仿生陷光功能表面设计制造及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在太阳能电池领域中,光学损失是影响其效率提高的最重要障碍之一。目前,用于减少太阳能电池表面光学损失的主要途径有两条:一是利用减反射薄膜,二是利用陷光结构。同时,作为地球上阳光辐射中必不可少的部分,紫外光(200-400nm)对于地球上的生命来说至关重要,是必要的,但是,过多的紫外辐射却对人体会造成致命的伤害。因此,对于紫外波段陷光表面的研究同样具有重要的意义,尤其是对于空间装备以及空间探索领域。陷光结构是通过制作一些表面结构来降低表面的反射率,它通过反射、折射和散射作用,将入射光分散到各个角度,从而增加光在太阳能电池等装置中的光程,使光被吸收的效率显著增加。目前,已经研制出的陷光表面有很多种,例如,蜂窝状表面、正弦光栅织构化表面、酒窝状有序表面、周期性金字塔及倒金字塔结构表面、二元光栅表面等,这些陷光表面在众多领域的光学装置上均得到了很好的应用。然而,这些光学结构的实际陷光性能或者陷光效率并没有达到理想的状态。因此,寻求最优化的高效陷光功能表面成为光伏领域研究的热点和难点。
     受仿生学的启发,本文选取生活在高海拔或高纬度地区等低温、强紫外环境下的蝴蝶作为生物样本,它们分别是翠叶凤蝶、翡翠凤蝶及三种绢蝶。通过紫外可见分光光度计对典型蝴蝶鳞片进行反射光谱测量,发现了翠叶凤蝶和翡翠凤蝶翅膀鳞片在可见光波段均具有优异的陷光特性,五种绢蝶均具有优异的紫外陷光特性。采用体视显微镜、扫描电子显微镜及透射电子显微镜等对典型蝴蝶鳞片陷光结构进行分析,获得了典型蝴蝶鳞片陷光结构参数,建立了仿生陷光结构光学模型,揭示了典型蝴蝶鳞片优异陷光特性机理。对于翠叶凤蝶,其翅膀表面具有两层结构完全不同的鳞片,A型塔状结构对入射光具有相消干涉作用,B型多孔光栅结构对入射光具有衍射作用,两者共同作用实现优异的陷光特性。翡翠凤蝶多层介质膜一维光子晶体同样实现了优异的陷光特性。绢蝶通过在一维光子晶体层中剪切并生成了光栅结构,同时利用光栅光束定向特性以及光子晶体光波选择特性达到优异紫外陷光特性。此外,由于蝴蝶翅膀三维超微结构与角质层复杂折射系数的完美组合超出了目前现有微纳制造技术能力的范围,对于其分级结构整体的复制并不完整,对微纳陷光表面的制造面临挑战,本文直接利用蝴蝶翅膀为生物模板,分别采用溶胶-凝胶以及生物模板法对典型蝴蝶陷光功能表面进行结构和功能的仿生设计与制造。获得了一种对蝴蝶鳞片结构可调的仿生陷光复合材料样品,在溶胀的过程中光谱的反射率逐渐增加,陷光特性减弱,实现了对其陷光性能的调节和控制。通过对比模板与制造样品表面微结构的形状、分布和尺寸参数,证明了仿生制造样本继承了生物样本陷光表面的倒置结构,为进一步地精确研究蝴蝶翅膀表面结构和光学相互耦合效应提供必要的样品支持,进而可以设计出高性能的光学器件。
     全文共分七章。第一章为绪论,详细阐述了目前陷光结构研究的重大需求,生物功能特性与其表面结构之间的紧密关系以及目前仿生研究的最新进展,介绍了目前对于仿生功能表面微纳制造的最新进展以及面临的重大挑战。第二章是对蝴蝶鳞片陷光功能表面及其光学性能测试,筛选出具有优异陷光特性的蝴蝶物种并对其光学性能进行详细的研究,获得蝴蝶鳞片三维结构参数。第三章是蝴蝶鳞片陷光功能特性的计算与模拟,利用前面对典型蝴蝶翅膀鳞片陷光表面微结构分析得到的试验数据,建立了陷光结构的光学模型,从生物独特功能特性与其表面结构的关系角度出发,利用光子晶体及衍射光栅理论对这些光学模型进行计算与模拟,通过分析陷光结构的光学模型,再现蝴蝶翅膀超微结构与光波的相互作用规律,获得了这些光学模型的模拟结果,通过模拟与计算结果的对比分析确定其优异陷光特性及其形成机理。第四章是陷光功能表面溶胶-凝胶法制造,利用溶胶-凝胶工艺制造了陷光功能表面复合材料样品,通过施加外部刺激实现对陷光表面结构及功能的可调。第五章是仿生陷光功能表面生物模板法制造,以正硅酸乙酯为前驱体,以具有陷光功能特性的蝴蝶翅膀为模板,通过溶胶-凝胶以及选择性腐蚀工艺对蝴蝶翅膀陷光功能表面进行仿生设计及制造,最终获得了陷光表面结构的倒置结构制造样品。第六章是仿生陷光功能表面制造样品性能研究,对溶胶-凝胶及生物模板法制造获取的样品,进行微结构及光学性能的详细对比分析,通过对生物样本及制造样本之间的多角度多手段的对比分析,确定了仿生制造样本对生物样本结构和功能的高精度继承。第八章为结论。
     本文对于仿生陷光功能表面的研究,将为新型高效陷光结构的研究提供新的思路,如果将这种仿生陷光功能表面应用于光能利用的陷光设计,有望降低光能利用过程中的光学损失,在提高太阳能电池中的光能利用效率方面具有重要的工程应用价值。
The optical loss is one of the major obstacles to improve its efficiency of solar cells. Toreduce its surface reflection, there are mainly two ways: one is the use of anti-reflection film; thesecond is the use of light trapping structures. At the same time, as a necessary part of the solarradiation on earth, the ultraviolet (UV,200-400nm) is essential and necessary for life on earth.But exposing in too much UV radiation, then the body will be suffered fatal injuries. Theadvantages and disadvantages of the UV radiation strongly inspired the research interest ofmany research teams to explore and develop the light trapping functional surfaces of spaceequipment. By using reflection, refraction and scattering, light trapping structures scattered theincident light to various angles and thereby increasing the light path in the solar cell, resulting inthe light absorption efficiency is increased significantly. To date, various antireflective structures,such as “honeycomb” surface, sinusoidal grating texture, self-ordered dimple patterns, periodicpyramids, and binary gratings have been extensively studied and developed to enhanceexcellent antireflective efficiency of optical devices. Yet, these optical structures have notachieved an ideal light trapping effect. So, looking forward the ideal light tapping functionalsurface is the hot and difficult areas of photovoltaic research.
     Inspired from nature, butterfly wings were chosen as a natural model and its features forlight trapping effect were revealed. These butterflies live in a high altitude and high latituderegions, which is a low-temperature of strong ultraviolet environment. It was found that the lighttapping effect is closely related to the ultrahierarchical structures of wing scales. In this paper,three kinds of butterflies with obvious structural color were chosen as natural model. Alcoholdiscoloration experiment determines its structural color characteristics. Using a spectrophoto-meter, the butterfly species with excellent light trapping properties were screened out. Itsmicro-scale structure and light trapping properties were then studied. The optimized3Dconfiguration of the coupling structure was determined using SEM and TEM data. The lighttrapping mechanism of butterfly scales was studied. An optical model was created to check theproperties of this light trapping structure. The simulated reflectance spectra are in concordancewith the experimental ones. Also, the perfect combination of three-dimensional ultrastructure ofbutterfly wings and the complex refractive index of corneum is beyond the capability of currentmanufacturing technology. Although the physical mechanism of light trapping property ofbutterfly wings is well understood, it remains a challenge to create artificial replicas of thesenatural functional structures. Here, a SiO2inverse replica of a light trapping structure in butterflywing scales was synthesized using a method combining a sol-gel process and subsequent selective etching. Using this simple process, the original structures of bio-templates were wellinherited by the structures of the inverse replica. The entire hierarchical structure of butterflywings was successfully retained. These works provide the necessary support for further study ofthe coupling effects between precise structure and the optical effect. In turn, it is possible todesign the high-performance optical components.
     This paper is divided into seven chapters. The first chapter is an introduction. The majorneeds of the light trapping structures were introduced. Close relations between biologicalfeatures and the surface structures and the latest progress of bionic were also introduced. Allthese introductions fully demonstrated the importance and necessity of the works in this article.The second chapter is the light trapping surface of butterfly and its optical test. The detailedthree-dimensional structure parameters were obtained. Chapter three was the mechanism of theoptical functional surface of butterfly scales. First, the optical model of the light trappingstructure was established using experimental data obtained previously. From the perspective ofthe relationship between the surface structures of the unique features of biology, the opticalmodel was analyzed. Using photonic crystals and diffraction grating theory, the light trappingmechanism of butterfly scales was studied. Chapter four is manufacturing the light trappingfunctional surface by using sol-gel method. A composite sample obtained using sol-gel process.The light trapping surface structure was achieved tunable by external stimulus. Chapter five isthe fabrication of the bionic light trapping surface using the butterfly wings as the bio-template.The intricate light trapping structure was replicated in three steps by a synthetic methodcombining a sol-gel process and subsequent selective etching. The detailed and carefulparametric comparison of the morphology, dimensions and distributions of the extremelysimilar textured micro-structures between the original template and the inverse replica isachieved. Afterwards, it is conformed that the original structures of bio-templates are wellinherited by the structures of the inverse replica. Chapter six is the light trapping study ofreplicated samples. The parametric comparisons of the morphologies and structures between theoriginal template and the replica were carefully conducted, and it was found that the originalstructures of bio-templates were well inherited by the structures of the inverse replica. Chapterseven is the conclusions.
     Studies of the bionic light tapping surface in this paper will provide a new way ofdesigning new efficient light trapping structures. If this bionic light tapping surfaces could beused in the optical trapping design of solar cells, it is expected to reduce the optical loss, whichhas important application value in improving the light use efficiency of solar cell.
引文
[1] J. Zhu, Z. F. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Q. Xu, Q. Wang, M. McGehee, S. H.Fan, Y. Cui. Optical absorption enhancement in amorphous silicon nanowire and nanoconearrays[J]. Nano Letters,2009,9(1):279-282.
    [2] G. Dennler, K. Forberich, M. C. Scharber, C. J. Brabec, I. Tomis, K. Hingerl, T. Fromherz. Angledependence of external and internal quantum efficiencies in bulk-heterojunction organic solarcells[J]. Journal of Applied Physics,2007,102(5):054516.
    [3] T. X. Fan, S. K. Chow, Z. Di. Biomorphic mineralization: From biology to materials[J]. Progressin Materials Science,2009,54(5):542-659.
    [4] Y. F. Li, J. H. Zhang, S. J. Zhu, H. P. Dong, F. Jia, Z. H. Wang, Z. Q. Sun, L. Zhang, Y. Li, H. B.Li, W. Q. Xu, B. Yang. Biomimetic surfaces for high-performance optics[J]. Advanced Materials,2009,21(46):4731-4734.
    [5] Y. K. Jia, S. E. Yang, Q. N. Guo, Y. S. Chen, X. Y. Gao, J. H. Gu, J. X. Lu. Optimal design oflight trapping structure for broadband absorption enhancement in amorphous silicon solar cell[J].Acta Physica Sinica,2013,62(24):247801.
    [6] C. I. Yeo, Y. M. Song, S. J. Jang, Y. T. Lee. Optimal design of nano-scale surface light trappingstructures for enhancing light absorption in thin film photovoltaics[J]. Journal of Applied Physics,2013,114(2):024305.
    [7] X. M. Yu, J. Zhao, G. F. Hou, J. J. Zhang, X. D. Zhang, Y. Zhao. Investigation of light trappingstructure and performance in pin-type and nip-type thin film silicon solar cells[J]. Acta PhysicaSinica,2013,62(12):120101.
    [8] W. Zhang, G. G. Zheng, X. Y. Li. Design of light trapping structures for light-absorptionenhancement in thin film solar cells[J]. Optik,2013,124(16):2531-2534.
    [9] Z. W. Han, S. C. Niu, C. H. Shang, Z. N. Liu, L. Q. Ren. Light trapping structures in wing scalesof butterfly Trogonoptera brookiana[J]. Nanoscale,2012,4(9):2879-2883.
    [10] H. Wang, K. Sun, F. Tao, D. J. Stacchiola, Y. H. Hu.3D honeycomb-like structured graphene andits high efficiency as a counter-electrode catalyst for dye-sensitized solar cells[J]. AngewandteChemie-International Edition,2013,52(35):9210-9214.
    [11] A. Campa, J. Krc, M. Topic. Analysis and optimisation of microcrystalline silicon solar cells withperiodic sinusoidal textured interfaces by two-dimensional optical simulations[J]. Journal ofApplied Physics,2009,105(8):083107.
    [12] H. Sai, M. Kondo. Effect of self-orderly textured back reflectors on light trapping in thin-filmmicrocrystalline silicon solar cells[J]. Journal of Applied Physics,2009,105(9):094511.
    [13] H. Sai, Y. Kanamori, K. Arafune, Y. Ohshita, M. Yamaguchi. Light trapping effect of submicronsurface textures in crystalline si solar cells[J]. Progress in Photovoltaics,2007,15(5):415-423.
    [14] F. Llopis, I. Tobias. Texture profile and aspect ratio influence on the front reflectance of solarcells[J]. Journal of Applied Physics,2006,100(12):124504.
    [15] Y. C. Lee, C. F. Huang, J. Y. Chang, M. L. Wu. Enhanced light trapping based on guided moderesonance effect for thin-film silicon solar cells with two filling-factor gratings[J]. OpticsExpress,2008,16(11):7969-7975.
    [16] K. S. Liu, X. Yao, L. Jiang. Recent developments in bio-inspired special wettability[J]. ChemicalSociety Reviews,2010,39(8):3240-3255.
    [17] N. Huebsch, D. J. Mooney. Inspiration and application in the evolution of biomaterials[J]. Nature,2009,462(7272):426-432.
    [18] L. P. Lee, R. Szema. Inspirations from biological, optics for advanced phtonic systems[J].Science,2005,310(5751):1148-1150.
    [19] M. J. Liu, Y. M. Zheng, J. Zhai, L. Jiang. Bioinspired super-antiwetting interfaces with specialliquid-solid adhesion[J]. Accounts of Chemical Research,2010,43(3):368-377.
    [20] F. Xia, L. Jiang. Bio-inspired, smart, multiscale interfacial materials[J]. Advanced Materials,2008,20(15):2842-2858.
    [21] Y. F. Li, J. H. Zhang, B. Yang. Antireflective surfaces based on biomimetic nanopillared arrays[J].Nano Today,2010,5(2):117-127.
    [22] K. S. Liu, L. Jiang. Metallic surfaces with special wettability[J]. Nanoscale,2011,3(3):825-838.
    [23] L. Q. Ren, Y. H. Liang. Biological couplings: Classification and characteristic rules[J]. Science inChina Series E-Technological Sciences,2009,52(10):2791-2800.
    [24] B. Bhushan. Biomimetics: Lessons from nature-an overview[J]. Philosophical Transactions ofthe Royal Society A-Mathematical Physical and Engineering Sciences,2009,367(1893):1445-1486.
    [25] C. Sanchez, H. Arribart, M. M. G. Guille. Biomimetism and bioinspiration as tools for the designof innovative materials and systems[J]. Nature Materials,2005,4(4):277-288.
    [26] H. Zhou, T. X. Fan, D. Zhang. Biotemplated materials for sustainable energy and environment:Current status and challenges[J]. Chemsuschem,2011,4(10):1344-1387.
    [27] R. Blossey. Self-cleaning surfaces-virtual realities[J]. Nature Materials,2003,2(5):301-306.
    [28] K. Autumn, Y. A. Liang, S. T. Hsieh, W. Zesch, W. P. Chan, T. W. Kenny, R. Fearing, R. J. Full.Adhesive force of a single gecko foot-hair[J]. Nature,2000,405(6787):681-685.
    [29] A. K. Geim, S. V. Dubonos, I. V. Grigorieva, K. S. Novoselov, A. A. Zhukov, S. Y. Shapoval.Microfabricated adhesive mimicking gecko foot-hair[J]. Nature Materials,2003,2(7):461-463.
    [30] P. Vukusic, J. R. Sambles, C. R. Lawrence. Structural colour-colour mixing in wing scales of abutterfly[J]. Nature,2000,404(6777):457-457.
    [31] P. Vukusic, J. R. Sambles, C. R. Lawrence, R. J. Wootton. Structural colour-now you see it nowyou don't[J]. Nature,2001,410(6824):36-36.
    [32] P. Vukusic, J. R. Sambles. Photonic structures in biology[J]. Nature,2003,424(6950):852-855.
    [33] P. Simonis, J. P. Vigneron. Structural color produced by a three-dimensional photonic polycrystalin the scales of a longhorn beetle: Pseudomyagrus waterhousei (Coleoptera: Cerambicidae)[J].Physical Review E,2011,83(1):011908.
    [34] C. Pouya, D. G. Stavenga, P. Vukusic. Discovery of ordered and quasi-ordered photonic crystalstructures in the scales of the beetle Eupholus magnificus[J]. Optics Express,2011,19(12):11355-11364.
    [35] J. H. Kim, J. H. Moon, S. Y. Lee, J. Park. Biologically inspired humidity sensor based onthree-dimensional photonic crystals[J]. Applied Physics Letters,2010,97(10):103701.
    [36] J. Aizenberg, A. Tkachenko, S. Weiner, L. Addadi, G. Hendler. Calcitic microlenses as part of thephotoreceptor system in brittlestars[J]. Nature,2001,412(6849):819-822.
    [37] H. S. Jang, J. H. Kim, K. S. Kim, G. Y. Jung, J. J. Lee, G. H. Kim. Improvement of transmittanceby fabricating broadband subwavelength anti-reflection structures for polycarbonate[J]. Journalof Nanoscience and Nanotechnology,2011,11(1):291-295.
    [38] H. B. Xu, N. Lu, G. Shi, D. P. Qi, B. J. Yang, H. B. Li, W. Q. Xu, L. F. Chi. Biomimeticantireflective hierarchical arrays[J]. Langmuir,2011,27(8):4963-4967.
    [39] K. Chung, S. Yu, C. J. Heo, J. W. Shim, S. M. Yang, M. G. Han, H. S. Lee, Y. Jin, S. Y. Lee, N.Park, J. H. Shin. Flexible, angle-independent, structural color reflectors inspired by Morphobutterfly wings[J]. Advanced Materials,2012,24(18):2375-2379.
    [40] Y. W. Tan, J. J. Gu, L. H. Xu, X. N. Zang, D. Liu, W. Zhang, Q. L. Liu, S. M. Zhu, H. L. Su, C. L.Feng, G. L. Fan, D. Zhang. High-density hotspots engineered by naturally piled-upsubwavelength structures in three-dimensional copper butterfly wing scales for surface-enhancedraman scattering detection[J]. Advanced Functional Materials,2012,22(8):1578-1585.
    [41] A. D. Pris, Y. Utturkar, C. Surman, W. G. Morris, A. Vert, S. Zalyubovskiy, T. Deng, H. T.Ghiradella, R. A. Potyrailo. Towards high-speed imaging of infrared photons with bio-inspirednanoarchitectures[J]. Nature Photonics,2012,6(3):195-200.
    [42] D. W. Koon, A. B. Crawford. Insect thin films as sun blocks, not solar collectors[J]. AppliedOptics,2000,39(15):2496-2498.
    [43] J. Y. Huang, X. D. Wang, Z. L. Wang. Controlled replication of butterfly wings for achievingtunable photonic properties[J]. Nano Letters,2006,6(10):2325-2331.
    [44] R. A. Potyrailo, H. Ghiradella, A. Vertiatchikh, K. Dovidenko, J. R. Cournoyer, E. Olson.Morpho butterfly wing scales demonstrate highly selective vapour response[J]. Nature Photonics,2007,1(2):123-128.
    [45] T. S. Kustandi, H. Y. Low, J. H. Teng, I. Rodriguez, R. Yin. Mimicking domino-like photonicnanostructures on butterfly wings[J]. Small,2009,5(5):574-578.
    [46] W. Zhang, D. Zhang, T. X. Fan, J. J. Gu, R. Ding, H. Wang, Q. X. Guo, H. Ogawa. Novelphotoanode structure templated from butterfly wing scales[J]. Chemistry of Materials,2009,21(1):33-40.
    [47] W. H. Peng, S. M. Zhu, W. L. Wang, W. Zhang, J. J. Gu, X. B. Hu, D. Zhang, Z. X. Chen.3Dnetwork magnetophotonic crystals fabricated on Morpho butterfly wing templates[J]. AdvancedFunctional Materials,2012,22(10):2072-2080.
    [48] L. Q. Ren, J. Q. Li, J. Tong, B. C. Chen. Biotic nonsmoothness and its applications[J].Proceedings of the6th Asia-Pacific Conference of the ISTVS,2001,351-358.
    [49] J. Tong, R. D. Arnellb, L. Ren. Dry sliding wear behaviour of bamboo[J]. wear,1998,221(1):37-46.
    [50] J. Aizenberg, P. Fratzl. Biological and biomimetic materials[J]. Advanced Materials,2009,21(4):387-388.
    [51] X. M. Tian, Z. W. Han, X. J. Li, Z. G. Pu, L. Q. Ren. Biological coupling anti-wear properties ofthree typical molluscan shells-Scapharca subcrenata, Rapana venosa and Acanthochitonrubrolineatus[J]. Science China-Technological Sciences,2010,53(11):2905-2913.
    [52] J. Tong, H. Wang, Y. Ma, L. Ren. Two-body abrasive wear of the outside shell surfaces ofmollusc Lamprotula fibrosa heude, Rapana venosa valenciennes and Dosinia anus philippi[J].Tribology Letters,2005,19(4):331-338.
    [53] J. Tong, M. A. Mohammad, J. B. Zhang, Y. H. Ma, B. J. Rong, D. H. Chen, C. Menon. Demnumerical simulation of abrasive wear characteristics of a bioinspired ridged surface[J]. Journalof Bionic Engineering,2010,7(2):175-181.
    [54] J. Tong, Z. H. Zhang, Y. H. Ma, D. H. Chen, B. Y. Jia, C. Menon. Abrasive wear of embossedsurfaces with convex domes[J]. Wear,2012,274(1):196-202.
    [55] L. Q. Ren, J. Tong, J. Q. Li, B. C. Chen. Soil adhesion and biomimetics of soil-engagingcomponents: A review[J]. Journal of Agricultural Engineering Research,2001,79(3):239-263.
    [56] B. Bhushan, Y. C. Jung. Natural and biomimetic artificial surfaces for superhydrophobicity,self-cleaning, low adhesion, and drag reduction[J]. Progress in Materials Science,2011,56(1):1-108.
    [57] Z. W. Han, J. Q. Zhang, C. Ge, L. Wen, L. Q. Ren. Erosion resistance of bionic functionalsurfaces inspired from desert scorpions[J]. Langmuir,2012,28(5):2914-2921.
    [58] Z. W. Han, J. Q. Zhang, C. Ge, Y. Lu, J. L. Jiang, Q. P. Liu, L. Q. Ren. Anti-erosion function inanimals and its biomimetic application[J]. Journal of Bionic Engineering,2010,7(Suppl):S50-S58.
    [59] Z. W. Han, J. Q. Zhang, C. Ge, J. L. Jiang, L. Q. Ren. Gas-solid erosion on bionic configurationsurface[J]. Journal of Wuhan University of Technology-Materials Science Edition,2011,26(2):306-311.
    [60]任露泉,丛茜,佟金.界面粘附中非光滑表基本特征的研究[J].农业工程学报,1992,8(1):16-22.
    [61]任露泉,陈德兴,胡建国.土壤动物减粘脱土规律的初步分析[J].农业工程学报,1990,6(1):15-20.
    [62]陈秉聪,任露泉,徐晓波.典型土壤动物体表形态及减粘脱土的初步研究[J].农业工程学报,1990,6(2):1-6.
    [63]任露泉,丛茜,陈秉聪.几何非光滑典型生物体表防粘特性的研究[J].农业机械学报,1990,21(2):29-34.
    [64]任露泉.地面机械脱附减阻仿生研究进展[J].中国科学,2008,38(9):1353-1364.
    [65] M. J. Liu, S. T. Wang, Z. X. Wei, Y. L. Song, L. Jiang. Bioinspired design of a superoleophobicand low adhesive water/solid interface[J]. Advanced Materials,2009,21(6):665-669.
    [66] K. S. Liu, L. Jiang. Bio-inspired design of multiscale structures for function integration[J]. NanoToday,2011,6(2):155-175.
    [67] D. W. Bechert, M. Bruse, W. Hage. Experiments with three-dimensional riblets as an idealizedmodel of shark skin[J]. Experiments in Fluids,2000,28(5):403-412.
    [68] B. Dean, B. Bhushan. Shark-skin surfaces for fluid-drag reduction in turbulent flow: A review[J].Philosophical Transactions of the Royal Society A-Mathematical Physical and EngineeringSciences,2010,368(1929):4775-4806.
    [69] X. F. Gao, L. Jiang. Water-repellent legs of water striders[J]. Nature,2004,432(7013):36-36.
    [70] Y. Y. Yan, N. Gao, W. Barthlott. Mimicking natural superhydrophobic surfaces and grasping thewetting process: A review on recent progress in preparing superhydrophobic surfaces[J].Advances in Colloid and Interface Science,2011,169(2):80-105.
    [71] L. Feng, Y. A. Zhang, J. M. Xi, Y. Zhu, N. Wang, F. Xia, L. Jiang. Petal effect: Asuperhydrophobic state with high adhesive force[J]. Langmuir,2008,24(8):4114-4119.
    [72] K. Koch, B. Bhushan, W. Barthlott. Diversity of structure, morphology and wetting of plantsurfaces[J]. Soft Matter,2008,4(10):1943-1963.
    [73] Y. Fang, G. Sun, Q. Cong, G. H. Chen, L. Q. Ren. Effects of methanol on wettability of thenon-smooth surface on butterfly wing[J]. Journal of Bionic Engineering,2008,5(2):127-133.
    [74] D. Byun, J. Hong, Saputra, J. H. Ko, Y. J. Lee, H. C. Park, B. K. Byun, J. R. Lukes. Wettingcharacteristics of insect wing surfaces[J]. Journal of Bionic Engineering,2009,6(1):63-70.
    [75] W. J. P. Barnes. Biomimetic solutions to sticky problems[J]. Science,2007,318(5848):203-204.
    [76] A. Tuteja, W. Choi, M. L. Ma, J. M. Mabry, S. A. Mazzella, G. C. Rutledge, G. H. McKinley, R.E. Cohen. Designing superoleophobic surfaces[J]. Science,2007,318(5856):1618-1622.
    [77] Y. M. Zheng, X. F. Gao, L. Jiang. Directional adhesion of superhydrophobic butterfly wings[J].Soft Matter,2007,3(2):178-182.
    [78] Y. Fang, G. Sun, T. Q. Wang, Q. Cong, L. Q. Ren. Hydrophobicity mechanism of non-smoothpattern on surface of butterfly wing[J]. Chinese Science Bulletin,2007,52(5):711-716.
    [79] X. F. Gao, X. Yan, X. Yao, L. Xu, K. Zhang, J. H. Zhang, B. Yang, L. Jiang. The dry-styleantifogging properties of mosquito compound eyes and artificial analogues prepared by softlithography[J]. Advanced Materials,2007,19(17):2213-2217.
    [80] A. R. Parker, C. R. Lawrence. Water capture by a desert beetle[J]. Nature,2001,414(6859):33-34.
    [81] H. J. Gao, X. Wang, H. M. Yao, S. Gorb, E. Arzt. Mechanics of hierarchical adhesion structuresof geckos[J]. Mechanics of Materials,2005,37(2-3):275-285.
    [82] B. Bhushan, A. G. Peressadko, T. W. Kim. Adhesion analysis of two-level hierarchicalmorphology in natural attachment systems for 'smart adhesion'[J]. Journal of Adhesion Scienceand Technology,2006,20(13):1475-1491.
    [83] K. Autumn. How gecko toes stick-the powerful, fantastic adhesive used by geckos is made ofnanoscale hairs that engage tiny forces, inspiring envy among human imitators[J]. AmericanScientist,2006,94(2):124-132.
    [84] B. Bhushan, R. A. Sayer. Surface characterization and friction of a bio-inspired reversibleadhesive tape[J]. Microsystem Technologies-Micro-and Nanosystems-Information Storage andProcessing Systems,2007,13(1):71-78.
    [85] T. W. Kim, B. Bhushan. Adhesion analysis of multi-level hierarchical attachment systemcontacting with a rough surface[J]. Journal of Adhesion Science and Technology,2007,21(1):1-20.
    [86] P. Fratzl. Biomimetic materials research: What can we really learn from nature's structuralmaterials?[J]. Journal of the Royal Society Interface,2007,4(15):637-642.
    [87] M. K. Kwak, C. Pang, H. E. Jeong, H. N. Kim, H. Yoon, H. S. Jung, K. Y. Suh. Towards the nextlevel of bioinspired dry adhesives: New designs and applications[J]. Advanced FunctionalMaterials,2011,21(19):3606-3616.
    [88] Y. M. Zheng, H. Bai, Z. B. Huang, X. L. Tian, F. Q. Nie, Y. Zhao, J. Zhai, L. Jiang. Directionalwater collection on wetted spider silk[J]. Nature,2010,463(7281):640-643.
    [89] C. Pang, T. I. Kim, W. G. Bae, D. Kang, S. M. Kim, K. Y. Suh. Bioinspired reversible interlockerusing regularly arrayed high aspect-ratio polymer fibers[J]. Advanced Materials,2012,24(4):475-479.
    [90] J. Ju, H. Bai, Y. M. Zheng, T. Y. Zhao, R. C. Fang, L. Jiang. A multi-structural andmulti-functional integrated fog collection system in cactus[J]. Nature Communications,2012,3(1247.
    [91] M. Dacke, M. J. Byrne, C. H. Scholtz, E. J. Warrant. Lunar orientation in a beetle[J]. Proceedingsof the Royal Society B-Biological Sciences,2004,271(1537):361-365.
    [92] M. F. Land. The physics and biology of animal reflectors[J]. Progress in Biophysics andMolecular Biology,1972,24(1):75-106.
    [93] R. A. Potyrailo, T. A. Starkey, P. Vukusic, H. Ghiradella, M. Vasudev, T. Bunning, R. R. Naik, Z.X. Tang, M. Larsen, T. Deng, S. Zhong, M. Palacios, J. C. Grande, G. Zorn, G. Goddard, S.Zalubovsky. Discovery of the surface polarity gradient on iridescent Morpho butterfly scalesreveals a mechanism of their selective vapor response[J]. Proceedings of the National Academyof Sciences of the United States of America,2013,110(39):15567-15572.
    [94] C. Pouya, P. Vukusic. Electromagnetic characterization of millimetre-scale replicas of the gyroidphotonic crystal found in the butterfly Parides sesostris[J]. Interface Focus,2012,2(5):645-650.
    [95] M. Kolle, P. M. Salgard-Cunha, M. R. J. Scherer, F. M. Huang, P. Vukusic, S. Mahajan, J. J.Baumberg, U. Steiner. Mimicking the colourful wing scale structure of the Papilio blumeibutterfly[J]. Nature Nanotechnology,2010,5(7):511-515.
    [96] S. M. Luke, P. Vukusic, B. Hallam. Measuring and modelling optical scattering and the colourquality of white pierid butterfly scales[J]. Optics Express,2009,17(17):14729-14743.
    [97] M. D. Shawkey, N. I. Morehouse, P. Vukusic. A protean palette: Colour materials and mixing inbirds and butterflies[J]. Journal of the Royal Society Interface,2009,6(Suppl): S221-S231.
    [98] J. Moger, N. L. Cornes, P. Vukusic. Surface-enhanced raman scattering substrates based onnanometre scale structures on butterfly wings[J]. Biophotonics2007: Optics in Life Science,2007,6633(1): O6330-O6330.
    [99] N. I. Morehouse, P. Vukusic, R. Rutowski. Pterin pigment granules are responsible for bothbroadband light scattering and wavelength selective absorption in the wing scales of pieridbutterflies[J]. Proceedings of the Royal Society B-Biological Sciences,2007,274(1608):359-366.
    [100] N. I. Morehouse, R. L. Rutowski, P. Vukusic. Innovative optics of bright wing colors in pieridbutterflies: Morphological determinants and implications for use as visual signals[J]. Integrativeand Comparative Biology,2006,46(1): E100-E100.
    [101] P. Vukusic, I. Hooper. Directionally controlled fluorescence emission in butterflies[J]. Science,2005,310(5751):1151-1151.
    [102] B. Gralak, G. Tayeb, S. Enoch. Morpho butterflies wings color modeled with lamellar gratingtheory[J]. Optics Express,2001,9(11):567-578.
    [103]S. Kinoshita, S. Yoshioka, K. Kawagoe. Mechanisms of structural colour in the Morpho butterfly:Cooperation of regularity and irregularity in an iridescent scale[J]. Proceedings of the RoyalSociety B-Biological Sciences,2002,269(1499):1417-1421.
    [104] S. Berthier, E. Charron, A. Da Silva. Determination of the cuticle index of the scales of theiridescent butterfly Morpho menelaus[J]. Optics Communications,2003,228(4-6):349-356.
    [105] A. Saito, T. Shibuya, M. Yonezawa, M. Akai-Kasaya, Y. Kuwahara. Simulation analysis on theoptical role of the number of randomly arranged nano-trees on the Morpho butterfly's scale[J].Bioinspiration, Biomimetics, and Bioreplication2013,2013,8686(1):86860J.
    [106] A. Mejdoubi, C. Andraud, S. Berthier, J. Lafait, J. Boulenguez, E. Richalot. Finite elementmodeling of the radiative properties of Morpho butterfly wing scales[J]. Physical Review E,2013,87(2):022705.
    [107] M. A. Steindorfer, V. Schmidt, M. Belegratis, B. Stadlober, J. R. Krenn. Detailed simulation ofstructural color generation inspired by the Morpho butterfly[J]. Optics Express,2012,20(19):21485-21494.
    [108] M. Kambe, D. Zhu, S. Kinoshita. Origin of retroreflection from a wing of the Morphobutterfly[J]. Journal of the Physical Society of Japan,2011,80(5):054801.
    [109] Y. Ding, S. Xu, Z. L. Wang. Structural colors from Morpho peleides butterfly wing scales[J].Journal of Applied Physics,2009,106(7):074702.
    [110] X. Jiang, T. L. Shi, H. B. Zuo, X. F. Yang, W. J. Wu, G. L. Liao. Investigation on color variationof Morpho butterfly wings hierarchical structure based on PCA[J]. Science China-TechnologicalSciences,2012,55(1):16-21.
    [111] L. Q. Ren, Z. M. Qiu, Z. W. Han, H. Y. Guan, L. Y. Wu. Experimental investigation on colorvariation mechanisms of structural light in Papilio maackii menetries butterfly wings[J]. Sciencein China Series E-Technological Sciences,2007,50(4):430-436.
    [112] Z. W. Han, L. Y. Wu, Z. M. Qiu, L. Q. Ren. Microstructure and structural color in wing scales ofbutterfly Thaumantis diores[J]. Chinese Science Bulletin,2009,54(4):535-540.
    [113] Z. W. Han, L. Y. Wu, Z. M. Qiu, H. Y. Guan, L. Q. Ren. Structural colour in butterfly Apaturailia scales and the microstructure simulation of photonic crystal[J]. Journal of BionicEngineering,2008,5(Suppl):14-19.
    [114] S. Kinoshita, S. Yoshioka, J. Miyazaki. Physics of structural colors[J]. Reports on Progress inPhysics,2008,71(7):076401.
    [115] S. Wickham, M. C. J. Large, L. Poladian, L. S. Jermiin. Exaggeration and suppression ofiridescence: The evolution of two-dimensional butterfly structural colours[J]. Journal of theRoyal Society Interface,2006,3(6):99-108.
    [116] M. Imafuku, H. Y. Kubota, K. Inouye. Wing colors based on arrangement of the multilayerstructure of wing scales in lycaenid butterflies (Insecta: Lepidoptera)[J]. Entomological Science,2012,15(4):400-407.
    [117] Y. J. Zhao, Z. Y. Xie, H. C. Gu, C. Zhu, Z. Z. Gu. Bio-inspired variable structural colormaterials[J]. Chemical Society Reviews,2012,41(8):3297-3317.
    [118] A. L. Ingram, A. R. Parker. A review of the diversity and evolution of photonic structures inbutterflies, incorporating the work of John Huxley (the Natural History Museum, London from1961to1990)[J]. Philosophical Transactions of the Royal Society B-Biological Sciences,2008,363(1502):2465-2480.
    [119] P. Vukusic, D. G. Stavenga. Physical methods for investigating structural colours in biologicalsystems[J]. Journal of the Royal Society Interface,2009,6(Suppl2): S133-S148.
    [120] H. Mei, D. Luo, P. Guo, C. Song, C. C. Liu, Y. M. Zheng, L. Jiang. Multi-level micro-/nanostructures of butterfly wings adapt at low temperature to water repellency[J]. Soft Matter,2011,7(22):10569-10573.
    [121] A. R. Parker, H. E. Townley. Biomimetics of photonic nanostructures[J]. Nature Nanotechnology,2007,2(6):347-353.
    [122] J. Boulenguez, S. Berthier, F. Leroy. Multiple scaled disorder in the photonic structure of Morphorhetenor butterfly[J]. Applied Physics A-Materials Science&Processing,2012,106(4):1005-1011.
    [123] J. Matejkova-Plskova, D. Jancik, M. Maslan, S. Shiojiri, M. Shiojiri. Photonic crystal structure ofwing scales in Sasakia charonda butterflies[J]. Materials Transactions,2010,51(2):202-208.
    [124] S. Yoshioka, Y. Shimizu, S. Kinoshita, B. Matsuhana. Structural color of a Lycaenid butterfly:Analysis of an aperiodic multilayer structure[J]. Bioinspiration&Biomimetics,2013,8(4):045001.
    [125] L. P. Biro, Z. Balint, K. Kertesz, Z. Vertesy, G. I. Mark, Z. E. Horvath, J. Balazs, D. Mehn, I.Kiricsi, V. Lousse, J. P. Vigneron. Role of photonic-crystal-type structures in the thermalregulation of a Lycaenid butterfly sister species pair[J]. Physical Review E,2003,67(2):021907.
    [126] C. Mille, E. C. Tyrode, R. W. Corkery.3D titania photonic crystals replicated from gyroidstructures in butterfly wing scales: Approaching full band gaps at visible wavelengths[J]. RscAdvances,2013,3(9):3109-3117.
    [127] F. Mika, J. Matejkova-Plskova, S. Jiwajinda, P. Dechkrong, M. Shiojiri. Photonic crystalstructure and coloration of wing scales of butterflies exhibiting selective wavelengthiridescence[J]. Materials,2012,5(5):754-771.
    [128] H. Mei, D. Luo, J. Wang, Y. M. Zheng. Condensed-drop repellency of butterfly wings withbiological photonic crystals[J]. Chemical Journal of Chinese Universities-Chinese,2012,33(3):575-579.
    [129] C. Mille, E. C. Tyrode, R. W. Corkery. Inorganic chiral3D photonic crystals with bicontinuousgyroid structure replicated from butterfly wing scales[J]. Chemical Communications,2011,47(35):9873-9875.
    [130] Y. Chen, J. J. Gu, D. Zhang, S. M. Zhu, H. L. Su, X. B. Hu, C. L. Feng, W. Zhang, Q. L. Liu, A.R. Parker. Tunable three-dimensional ZrO2photonic crystals replicated from single butterflywing scales[J]. Journal of Materials Chemistry,2011,21(39):15237-15243.
    [131] V. Saranathan, C. O. Osuji, S. G. J. Mochrie, H. Noh, S. Narayanan, A. Sandy, E. R. Dufresne, R.O. Prum. Structure, function, and self-assembly of single network gyroid (I4132) photoniccrystals in butterfly wing scales[J]. Proceedings of the National Academy of Sciences of theUnited States of America,2010,107(26):11676-11681.
    [132] J. Matejkova-Plskova, S. Shiojiri, M. Shiojiri. Fine structures of wing scales in Sasakia charondabutterflies as photonic crystals[J]. Journal of Microscopy-Oxford,2009,236(2):88-93.
    [133] G. I. Mark, Z. Vertesy, K. Kertesz, Z. Balint, L. P. Biro. Order-disorder effects in structure andcolor relation of photonic-crystal-type nanostructures in butterfly wing scales[J]. PhysicalReview E,2009,80(5):051903.
    [134] L. Poladian, S. Wickham, K. Lee, M. C. J. Large. Iridescence from photonic crystals and itssuppression in butterfly scales[J]. Journal of the Royal Society Interface,2009,6(S233-S242.
    [135] Y. Chen, J. J. Gu, S. M. Zhu, T. X. Fan, D. Zhang, Q. X. Guo. Iridescent large-area ZrO2photonic crystals using butterfly as templates[J]. Applied Physics Letters,2009,94(5):053901.
    [136] J. Han, H. L. Su, D. Zhang, J. J. Chen, Z. X. Chen. Butterfly wings as natural photonic crystalscaffolds for controllable assembly of CdS nanoparticles[J]. Journal of Materials Chemistry,2009,19(46):8741-8746.
    [137] K. Michielsen, D. G. Stavenga. Gyroid cuticular structures in butterfly wing scales: Biologicalphotonic crystals[J]. Journal of the Royal Society Interface,2008,5(18):85-94.
    [138] L. P. Biro, K. Kertesz, Z. Vertesy, G. I. Mark, Z. Balint, V. Lousse, J. P. Vigneron. Livingphotonic crystals: Butterfly scales-nanostructure and optical properties[J]. Materials Science&Engineering C-Biomimetic and Supramolecular Systems,2007,27(5-8):941-946.
    [139] V. L. Welch, J. P. Vigneron. Beyond butterflies-the diversity of biological photonic crystals[J].Optical and Quantum Electronics,2007,39(4-6):295-303.
    [140] Z. Vertesy, Z. Balint, K. Kertesz, J. P. Vigneron, V. Lousse, L. P. Biro. Wing scale microstructuresand nanostructures in butterflies-natural photonic crystals[J]. Journal of Microscopy-Oxford,2006,224(Pt1):108-110.
    [141] K. Kertesz, Z. Balint, Z. Vertesy, G. I. Mark, V. Lousse, J. P. Vigneron, M. Rassart, L. P. Biro.Gleaming and dull surface textures from photonic-crystal-type nanostructures in the butterflyCyanophrys remus[J]. Physical Review E,2006,74(2):021922.
    [142] J. Z. Zhang, Z. Z. Gu, H. H. Chen, A. Fujishima, O. Sato. Inverse Mopho butterfly: A newapproach to photonic crystal[J]. Journal of Nanoscience and Nanotechnology,2006,6(4):1173-1176.
    [143] M. Srinivasarao. Nano-optics in the biological world: Beetles, butterflies, birds, and moths[J].Chemical Reviews,1999,99(7):1935-1961.
    [144] S. A. Boden, D. M. Bagnall. Tunable reflection minima of nanostructured antireflectivesurfaces[J]. Applied Physics Letters,2008,93(13):133108.
    [145] K. Ohlinger, F. Torres, Y. K. Lin, K. Lozano, D. Xu, K. P. Chen. Photonic crystals with defectstructures fabricated through a combination of holographic lithography and two-photonlithography[J]. Journal of Applied Physics,2010,108(7):073113.
    [146] J. M. Lourtioz. Photonic crystals-writing3D photonic structures with light[J]. Nature Materials,2004,3(7):427-428.
    [147] Y. C. Shin, D. H. Kim, D. J. Chae, J. W. Yang, J. I. Shim, J. M. Park, K. M. Ho, K. Constant, H.Y. Ryu, T. G. Kim. Effects of nanometer-scale photonic crystal structures on the light extractionfrom gan light-emitting diodes[J]. Ieee Journal of Quantum Electronics,2010,46(9):1375-1380.
    [148] Y. V. Miklyaev, D. C. Meisel, A. Blanco, G. von Freymann, K. Busch, W. Koch, C. Enkrich, M.Deubel, M. Wegener. Three-dimensional face-centered-cubic photonic crystal templates by laserholography: Fabrication, optical characterization, and band-structure calculations[J]. AppliedPhysics Letters,2003,82(8):1284-1286.
    [149] Y. C. Chang, G. H. Mei, T. W. Chang, T. J. Wang, D. Z. Lin, C. K. Lee. Design and fabrication ofa nanostructured surface combining antireflective and enhanced-hydrophobic effects[J].Nanotechnology,2007,18(28):285303.
    [150] M. J. Huang, C. R. Yang, Y. C. Chiou, R. T. Lee. Fabrication of nanoporous antireflectionsurfaces on silicon[J]. Solar Energy Materials and Solar Cells,2008,92(11):1352-1357.
    [151] P. H. Fu, G. J. Lin, C. H. Ho, C. A. Lin, C. F. Kang, Y. L. Lai, K. Y. Lai, J. H. He. Efficiencyenhancement of InGaN multi-quantum-well solar cells via light-harvesting SiO2nano-honeycombs[J]. Applied Physics Letters,2012,100(1):013105.
    [152] Y. A. Vlasov, X. Z. Bo, J. C. Sturm, D. J. Norris. On-chip natural assembly of silicon photonicbandgap crystals[J]. Nature,2001,414(6861):289-293.
    [153] A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer,H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, H. M. van Driel. Large-scale synthesis of asilicon photonic crystal with a complete three-dimensional bandgap near1.5micrometres[J].Nature,2000,405(6785):437-440.
    [154] K. Aoki, H. T. Miyazaki, H. Hirayama, K. Inoshita, T. Baba, K. Sakoda, N. Shinya, Y. Aoyagi.Microassembly of semiconductor three-dimensional photonic crystals[J]. Nature Materials,2003,2(2):117-121.
    [155] H. B. Xu, N. Lu, D. P. Qi, J. Y. Hao, L. G. Gao, B. Zhang, L. F. Chi. Biomimetic antireflective sinanopillar arrays[J]. Small,2008,4(11):1972-1975.
    [156] S. Wang, X. Z. Yu, H. T. Fan. Simple lithographic approach for subwavelength structureantireflection[J]. Applied Physics Letters,2007,91(6):061105.
    [157] J. W. Leem, K. S. Chung, J. S. Yu. Antireflective properties of disordered Si SWSs withhydrophobic surface by thermally dewetted pt nanomask patterns for Si-based solar cells[J].Current Applied Physics,2012,12(1):291-298.
    [158] T. Tamura, M. Umetani, K. Yamada, Y. Tanaka, K. Kintaka, H. Kasa, J. Nishii. Fabrication ofantireflective subwavelength structure on spherical glass surface using imprinting process[J].Applied Physics Express,2010,3(11):112501.
    [159] S. S. Oh, C. G. Choi, Y. S. Kim. Fabrication of micro-lens arrays with moth-eye antireflectivenanostructures using thermal imprinting process[J]. Microelectronic Engineering,2010,87(11):2328-2331.
    [160] K. M. Bae, J. S. Ko, T. W. Lim, D. Y. Yang, B. S. Shin, H. S. Lee, S. H. Park. Direct reproductionof3D microstructures using a hybrid approach; by creation of master-patterns and metallic moldsfor embossing[J]. Microelectronic Engineering,2011,88(11):3300-3305.
    [161] J. J. Baumberg. Breaking the mould: Casting on the nanometre scale[J]. Nature Materials,2006,5(1):2-5.
    [162] A. J. Schulte, K. Koch, M. Spaeth, W. Barthlott. Biomimetic replicas: Transfer of complexarchitectures with different optical properties from plant surfaces onto technical materials[J].Acta Biomaterialia,2009,5(6):1848-1854.
    [163] W. Ogasawara, W. Shenton, S. A. Davis, S. Mann. Template mineralization of orderedmacroporous chitin-silica composites using a cuttlebone-derived organic matrix[J]. Chemistry ofMaterials,2000,12(10):2835-2837.
    [164]H. Ehrlich, Y. N. Elkin, A. A. Artoukov, V. A. Stonik, P. P. Safronov, V. V. Bazhenov, D. V. Kurek,V. P. Varlamov, R. Born, H. Meissner, G. Richter. Simple method for preparation ofnanostructurally organized spines of sand dollar Scaphechinus mirabilis (Agassiz,1863)[J].Marine Biotechnology,2011,13(3):402-410.
    [165] R. Seshadri, F. C. Meldrum. Bioskeletons as templates for ordered, macroporous structures[J].Advanced Materials,2000,12(15):1149-1151.
    [166] Z. Xu, K. Yu, B. Li, R. Huang, P. Wu, H. B. Mao, N. Liao, Z. Q. Zhu. Optical properties of SiO2and ZnO nanostructured replicas of butterfly wing scales[J]. Nano Research,2011,4(8):737-745.
    [167] W. H. Peng, X. B. Hu, D. Zhang. Bioinspired fabrication of magneto-optic hierarchicalarchitecture by hydrothermal process from butterfly wing[J]. Journal of Magnetism and MagneticMaterials,2011,323(15):2064-2069.
    [168] H. H. Liu, QibinZhao, H. Zhou, J. Ding, D. Zhang, H. X. Zhu, T. X. Fan. Hydrogen evolution viasunlight water splitting on an artificial butterfly wing architecture[J]. Physical ChemistryChemical Physics,2011,13(23):10872-10876.
    [169] Y. Wang, Z. M. Liu, B. X. Han, Y. Huang, G. Y. Yang. Carbon microspheres with supported silvernanoparticles prepared from pollen grains[J]. Langmuir,2005,21(23):10846-10849.
    [170] Y. S. Shin, J. Liu, J. H. Chang, Z. M. Nie, G. Exarhos. Hierarchically ordered ceramics throughsurfactant-templated sol-gel mineralization of biological cellular structures[J]. AdvancedMaterials,2001,13(10):728-732.
    [171] A. G. Dong, Y. J. Wang, Y. Tang, N. Ren, Y. H. Zhang, J. H. Yue, Z. Gao. Zeolitic tissue throughwood cell templating[J]. Advanced Materials,2002,14(12):926-929.
    [172] Y. Hirabayashi, S. Kaneko, K. Akiyama, M. Yasui, K. Sakurazawa. Optical properties ofantireflective subwavelength structures on4H-SiC for uv photodetectors[J]. Silicon Carbide andRelated Materials2009, Pts1and2,2010,645-648(1):1073-1076.
    [173] J. Hiller, J. D. Mendelsohn, M. F. Rubner. Reversibly erasable nanoporous anti-reflectioncoatings from polyelectrolyte multilayers[J]. Nature Materials,2002,1(1):59-63.
    [174] L. Escoubas, J. J. Simon, M. Loli, G. Berginc, F. Flory, H. Giovannini. An antireflective silicongrating working in the resonance domain for the near infrared spectral region[J]. OpticsCommunications,2003,226(1-6):81-88.
    [175] J. Muller, B. Rech, J. Springer, M. Vanecek. TCO and light trapping in silicon thin film solarcells[J]. Solar Energy,2004,77(6):917-930.
    [176] M. Berginski, J. Hupkes, M. Schulte, G. Schope, H. Stiebig, B. Rech, M. Wuttig. The effect offront ZnO: Al surface texture and optical transparency on efficient light trapping in siliconthin-film solar cells[J]. Journal of Applied Physics,2007,101(7):074903.
    [177] M. Kambe, M. Fukawa, N. Taneda, K. Sato. Improvement of a-Si solar cell properties by usingSnO2: F TCO films coated with an ultra-thin TiO2layer prepared by APCVD[J]. Solar EnergyMaterials and Solar Cells,2006,90(18-19):3014-3020.
    [178] W. Zhang, D. Zhang, T. X. Fan, J. Ding, J. J. Gu, Q. X. Guo, H. Ogawa. Biomimetic zinc oxidereplica with structural color using butterfly (Ideopsis similis) wings as templates[J].Bioinspiration&Biomimetics,2006,1(3):89-95.
    [179] R. J. Martin-Palma, C. G. Pantano, A. Lakhtakia. Biomimetization of butterfly wings by theconformal-evaporated-film-by-rotation technique for photonics[J]. Applied Physics Letters,2008,93(8):083901.
    [180] S. Kinoshita, S. Yoshioka. Structural colors in nature: The role of regularity and irregularity inthe structure[J]. Chemphyschem,2005,6(8):1442-1459.
    [181] Q. B. Zhao, T. X. Fan, J. A. Ding, D. Zhang, Q. X. Guo, M. Kamada. Super black and ultrathinamorphous carbon film inspired by anti-reflection architecture in butterfly wing[J]. Carbon,2011,49(3):877-883.
    [182] L. Y. Wu, Z. W. Han, Z. M. Qiu, H. Y. Guan, L. Q. Ren. The microstructures of butterfly wingscales in northeast of china[J]. Journal of Bionic Engineering,2007,4(1):47-52.
    [183] P. V. Parimi, W. T. T. Lu, P. Vodo, S. Sridhar. Photonic crystals-imaging by flat lens usingnegative refraction[J]. Nature,2003,426(6965):404-404.
    [184] T. F. Krauss. Photonic crystals-cavities without leaks[J]. Nature Materials,2003,2(12):777-778.
    [185] Y. Akahane, T. Asano, B. S. Song, S. Noda. High-Q photonic nanocavity in a two-dimensionalphotonic crystal[J]. Nature,2003,425(6961):944-947.
    [186] A. H. C. Neto. Phonons behaving badly[J]. Nature Materials,2007,6(3):176-177.
    [187] K. Ishizaki, S. Noda. Manipulation of photons at the surface of three-dimensional photoniccrystals[J]. Nature,2009,460(7253):367-370.
    [188] J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, K. M. Ho. All-metallic three-dimensionalphotonic crystals with a large infrared bandgap[J]. Nature,2002,417(6884):52-55.
    [189] M. R. Jorgensen, M. H. Bartl. Biotemplating routes to three-dimensional photonic crystals[J].Journal of Materials Chemistry,2011,21(29):10583-10591.
    [190] J. W. Galusha, L. R. Richey, J. S. Gardner, J. N. Cha, M. H. Bartl. Discovery of a diamond-basedphotonic crystal structure in beetle scales[J]. Physical Review E,2008,77(5):050904.
    [191] M. Maldovan, E. L. Thomas. Diamond-structured photonic crystals[J]. Nature Materials,2004,3(9):593-600.
    [192] P. Vukusic. Natural photonics[J]. Physics World,2004,17(2):35-39.
    [193] J. Zi, X. D. Yu, Y. Z. Li, X. H. Hu, C. Xu, X. J. Wang, X. H. Liu, R. T. Fu. Coloration strategiesin peacock feathers[J]. Proceedings of the National Academy of Sciences of the United States ofAmerica,2003,100(22):12576-12578.
    [194] A. R. Parker, R. C. McPhedran, D. R. McKenzie, L. C. Botten, N. A. P. Nicorovici. Photonicengineering-aphrodite's iridescence[J]. Nature,2001,409(6816):36-37.
    [195] J. C. Knight, P. S. Russett. Applied optics: New ways to guide light[J]. Science,2002,296(5566):276-277.
    [196] P. Vukusic, J. R. Sambles, C. R. Lawrence. Structurally assisted blackness in butterfly scales[J].Proceedings of the Royal Society B-Biological Sciences,2004,271(Suppl4): S237-S239.
    [197] A. Argyros, S. Manos, M. C. J. Large, D. R. McKenzie, G. C. Cox, D. M. Dwarte. Electrontomography and computer visualisation of a three-dimensional photonic crystal in a butterflywing-scale[J]. Micron,2002,33(5):483-487.
    [198] M. C. J. Large, D. R. McKenzie, A. R. Parker, B. C. Steel, K. Ho, S. G. Bosi, N. Nicorovici, R. C.McPhedran. The mechanism of light reflectance in silverfish[J]. Proceedings of the RoyalSociety A-Mathematical Physical and Engineering Sciences,2001,457(2007):511-518.
    [199] P. Vukusic, R. J. Wootton, J. R. Sambles. Remarkable iridescence in the hindwings of thedamselfly Neurobasis chinensis chinensis (Linnaeus)(Zygoptera: Calopterygidae)[J].Proceedings of the Royal Society B-Biological Sciences,2004,271(1539):595-601.
    [200] J. B. Pendry, A. MacKinnon. Calculation of photon dispersion relations[J]. Physical ReviewLetters,1992,69(19):2772-2775.
    [201] P. M. Bell, J. B. Pendry, L. Martn-Moreno, A. J. Ward. A program for calculating photonic bandstructures and transmission coefficients of complex structures[J]. Computer PhysicsCommunications,1995,85(2):306-322.
    [202] D. M. Antonelli, J. Y. Ying. Synthesis of hexagonally packed mesoporous TiO2by a modifiedsol-gel method[J]. Angewandte Chemie-International Edition,1995,34(18):2014-2017.
    [203] D. Avnir, T. Coradin, O. Lev, J. Livage. Recent bio-applications of sol-gel materials[J]. Journal ofMaterials Chemistry,2006,16(11):1013-1030.
    [204] R. A. Caruso, M. Antonietti. Sol-gel nanocoating: An approach to the preparation of structuredmaterials[J]. Chemistry of Materials,2001,13(10):3272-3282.
    [205] M. Yamanaka, K. Sada, M. Miyata, K. Hanabusa, K. Nakano. Construction of superhydrophobicsurfaces by fibrous aggregation of perfluoroalkyl chain-containing organogelators[J]. ChemicalCommunications,2006,21:2248-2250.
    [206] N. J. Shirtcliffe, G. McHale, M. I. Newton, C. C. Perry. Intrinsically superhydrophobicorganosilica sol-gel foams[J]. Langmuir,2003,19(14):5626-5631.
    [207] J. T. Han, D. H. Lee, C. Y. Ryu, K. W. Cho. Fabrication of superhydrophobic surface from asupramolecular organosilane with quadruple hydrogen bonding[J]. Journal of the AmericanChemical Society,2004,126(15):4796-4797.
    [208] M. Zhou, J. Li, C. X. Wu, X. K. Zhou, L. Cai. Fluid drag reduction on superhydrophobic surfacescoated with carbon nanotube forests (cnts)[J]. Soft Matter,2011,7(9):4391-4396.
    [209] Z. Miao, D. S. Xu, J. H. Ouyang, G. L. Guo, X. S. Zhao, Y. Q. Tang. Electrochemically inducedsol-gel preparation of single-crystalline TiO2nanowires[J]. Nano Letters,2002,2(7):717-720.
    [210] X. N. Zang, Y. Y. Ge, J. J. Gu, S. M. Zhu, H. L. Su, C. L. Feng, W. Zhang, Q. L. Liu, D. Zhang.Tunable optical photonic devices made from moth wing scales: A way to enlarge naturalfunctional structures' pool[J]. Journal of Materials Chemistry,2011,21(36):13913-13919.
    [211] Q. A. Yu, Y. N. Song, X. M. Shi, C. Y. Xu, Y. Z. Bin. Preparation and properties of chitosanderivative/poly (vinyl alcohol) blend film crosslinked with glutaraldehyde[J]. CarbohydratePolymers,2011,84(1):465-470.
    [212] A. P. Mathew, M. P. G. Laborie, K. Oksman. Cross-linked chitosan/chitin crystal nanocompositeswith improved permeation selectivity and pH stability[J]. Biomacromolecules,2009,10(6):1627-1632.
    [213] B. Bolto, T. Tran, M. Hoang, Z. L. Xie. Crosslinked poly (vinyl alcohol) membranes[J]. Progressin Polymer Science,2009,34(9):969-981.
    [214] N. C. Seeman. DNA in a material world[J]. Nature,2003,421(6921):427-431.
    [215] R. A. McMillan, C. D. Paavola, J. Howard, S. L. Chan, N. J. Zaluzec, J. D. Trent. Orderednanoparticle arrays formed on engineered chaperonin protein templates[J]. Nature Materials,2002,1(4):247-252.
    [216] X. Y. Gao, H. Matsui. Peptide-based nanotubes and their applications in bionanotechnology[J].Advanced Materials,2005,17(17):2037-2050.
    [217] K. T. Nam, D. W. Kim, P. J. Yoo, C. Y. Chiang, N. Meethong, P. T. Hammond, Y. M. Chiang, A.M. Belcher. Virus-enabled synthesis and assembly of nanowires for lithium ion batteryelectrodes[J]. Science,2006,312(5775):885-888.
    [218] N. C. Bigall, M. Reitzig, W. Naumann, P. Simon, K. H. van Pee, A. Eychmuller. Fungaltemplates for noble-metal nanoparticles and their application in catalysis[J]. AngewandteChemie-International Edition,2008,47(41):7876-7879.
    [219] A. H. Lim, H. W. Shim, S. D. Seo, G. H. Lee, K. S. Park, D. W. Kim. Biomineralized Sn-basedmultiphasic nanostructures for Li-ion battery electrodes[J]. Nanoscale,2012,4(15):4694-4701.
    [220] H. Zhou, T. X. Fan, T. Han, X. F. Li, J. Ding, D. Zhang, Q. X. Guo, H. Ogawa. Bacteria-basedcontrolled assembly of metal chalcogenide hollow nanostructures with enhanced light-harvestingand photocatalytic properties[J]. Nanotechnology,2009,20(8):085603.
    [221] E. K. Payne, N. L. Rosi, C. Xue, C. A. Mirkin. Sacrificial biological templates for the formationof nanostructured metallic microshells[J]. Angewandte Chemie-International Edition,2005,44(32):5064-5067.
    [222] S. R. Hall, H. Bolger, S. Mann. Morphosynthesis of complex inorganic forms using pollen graintemplates[J]. Chemical Communications,2003,22):2784-2785.
    [223] S. Y. Chia, J. Urano, F. Tamanoi, B. Dunn, J. I. Zink. Patterned hexagonal arrays of living cells insol-gel silica films[J]. Journal of the American Chemical Society,2000,122(27):6488-6489.
    [224] J. H. He, T. Kunitake, A. Nakao. Facile in situ synthesis of noble metal nanoparticles in porouscellulose fibers[J]. Chemistry of Materials,2003,15(23):4401-4406.
    [225] X. Y. Tao, L. X. Dong, X. N. Wang, W. K. Zhang, B. J. Nelson, X. D. Li. B4C-nanowires/carbon-microfiber hybrid structures and composites from cotton T-shirts[J]. Advanced Materials,2010,22(18):2055-2059.
    [226] D. Yang, L. M. Qi, J. M. Ma. Eggshell membrane templating of hierarchically orderedmacroporous networks composed of TiO2tubes[J]. Advanced Materials,2002,14(21):1543-1546.
    [227] X. Y. Tao, J. Du, Y. P. Li, Y. C. Yang, Z. Fan, Y. P. Gan, H. Huang, W. K. Zhang, L. X. Dong, X.D. Li. TaC nanowire/activated carbon microfiber hybrid structures from bamboo fibers[J].Advanced Energy Materials,2011,1(4):534-539.
    [228] X. Y. Tao, Y. P. Li, J. Du, Y. Xia, Y. C. Yang, H. Huang, Y. P. Gan, W. K. Zhang, X. D. Li. Ageneric bamboo-based carbothermal method for preparing carbide (SiC, B4C, TiC, TaC, NbC,TixNb1-xC, and TaxNb1-xC) nanowires[J]. Journal of Materials Chemistry,2011,21(25):9095-9102.
    [229] H. Yan, S. H. Park, G. Finkelstein, J. H. Reif, T. H. LaBean. DNA-templated self-assembly ofprotein arrays and highly conductive nanowires[J]. Science,2003,301(5641):1882-1884.
    [230] M. Knez, M. Sumser, A. M. Bittner, C. Wege, H. Jeske, T. P. Martin, K. Kern. Spatially selectivenucleation of metal clusters on the tobacco mosaic virus[J]. Advanced Functional Materials,2004,14(2):116-124.
    [231] G. Cook, P. L. Timms, C. G. Spickermann. Exact replication of biological structures by chemicalvapor deposition of silica[J]. Angewandte Chemie-International Edition,2003,42(5):557-559.
    [232] J. Silver, R. Withnall, T. G. Ireland, G. R. Fern. Novel nano-structured phosphor materials castfrom natural Morpho butterfly scales[J]. Journal of Modern Optics,2005,52(7):999-1007.
    [233] B. Li, J. Zhou, R. L. Zong, M. Fu, Y. Bai, L. T. Li, Q. Li. Ordered ceramic microstructures frombutterfly bio-template[J]. Journal of the American Ceramic Society,2006,89(7):2298-2300.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700