an alkaliphilic Bacillus isolate. Acta Crystallogr D Biol Crystallogr. 2004, 60: 1490-1492.
    32. Araki T, Kitamikado M. Purification and characterization of a novel exo-beta-mannanase from Aeromonas sp. F-25. J Biochem (Tokyo). 1982, 91(4): 1181-1186.
    33. Chen Y, Long J, Liao L, et al. Study on the production of beta-mannanase by Bacillus M50. Wei Sheng Wu Xue Bao. 2000, 40 (1): 62-68.
    34. Montiel MD, Hernandez M, Rodriguez J, et al. Evaluation of an endo-beta-mannanase produced by Streptomyces ipomoea CECT 3341 for the biobleaching of pine kraft pulps. Appl Microbiol Biotechnol. 2002, 58(1): 67-72.
    35. Setat ME, Ademark P, van Zyl WH, et al. Expression of the Aspergillus aculeatus endo-beta-1,4-mannanase encoding gene (man1) in Saccharomyces cerevisiae and characterization of the recombinant enzyme. Protein Expr Purif. 2001, 21(1): 105-114.
    36. Gibbs MD, Reeves RA, Sunna A, et al. Sequencing and expression of a beta-mannanase gene from the extreme thermophile Dictyoglomus thermophilum Rt46B.1, and characteristics of the recombinant enzyme. Curr Microbiol. 1999, 39(6): 0351-0357.
    37. Hashem AM, Ismail AM, El-Refai MA, et al. Production and properties of beta-mannanase by free and immobilized cells of Aspergillus oryzae NRRL 3488. Cytobios. 2001, 105(409): 115-130.
    38. Wu J, He B. Purification and properties of beta-D-mannanase from Nocardioform actinomycetes. Wei Sheng Wu Xue Bao. 2000, 40(1): 69-74.
    39. Ethier N, Talbot G, Sygusch J. Gene cloning, DNA sequencing, and expression of thermostable beta-mannanase from Bacillus stearothermophilus. Appl Environ Microbiol. 1998, 64(11): 4428-4432.
    40. Tamaru Y, Araki T, Amagoi H, et al. Purification and characterization of an extracellular beta-1,4-mannanase from a marine bacterium, Vibrio sp. strain MA-138. Appl Environ Microbiol. 1995, 61(12): 4454-4458.
    41. Christgau S, Kauppinen S, Vind J, et al. Expression cloning, purification and characterization of a beta-1,4-mannanase from Aspergillus aculeatus. Biochem Mol Biol Int. 1994, 33(5): 917-925.
    42. Akino T, Kato C, Horikoshi K. Two Bacillus beta-mannanases having different COOH termini are produced in Escherichia coli carrying pMAH5. Appl Environ Microbiol. 1989, 55(12): 3178-3183.
    43. Ma Y, Xue Y, Dou Y, et al. Characterization and gene cloning of a novel beta-mannanase from alkaliphilic Bacillus sp. N16-5. Extremophiles. 2004.
    44. 龙健儿,陈一平. β-甘露聚糖酶的研究现状. 微生物学杂志. 1998,18(3):44-49.
    45. Akita M, Takeda N, Hirasawa K, et al. Crystallization and preliminary X-ray study of alkaline mannanase from an alkaliphilic Bacillus isolate. Acta Crystallogr D Biol Crystallogr. 2004, 60: 1490-2.
    46. Hilge M, Gloor SM, Rypniewski W, et al. High-resolution native and complex structures of thermostable beta-mannanase from Thermomonospora fusca -substrate specificity in glycosyl hydrolase family 5. Structure. 1998, 6(11): 1433-1444.
    47. Hogg D, Woo EJ, Bolam DN, et al. Pickersgill RW. Crystal structure of mannanase 26A from Pseudomonas cellulosa and analysis of residues involved in substrate binding. J Biol Chem. 2001, 276(33): 31186-31192.
    48. Boraston AB, Revett TJ, Boraston CM, et al. Structural and thermodynamic dissection of specific mannan recognition by a carbohydrate binding module, TmCBM27. Structure (Camb). 2003, 11(6): 665-675.
    49. Roske Y, Sunna A, Pfeil W, et al. High-resolution crystal structures of Caldicellulosiruptor strain Rt8B.4 carbohydrate-binding module CBM27-1 and its complex with mannohexaose. J Mol Biol. 2004, 340(3): 543-554.
    50. Mo B, Bewley JD. The relationship between beta-mannosidase and endo-beta-mannanase activities in tomato seeds during and following germination: a comparison of seed populations and individual seeds. J Exp Bot. 2003, 54(392): 2503-2510.
    51. Xu B, Munoz II, Janson JC, et al. Crystallization and X-ray analysis of native and selenomethionyl beta-mannanase Man5A from blue mussel, Mytilus edulis, expressed in Pichia pastoris. Acta Crystallogr D Biol Crystallogr. 2002, 58(3): 542-545.
    52. Sabini E, Brzozowski AM, Dauter M, et al. Crystallization and preliminary X-ray crystallographic analysis of a Trichoderma reesei beta-mannanase from glycoside hydrolase family 5. Acta Crystallogr D Biol Crystallogr. 1999, 55(5): 1058-1060.
    53. Scott M, Pickersgill RW, Hazlewood GP, et al. Crystallization and preliminary X-ray diffraction studies of a family 26 endo-beta-1,4 mannanase (ManA) from Pseudomonas fluorescens subspecies cellulosa. Acta Crystallogr D Biol Crystallogr. 1998, 54 (1): 129-131.
    54. Bolam DN, Hughes N, Virden R,et al. Mannanase A from Pseudomonas fluorescens ssp. cellulosa is a retaining glycosyl hydrolase in which E212 and E320 are the putative catalytic residues. Biochemistry. 1996, 35(50): 16195-16204.
    55. Luthi E, Jasmat NB, Grayling RA, et al. Cloning, sequence analysis, and expression in Escherichia coli of a gene coding for a beta-mannanase from the extremely thermophilic bacterium "Caldocellum saccharolyticum. Appl Environ Microbiol. 1991, 57(3): 694-700.
    56. Braithwaite KL, Black GW, Hazlewood GP, et al. A non-modular endo-beta-1,4-mannanase from Pseudomonas fluorescens subspecies cellulosa. Biochem J. 1995, 305: 1005-1010.
    57. Arcand N, Kluepfel D, Paradis FW, et al. Beta-mannanase of Streptomyces lividans 66: cloning and DNA sequence of the manA gene and characterization of the enzyme. Biochem J. 1993, 290: 857-863.
    58. Halstead JR, Vercoe PE, Gilbert HJ, et al. A family 26 mannanase produced by Clostridium thermocellum as a component of the cellulosome contains a domain which is conserved in mannanases from anaerobic fungi. Microbiology. 1999, 145: 3101-3108.
    59. Tamaru Y, Karita S, Ibrahim A, et al.. A large gene cluster for the Clostridium cellulovorans cellulosome. J Bacteriol. 2000, 182(20): 5906-5910.
    60. Tamaru Y, Doi RH. The engL gene cluster of Clostridium cellulovorans contains a gene for cellulosomal manA. J Bacteriol. 2000, 182(1): 244-2447.
    61. Takada G, Kawaguchi T, Kaga T, et al. Arai M. Cloning and sequencing of beta-mannosidase gene from Aspergillus aculeatus no. F-50. Biosci Biotechnol Biochem. 1999, 63(1): 206-209.
    62. Ademark P, Varga A, Medve J,et al. Softwood hemicellulose-degrading enzymes from Aspergillus niger: purification and properties of a beta-mannanase. J Biotechnol. 1998, 63(3): 199-210.
    63. Harjunpaa V, Helin J, Koivula A, et al. A comparative study of two retaining enzymes of Trichoderma reesei: transglycosylation of oligosaccharides catalysed by the cellobiohydrolase I, Cel7A, and the beta-mannanase, Man5A. FEBS Lett. 1999, 443(2): 149-153.
    64. Akino T, Nakamura N, Horikoshi K. Production of β-mannosidase and β-mannanase by alkalophilic Bacillus sp. Appl. Microbiol. Biotechnol. 1987, 26:323-327.
    65. Gilkes NR, Jervis E, Henrissat B, et al. The adsorption of a bacterial cellulase and its two isolated domains to crystalline cellulose. J Biol Chem. 1992, 267(10): 6743-6749.
    66. Gilkes NR, Kilburn DG, Miller RC, et al. Visualization of the adsorption of a bacterial endo-beta-1,4-glucanase and its isolated cellulose-binding domain to crystalline cellulose. Int J Biol Macromol. 1993, 15(6): 347-351.
    67. Cann IK, Kocherginskaya S, King MR, et al. Molecular cloning, sequencing, and expression of a novel multidomain mannanase gene from Thermoanaerobacterium polysaccharolyticum. J Bacteriol. 1999, 181(5): 1643-1651.
    68. Doi RH, Tamaru Y. The Clostridium cellulovorans cellulosome: an enzyme complex with plant cell wall degrading activity. Chem Rec. 2001, 1(1): 24-32.
    69. Hagglund P, Eriksson T, Collen A, et al. A cellulose-binding module of the Trichoderma reesei beta-mannanase Man5A increases the mannan-hydrolysis of complex substrates. J Biotechnol. 2003, 101(1): 37-48.
    70. Hogg D, Pell G, Dupree P, et al. The modular architecture of Cellvibrio japonicus mannanases in glycoside hydrolase families 5 and 26 points to differences in their role in mannan degradation. Biochem J. 2003, 371: 1027-1043.
    71. Bolam DN, Xie H, Pell G, Hogg D,et al. X4 modules represent a new family of carbohydrate-binding modules that display novel properties. J Biol Chem. 2004, 279(22): 22953-22963.
    72. Stoll D, Boraston A, Stalbrand H, et al. Mannanase Man26A from Cellulomonas fimi has a mannan-binding module. FEMS Microbiol Lett. 2000, 183(2): 265-269.
    73. el-Helow ER, Khattab AA. The development of a Bacillus subtilis 168 culture condition for enhanced and accelerated beta-mannanase production. Acta Microbiol Immunol Hung. 1996, 43(4): 289-299.
    74. Jackson ME, Fodge DW, Hsiao HY. Effects of beta-mannanase in corn-soybean meal diets on laying hen performance. Poult Sci. 1999, 78(12): 1737-1741.
    75. Jackson ME, Anderson DM, Hsiao HY, et al. Beneficial effect of beta-mannanase feed enzyme on performance of chicks challenged with Eimerla sp. and Clostridium perfringens. Avian Dis. 2003, 47(3): 759-763.
    76. Sachslehner A, Foidl G, Foidl N, et al. Hydrolysis of isolated coffee mannan and coffee extract by mannanases of Sclerotium rolfsii. J Biotechnol. 2000, 80(2): 127-134.
    77. Kansoh AL, Nagieb ZA. Xylanase and mannanase enzymes from Streptomyces galbus NR and their use in biobleaching of softwood kraft pulp. Antonie Van Leeuwenhoek. 2004, 85(2): 103-114.
    78. Clarke JH, Davidson K, Rixon JE, et al. A comparison of enzyme-aided bleaching of softwood paper pulp using combinations of xylanase, mannanase and alpha-galactosidase. Appl Microbiol Biotechnol. 2000, 53(6): 661-667.
    79. Genencor International Inc.Website: http://www.genencor.com
    80. Burton SG, Cowan DA, Woodley JM. The search for the ideal biocatalyst. Nat Biotechnol. 2002, 20(1): 37-45.
    81. Takami, H, Inoue, A., Fuji, F. et al. Microbial flora in the deepest sea mud of the Mariana Trench. FEMS. Microbiol. Lett. 1997, 152: 279-285.
    82. Xu Y, Zhou PJ, Tian XY. Characterization o two novel haloalkaliphilic archaea Natronorubrum bangense gen. nov., and Natronorubrum tibetense gen. nov., sp. nov. Int. J. Syst. Bacteriol. 1999, (49): 261-266.
    83. Zhang W., Mao W., Xue Y., et al. J. Biodiversity of alkaliphilic bacteria in soda lakes of Hailaer, Inner Mongolia. Biodiversity Science. 2001, (9): 44-50.
    84. Joe Sambrook, David Russell. Molecular Cloning: A Laboratry Manual. Cold Spring Harbor Lab(CSHL) Press, 2001.
    85. 《菌种保藏手册》(中科院微生物研究所编,科学出版社出版).
    86. 《工业微生实验技术手册》(诸葛健、王正祥编著,北京:中国轻工业出版社,1994.
    87. 《 Taxonomic Studies On Coryneform Bacteria ⅣMorphological, Cultural, Biochemical, And Physiological Characteristics》(Written By Kazuhiko Yamada、Kazuo Komagata, From J. Gen. Appl. Microbiol., 1972, 18(6): 399-416.
    88. Woese CR, Weisburg WG, Hahn C. M.,et al. The phylogeny of pruple Bacteria: The gamma subdivision. Syst. Appl. Microbiol. 1985, (6): 25-33.
    89. Duckworth AW, Grant WD, Jones BE, et al. Phylogenetic diversity of soda lake alkaliphiles. FEMS Microbiol. Ecol. 1996, (19): 181-191.
    90. McCleary, B. V.. A simple assay procedure for b-D-mannanase. Carbohydr. Res. 1978, 67:213–221.
    91. McCleary, B. V.. a-Galactosidase from lucerne and guar seed. Methods Enzymol. 1988, 160:627–632.
    92. McCleary, B. V.. Soluble, dye-labeled polysaccharides for the assay of endohydrolases. Methods Enzymol. 1988, 160:74–86.
    93. 许正宏. 微生物耐碱性木聚糖酶的合成、调控及底物降解方式的研究.2005,江南大学博士学位论文.
    94. 汪家政,范明编著.蛋白质技术手册.北京:科学出版社,2000.111-122.
    95. Laemmli, UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature . 1970, 227:680–685.
    96. Tian X, Xu Y, Ma Y, et al. Purification and properties of beta-mannanases from alkalophilic Bacillus N16-5. Wei Sheng Wu Xue Bao. 1993, 33(2): 115-121.
    97. Duffaud GD, McCutchen CM, Leduc P, et al. Purification and characterization of extremely thermostable beta-mannanase, beta-mannosidase, and alpha-galactosidase from the hyperthermophilic eubacterium Thermotoga neapolitana 5068. Appl Environ Microbiol. 1997, 63(1): 169-177.
    98. Sunna A, Gibbs MD, Chin CW, Nelson PJ, Bergquist PL. A gene encoding a novel multidomain beta-1,4-mannanase from Caldibacillus cellulovorans and action of the recombinant enzyme on kraft pulp. Appl Environ Microbiol. 2000, 66(2): 664-670.
    99. Mendoza NS, Arai M, Sugimoto K, Ueda M, Kawaguchi T, Joson LM. Cloning and sequencing of beta-mannanase gene from Bacillus subtilis NM-39. Biochim Biophys Acta. 1995, 1243(3): 552-554.
    100. NCBI:http://www.ncbi.nlm.nih.gov/blast/
    101. Perlman D, Halvorson HO. A putative signal peptidase recognition site and sequence in eukaryotic and prokaryotic signal peptides. J Mol Biol. 1983, 167(2): 391-409.
    102. Perlman D, Halvorson HO. Distinct repressible mRNAs for cytoplasmic and secreted yeast invertase are encoded by a single gene. Cell. 1981, 25(2): 525-536.
    103. Perlman D, Raney P, Halvorson HO. Mutations affecting the signal sequence alter synthesis and secretion of yeast invertase. Proc Natl Acad Sci U S A. 1986, 83(14): 5033-5037.
    104. Thompson J D, Gibson T J, Plewniak F, et al. The clustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 1997, 24: 4876~48825411653
    105. Henrissat B. Glycosidase families. Biochem Soc Trans. 1998, 262: 1533-1566.
    106. Henrissat B, Bairoch A. Updating the sequence-based classification of glycosyl hydrolases. Biochem J. 1996, 316 (2): 695-6.
    107. Henrissat B, Coutinho PM. Classification of glycoside hydrolases and glycosyltransferases from hyperthermophiles. Methods Enzymol. 2001, 330: 183-201.
    108. Hilge M, Gloor SM, Rypniewski W, et al. High-resolution native and complex structures of thermostable beta-mannanase from Thermomonospora fusca substrate specificity in glycosyl hydrolase family 5. Structure.1998,6 (11):1433-1444.
    109. Oksanen T, Pere J, Paavilainen L, et al. Treatment of recycled kraft pulps with Trichoderma reesei hemicellulases and cellulases. J Biotechnol. 2000 Feb 28;78(1):39-48.
    110.张维杰. 糖复合物生化研究技术(第 2 版) [M]. 杭州,浙江大学出版社. 1999
    111. Mitsuishi Y. The modes of action of three xylanase from Mesophilic Fungus strain Y-94 on xylooligosaccharides. Agric.Biol.Chem. 1988, 52:921-927.
    112.Sambrook 等,分子克隆手册,北京:科学出版社,1998
    113.Danson MJ, Hough DW. Structure, function and stability of enzymes from the Archaea. Trends Microbiol, 1998,(6):307-314.
    114.Rice DW. Insights into the molecular basis ofthermal stability from the analysis of ion-pair networks in theglutamate dehydrogenase family. Eur J Biochem . 1998,255:336-346.
    115.Youhei Yamagata, Hiroshi Maeda, Tasuku Nakajima, et al. The molecular surface of proteolytic enzymes has an important role in stability of the enzymatic activity in extraordinary environments. Eur. J.Biochem. 2002, 269:4577-4585.
    116.Nielsen JE, Daniel LB Elecrostatics in the active site of an α-amylase. Eur. J. Biochem. 1999, 264: 816-824.
    117.Park JS, Horinouchi S, Beppu T.Characterization of leader peptide of an endo-type cellulase produced by an alkalophilic Streptomyces strain. Agric Biol Chem. 1991, 55: 1745-1750.
    118. Matsumura M, Becktal W.J, Matthews B.W. Nature.1988, 334:406-410
    119.Coughlan S, Wang X.G, Britton K.L, et.al. Contribution of an aspartate residue, D114, in the active site of clostridial glutamate dehydrogenase to the enzyme's unusual pH dependence. Biochimica. Biophy. Acta. 2001, 1544:10-17.
    120.Shirai T, Suzuki A, Yamane T.,et al. High-resoluition crystal structure of M-protease: phylogeny aided analysisi of the high –alkaline adaptation mechanism. Prot. Eng. 1997, (10): 627-634.
    121. Van der Laan, J.M, Misset O,et al. Strucure and functional consequences of enginerring the high alkaline serine protease PB92.In:Subtilisn Enzymes: Pratical Protein Engineering (Bott, R., and Betzel, C., eds ) Plenum Press,New York, 1996, 203-218.
    122. Russell A.J., Fersht A.R. Rational modification of enzyme catalysis by engineering surface charge. Nature 1987, 328:496-500.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700