甜菜M14品系花器官特异表达蛋白质的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物无融合生殖是指不经精卵融合而以种子进行繁殖的一种特殊的生殖方式,它可以保存优异的基因型、固定杂种优势、改变育种生产程序,因此对无融合生殖的研究在农业生产和育种工作中具有深远的经济意义。目前关于植物无融合生殖的研究主要集中在基因组水平上,然而在基因组水平上所获取的基因表达的信息并不足以揭示该基因在细胞内的确切功能。因此要对生命复杂的活动有全面和深入的认识,直接对蛋白质的表达模式和功能模式进行研究就成为生命科学发展的必然趋势,从基因水平向蛋白质水平的深化已经成为生命科学研究的迫切需要和新的任务。
     甜菜M14品系是由栽培甜菜(Beta vulgaris L.)与四倍体白花甜菜(Beta corolliflora Zoss.)种间杂交,进一步回交获得的甜菜无融合生殖单体附加系,其染色体组除了含有18条栽培甜菜染色体外,还附加有白花甜菜第9号染色体,附加染色体的传递率高达96.5%,是研究无融合生殖极其难得的材料。本研究以具有无融合生殖特性的甜菜M14品系和正常栽培甜菜为研究对象,从蛋白质水平上对甜菜M14品系的无融合生殖特性进行了比较蛋白质组学研究,通过改进和优化甜菜花器官总蛋白的提取方法及双向电泳条件,建立了高质量的甜菜花器官总蛋白质的双向凝胶电泳技术平台,获得了图像清晰、分辨率高和重复性好的甜菜M14品系和正常栽培甜菜在不同pH梯度下的2-DE图谱。利用Imagemaster 2D Platinum 6.0图像分析软件对花器官总蛋白质双向电泳图谱进行比较分析,结果显示,在三次重复实验的甜菜M14 2-DE图谱上检测到了1109±48个蛋白质点,而在栽培甜菜2-DE图谱上检测到了1006±37个蛋白质点。通过定性和定量分析发现共有96个蛋白质点的表达发生显著的变化,其中在栽培甜菜中缺失而在甜菜M14中特异表达的蛋白质点18个,只在栽培甜菜中表达的蛋白质点5个;与对照组栽培甜菜相比,在甜菜M14中表达丰度减弱的蛋白质点46个,表达丰度增强的蛋白质点27个(P<0.05)。将96个差异表达的蛋白点进行质谱分析,其中72个蛋白点得到了成功的鉴定。使用BLASTx程序,将采用mRNA差异显示技术和抑制消减杂交技术已经获得的298个ESTs序列与质谱鉴定出的72个蛋白点进行比对,结果6个在甜菜M14和栽培甜菜中表达量差异的蛋白质点、2个在甜菜M14中特异表达的蛋白质点与ESTs序列具有显著性匹配(E<1e-7)。根据Bevan等建立的蛋白质功能分类体系,对已经鉴定的差异表达蛋白质进行功能分析,结果表明,这些差异表达的蛋白质分别属于代谢相关蛋白、能量相关蛋白、蛋白质合成相关蛋白、胁迫和防御相关蛋白等十大类。这些差异表达蛋白的鉴定为全面、深入揭示甜菜M14品系无融合生殖特性的分子机制和蛋白质表达特性奠定了良好的基础。
Apomixis is an asexual reproductive process by which plants produce seed without fertilization through female syngamy that produces embryos genetically identical to the maternal parent. It preserves heterozygosity vigor , maintains superior genotypes and changes the breeding production process by parthenogenetic embryo development. Therefore, the research on apomixis has far-reaching economic significance in the agricultural production and breeding work.The plant apomixis research to date mainly focuses on the level of the genome, but the gene expressed information obtained from the level of the genome is not sufficient to reveal the exact function of the gene. Therefore, in order to have comprehensive and thorough understanding to the life complex activity, the research on protein expression patterns and functional mode of life sciences has become the inevitable trend of development.
     Apomictic monosomic addition line M14 of Beta corolliflora Zoss. was the progeny from the hybridization of Beta vulgaris L. and Beta corolliflora Zoss. in sugar beet. Constituted of the normal 18 Beta vulgaris L. chromosomes with the No.9 chromosome of Beta corolliflora Zoss., M14 was found having a chromosome transmission frequency 96.5%, thus M14 is a precious material for research of apomixis. This research take apomictic monosomic addition line M14 and the normal cultivation beet as materials, and was carried on differential proteomic analysis by two-dimensional gel electrophoresis technology. Through improving and optimizing the floral organs of sugar beet protein extraction method and two-dimensional gel electrophoresis conditions,a high resolution and reproducible 2-DE analysis systerm was established, and we have generated high resolution and reproducible 2-DE maps for two type floral organs of sugar beet with different pH range.
     Using Imagemaster 2D gel analysis software, 1109±48 spots and 1006±37 spots were reproducibly detected across three replicate gels of apomictic and sexual floral organs of sugar beet, respectively. Ninety-six protein spots showed reproducible and statistically significant changes in M14 compared to B. vulgaris. Of them, 18 were unique to apomictic floral organs and five were only presented in sexual floral organs. Of the 830 common spots, 27 were found to be up-regulated and 46 were down-regulated in apomictic floral organs compared to sexual floral organs when p-value of 0.05 was used as the threshold. Protein spots from the gels were subjected to in-gel digestion and MS analysis. A total of 72 protein spots were identified by MS and MASCOT database searching. All of the unique ESTs sequences obtained by SSH and DDRT-PCR experiments were compared to the protein sequences identified by proteomics using BlastX. With an E-value less than 1e-7 as a criterion for significance, six proteins which were differences in protein expression between M14 and B. vulgaris, and two proteins only expressed in M14 showed significant match.The identified proteins were classified into 10 groups according to the functional categories established by Bevan et al. The results showed that the differentially expressed proteins involved in a wide range of cellular processes, such as metabolism, energy, protein synthesis, stress and defense etc.Identification of the differentially expressed proteins provides a good foundation for comprehensive and in-depth study of the apomixis molecular mechanism, and specific protein expression pattern in monosomic addition line M14.
引文
[1] Koltunow A M. Apomixis: embroy sacs and embryos formed without meiosis or fertilization in ovules[J]. Plant Cell, 1993, 5: 1425-1437.
    [2] Vielle-Calzada J P, Grossniklaus U, homas T J, et al. Apomixis: The Asexual Revolution[J]. Science, 1996b, 274: 1322-1323.
    [3] Schranz M E, Kantama L, de Jong H, Mitchell-Olds T. Asexual reproduction in a close relative of Arabidopsis: a genetic investigation of apomixis in Boechera (Brassicaceae) [J]. New Phytologist, 2006, 171(2): 425-438.
    [4] Eckardt N A. Patterns of gene expression in apomixis[J]. Plant Cell, 2003, 15: 1499-1501.
    [5] Richards AJ. Apomixis in flowering plant: an overview [J]. PhilTransR Soe Lond B, 2003, 358: 1085-1093.
    [6] Noyes R D, Baker R, Mai B. Mendelian segregation for two-factor apomixis in Erigeron annuus (Asteraceae) [J]. Heredity, 2007, 98(2): 92-98.
    [7] Catanach, A.S., Erasmuson, S.K., Podivinsky, E., Jordan, B.R., et al. Deletion mapping of genetic regions associated with apomixis in Hieracium[J]. PNAS., 2006, 103: 18650-18655.
    [8] Ozias-Akins P., Van Dijk P.J., Mendelian genetics of apomixis in plants[J]. Annu Rev Genet, 2007, 41: 509-537.
    [9] Boutilier K, Offringa R, Sharma V J. Ectopic expression of BABY BOOM triggers a conversion from vegetative to embryonic growth[J]. Plant Cell, 2002, 14: 1737-1749.
    [10] Albertini E, Marconi G, Reale L, et al. SERK and APOSTART. Candidate genes for apomixis in Poa pratensis[J]. Plant physiol, 2005, 138(4): 2185-2199.
    [11] Singh M, Burson B L, Finlayson S A. Isolation of candidate genes for apomictic development in buffelgrass (Pennisetum ciliare) [J]. Plant Mol Biol, 2007, 64(6): 673-682.
    [12] Matzk F, Prodanovic S, B?umlein H, Schubert I. The Inheritance of apomixis in Poa pratensis confirms a five locus model with differences in gene expressivity and penetrance[J]. PlantCell, 2005, 17(1): 13-24.
    [13] Kantama L., Sharbel T F., Schranz M E., Mitchell-Olds T., et al. Diploid apomicts of the Boechera holboellii complex display large-scale chromosome substitutions and aberrant chromosomes[J]. PNAS, 2007, 104: 14026-14031.
    [14] Nassar N M A, Kalkmann D C, Collevatti R. A further study of microsatillite on apomixis in cassava[J]. Hereditas, 2007, 144: 181-184.
    [15] Ross A. Bieknell, Anna M. Koltunow. Understanding apomixis: Recent advances and remaining conundrums[J]. Plant Cell, 2004, 16: S228-S245.
    [16] Daniel Grimanelli, Olivier Leblanc, Enrico Perotti, et al. Develpmental genetics of gametophytic apomixes[J]. Trends Genetics, 2001, 17(10): 597-604.
    [17] Jassem B. Apomixis in the genus Beta [J]. Apomixis Newsl, 1990, 2: 7-23.
    [18]郭德栋,王桂芝.栽培甜菜(Beta vulgaris L. )×白花甜菜(Beta corolliflora Zoss. )种间杂交的研究[J].中国遗传学研究.北京:中国科技出版社, 1991, 93-94.
    [19]郭德栋,康传红,刘丽萍,等.异源三倍体甜菜(VVC)无融合生殖的研究[J].中国农业科学, 1999, 32(4): 1-5.
    [20]戈岩,何光存,郭德栋,等.无融合生殖甜菜M14的GISH和BAC-FISH研究[J].中国科学(C辑:生命科学) , 2007, 37(3): 209-216.
    [21]申业,申家恒,郭德栋.甜菜单体附加系M14无融合生殖的细胞胚胎学研究[J].西北植物学报, 2006, 26(5): 957-963.
    [22] Fang X H, Guo D D, Xu Z Y, et al. Construction of a binary BAC library for an apomictic monosomic addition line of Beta corolliflora in sugar beet and identification of the clones derived from the alien chromosome[J]. Theoretical and Applied Genetics, 2004, 108: 1420-1425.
    [23]马春泉.利用抑制消减杂交技术寻找无融合生殖相关基因[D].硕士学位论文,黑龙江大学, 2005.
    [24]于冰,李海英,马春泉.甜菜无融合生殖系花期差异表达基因cDNA文库的构建[J].高技术通讯, 2006, 9: 954-958.
    [25]李海英,马春泉,于冰,等.利用mRNA差异显示技术分离甜菜M14品系特异表达基因的cDNA片段[J].植物研究, 2007, 27(4): 465-468.
    [26]朱明.甜菜M14品系花期特异表达基因cDNA全长的获得及其蛋白质结构预测[D].硕士学位论文,黑龙江大学, 2007.
    [27] Pnadey A, Mann M. Proetomics to study genes and genomes [J]. Nature, 2000, 405: 837-846.
    [28] Abbott A. And now for the proteome[J]. Nature, 2001, 409: 747.
    [29] Fields S. Proteomics in genomeland[J]. Science, 2001, 291: 1221-1224.
    [30] Swinbanks, D. Government backs proteome proposal[J]. Nature, 1995, 378: 653.
    [31] Wasinger, V C, Cordwell, S J, Cerpa-Poljak, et al. Progress with gene-productmapping of the mollicutes: Mycoplasma genitalium[J]. Electrophoresis, 1995, 16: 1090-1094.
    [32] Sixue Chen, Alice C. Harmon. Advances in plant proteomics[J]. Proteomics, 2006, 6: 5504-5516.
    [33] Qureshi M I, Qadir S, Zolla L. Proteomics-based dissection of stress-responsive pathways in plants[J]. Journal of Plant Physiology, 2007, 164: 1239-1260.
    [34] Stenmark H, Olkkonen V M. The Rab GTPase family[J]. Genome Biology, 2001, 2: 3007. 1-3007. 7.
    [35] Smith J C, Figeys D. Proteomics technology in systems biology[J]. Molecular Biosystems, 2006, 2: 364-370.
    [36]阮松林,马华升,王世恒,等.植物蛋白质组学研究进展[J].遗传, 2006, 28(11): 1472-1486.
    [37] Liebler D C. Introduction to Proteomics: Tools for the new biology [M]. New Jersey: Humana Press, 2002, 67.
    [38]曾嵘,夏其昌.蛋白质组学研究进展与趋势[J].中国科学院院刊, 2002, 17: 166-169.
    [39]尹文兵,黄勤妮,印莉萍.模式植物蛋白质组研究进展[J].生物信息学, 2004, 2: 11.
    [40]孙言伟,姜颖,贺福初.差异蛋白质组学研究进展[J].生命科学, 2005, 17(2): 137-140.
    [41]卫功宏,印莉萍.蛋白质组学相关概念与技术及其研究进展[J].生物学杂志, 2004, 19(4): 1-3.
    [42]邓琳.蛋白质组学研究进展与趋势[J].中国科技信息, 2005, 13: 37-39.
    [43] O’Farrell P H. High resolution two-dimensional gel electrophoresis of proteins[J]. BioChem, 1975, 10 (50): 4007-4021.
    [44] Gorg A, Postel W, Gunther S. The current state of two-dimensional electrophoresis with immobilized PH gradients[J]. Elctrophoresis, 1988, 9: 531-546.
    [45] Gorg A, Weiss W, Dunn M J. Current two-dimensional electrophoresis technology for proteomics[J]. Proteomics, 2004, 4(12): 3365-3685.
    [46] Christoph S Klade, Tilman Voss, Edeltraud Krystek, et al. Identification of tumor antigens in renal cell carcinoma by serological proteome analysis[J]. Proteomics, 2001, 1(7): 890-898.
    [47] JiríStulík, LenkaHernychová, Stanislava Porkertová, et al. Proteome study of colorectal carcinogenesis[J]. Electrophoresis, 2001, 22(14): 3019-3025.
    [48] Xiaoxia Guo, Wantao Ying, Jinghong Wan, et al. Proteomic characterization of early-stage differentiation of mouse embryonic stem cells into neural cells induced by all-transretinoic acidin vitro[J]. Electrophoresis, 2001, 22(14): 3067-3075.
    [49] Sun Tae Kim, Kyu Seong Cho, Yu Sin Jang, et al. Two-dimensional Electrophoretic Analysis of Rice Proteins by Polyethylene Glycol Fraction for Protein Arrays[J]. Electrophoresis, 2001, 22(10): 2103-2109.
    [50]曹晶,谢锦云. 2DE技术中疏水性和碱性蛋白质的研究进展[J].生命科学研究, 2004, 8: 207-214.
    [51] Sebastien, Erwin Witters, Peter Deckers, et al. Preparation of protein extracts from reealeitrant plant tissues: An evaluation of different methods for 2-DE gel electrophoresis analysis[J]. Proteomics, 2005, 5: 2497-2507.
    [52]叶妙水,钟克亚,胡新文,等.双向凝胶电泳的实验操作及进展[J].生物技术通报, 2006, 3: 5-11.
    [53] Gygi S P, Aebersold R. Mass spectrometry and proteomics[J]. Curr Opin Chem Biol, 2000, 4(5): 489-494.
    [54] Mann M, Hendrickson R C, Pandey A. Analysis of proteins and proteomes by massspectrometry [J]. Annu Rev Biochem, 2001, 70: 437-473.
    [55]王岚,刘骁勇,张华宁.生物质谱技术在蛋白质组学研究中的应用[J].生物技术通讯, 2007, 1: 12-16.
    [56] Domon B, Aebersold R. Mass spectrometry and protein analysis[J]. Science, 2006, 312: 212-217.
    [57]孙瑞祥,付岩,李德泉,等.基于质谱技术的计算蛋白质组学研究[J].中国科学(E辑:信息科学) , 2006, 36(2): 222-234.
    [58] Jorrin J V, Maldonado A M, Castillejo M A. Plant proteome analysis: a 2006 update[J]. Proteomics, 2007, 7: 2947-2962.
    [59]匡廷云.第二届全国植物蛋白质组学学术研讨会报告论文集[C]. 2007,北京.
    [60] Thelen J J, Peck S C. Quantitative proteomics in plants: choices in abundance[J]. Plant Cell, 2007, 19: 3339-3346.
    [61] Komatsu S. Plasma membrane proteome in Arabidopsis and rice [J]. Proteomics, 2008, 8 (19): 4137-4145.
    [62] Hochholdinger F, Sauer M, Dembinsky D, et al. Proteomic dissection of plant development [J]. Proteomics, 2006, 6(14): 4076-4083.
    [63] Rossignol M, Peltier J B, Mock H P, et al. Plant proteome analysis: a 2004-2006 update [J]. Proteomics, 2006, 6(20): 5529-5548.
    [64]阮松林,马华升,王世恒,等.植物蛋白质组学研究进展Ⅱ.蛋白质组技术在植物生物学研究中的应用[J].遗传, 2006, 28(12): 1633-1648.
    [65] Blueggel M, Chamrad D, Meyer H E. Bioinformatics in proteomics[J]. Curr Pharm Biotechnol, 2004, 5(1): 79-88.
    [66]马袁君,程震龙,孙野青.生物信息学及其在蛋白质组学中的应用[J].生物信息学, 2008, 1, 38-48.
    [67] Haoudi A, Bensmail H. Bioinformatics and data mining in proteomics[J]. Expert Rev Proteomics, 2006, 3(3): 333-343.
    [68]赵海豹,林汝仙,王升启.蛋白质组学研究相关技术及进展[J].生物技术通讯, 2008, 6(9):903-907.
    [69] Boeckmann B, Bairoch A , Apweiler R, et al. The SWISS-PROT protein in knowledge base and its supplementTrEMBL in 2003[J]. Nucleic Acids Research, 2003, 31(1): 365-370.
    [70] Bairoch A, Apweiler R, Wu C H, et al. The universal protein resource (UniProt) [ J]. Nucleic Acids Research, 2005, 33: 154-159.
    [71] Chen S., Rapid protein identification using direct infusion nanoelectrospray ionization mass spectrometry[ J]. Proteomic, 2006, 6: 16-25.
    [72] Tsugita A, Kamo M. 2-D eleetrophoresis of plant proteins[J]. Methods Mol Biol, 1999, 112: 95-97.
    [73] López J L. Two-dimensional electrophoresis in proteome expression analysis[J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2007, 849: 190-202.
    [74] Bevan M, Bancroft I, Bent E, et al. Analysis of 1.9 Mb of contiguous sequence from chromosome 4 of Arabidopsis thaliana[J]. Nature, 1998, 391: 485-488.
    [75] Rabilloud T. Two-dimensional electrophoresis in proteomic: old, old fashioned, but it still climbs up the mountains[J]. Proteomics, 2002, 2: 3-10.
    [76] Carrette O, Burkhard P R, Sanchez J C, et al. State-of-the-art two-dimensional gel electrophoresis: a key tool of proteomics research[J]. Nature Protocols, 2006, 1: 812-823.
    [77] Zandrie B, Vural G, Herry H. Selective removal of polyphenols and brown colour in apple juices using PES/PVP membranes in a single-ultrafiltration process[J]. Separation and Purification Technology, 2001, 22: 53-61.
    [78] Gorg A, Obermaier C, Boguth G. The current state of two-dimensional electrophoresis with immobilized PH gradients[J]. Elctrophoresis, 2000, 21: 1037-1053.
    [79]何瑞锋,丁毅,余金洪.水稻温敏叶绿素突变体叶片蛋白的双向电泳分析[J].作物学报, 2001, 27(6): 875-880.
    [80] Oguri T, Takahata I, Katsuta K, et al. Proteome analysis of rat hippocampal neuronsbymultiple large gel two-dimensional electrophoresis[J]. Proteomics, 2002, 2: 666-672.
    [81]秦慧,刘霆,柳斌,等.几种双向凝胶电泳蛋白质检测方法的比较[J].中国实验血液杂志, 2006,14(1): 168-172.
    [82]夏其昌,曾嵘,等.蛋白质化学与蛋白质组学[M].北京:科学出版社, 2004.
    [83]倪瑞涓,曹洪祥,杨传平,等.一种聚丙烯酰胺凝胶的快速染色方法——热考染法[J].黑龙江大学自然科学学报, 2008, 25(3): 393-395.
    [84] Tucker M R, Araujo A C, Paech N A, et al. Sexual and apomictic reproduction in Hirracium subgenus pilosella are closely interrelated developmental pathways[J]. Plant Cell, 2003, 15: 1524-1537.
    [85] Ross A. Bieknell, Anna M. Koltunow. Understanding apomixis: Recent advances and remaining conundrums[J]. Plant Cell, 2004, 16: S228-S245.
    [86] Martinez, M., Diaz, I., The origin and evolution of plant cystatins and their target cysteine proteinases indicate a complex functional relationship[J]. BMC Evol. Biol, 2008, 8:198.
    [87] Arai, S., Matsumoto, I., Emori, Y., Abe, K. Plant seed cystatins and their target enzymes of endogenous and exogenous origin[J]. J. Agric. Food Chem, 2002, 50: 6612–6617.
    [88] Ross S J, Findlay V J, Malakasi P, et al. Thioredoxin peroxidase is required for the transcriptional response to oxidative stress in budding yeast[J]. Mol Biol Cell, 2000, 11: 2631-2642.
    [89] Sunkar R, Bartels D, Kirch HH. Overexpression of a stress-inducible aldehyde dehydrogenase gene from Arabidopsis thaliana in transgenic plants improves stress tolerance. [J]. The Plant Journal, 2003, 35(4): 452–464.
    [90] Kotchoni SO, Kuhns C, Ditzer A, Kirch HH, Bartels D. Over-expression of different aldehyde dehydrogenase genes in Arabidopsis thaliana confers tolerance to abiotic stress and protects plants against lipid peroxidation and oxidative stress [J]. Plant Cell Environ, 2006, 29(6):1033–1048.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700