基于ICP工艺的硅基复杂微纳结构制备
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
半导体加工技术中的感应耦合等离子体刻蚀技术(Inductively Coupled Plasma,ICP)具有控制精度高、刻蚀垂直度高、大面积刻蚀均匀性好、污染少等优点。其中,ICP-Bosch已经广泛应用于深硅刻蚀。
     ICP-Bosch刻蚀工艺的特别之处就是采用钝化和刻蚀交替作用,从而达到对硅基底的选择性刻蚀。本文利用ICP-Bosch工艺可以转移光刻胶结构的特性制备出硅基超疏水宽波段抗反射高深宽比微纳结构;基于ICP-Bosch刻蚀工艺的特点,利用交替加工产生的侧壁波纹结构制备出硅基仿Morpho蝶翅鳞片分层微纳结构。
     首先介绍了ICP-Bosch工艺刻蚀机理。基于ICP-Bosch干法刻蚀工艺良好的掩膜结构转移能力,提出了一种新的有效的方法制备周期性高深宽比管状硅光栅,这些硅光栅拥有亚波长锥形顶部结构。该方法的创新之处是利用衍射干涉光刻工艺制备出拥有亚波长锥形轮廓中空的光刻胶光栅。用严格耦合波分析方法对衍射干涉光刻模型做了理论仿真,并在光刻机上实现衍射干涉光刻,制备出拥有锥形轮廓中空的光刻胶光栅。最后用ICP-Bosch干法刻蚀工艺把锥形轮廓的中空光刻胶光栅转移到硅基底上,加工出顶部是亚波长锥形结构高深宽比管状硅光栅。利用光学测试平台对顶部是锥形结构高深宽比管状硅光栅样品表面的反射光谱进行测量,测量出在硅片表面加工出顶部是亚波长锥形结构高深宽比管状硅光栅结构的样品表面可以在可见光波段和近红外波段将反射率降低到5%以下,实现了宽波段抗反射的性能要求。利用接触角测量仪对制备的顶部是亚波长的锥形结构高深宽比管状硅光栅结构的表面的浸润性能进行了测量,测量得到水滴在锥形结构高深宽比管状硅光栅结构的表面的平均接触角为156.2o,达到超疏水性能的要求。
     基于ICP-Bosch刻蚀工艺,提出了一种新的制备硅基仿Morpho蝶翅鳞片分层微纳结构的方法。该方法巧妙的利用ICP-Bosch工艺刻蚀和钝化交替刻蚀(111)硅片在{110}晶面所产生的微纳尺度的波纹结构。针对刻蚀步骤中对侧壁波纹结构影响较大的因素:循环时间(刻蚀和钝化时间)、气体流量(SF6和C4F8)、刻蚀步骤中的线圈功率(PC)、刻蚀步骤中的射频功率(PP)做了实验研究,设计出一套可行的方案,用实验方法对(111)硅片中{110}晶面在不同温度和不同浓度的KOH溶液的腐蚀速度做了研究,选用电子束蒸发镀膜工艺为硅基底倾斜蒸发镀膜,在{110}晶面波纹的底部覆盖一层用于湿法腐蚀的掩膜,最后采用各向异性湿法腐蚀工艺制备出硅基分层微纳结构。对制备出的硅基分层微纳结构做了光学性能测试,实验发现,当入射光线垂直分层结构光栅线条方向入射时,测得的最大反射率在紫外波段是小于15%,在可见和近红外波段的反射率为4%左右,大大低于硅光栅在这种入射角度的反射率。对分层微纳结构做了传热性能测试,实验发现,硅基分层微纳结构的最大热流密度比硅光栅的要提高11.2%,比抛光硅片要提高44.6%,说明该结构拥有良好的散热性能。
Inductively coupled plasma (ICP) etching process in semiconductor processingtechnology has the merits of high control precision, high etching vertical, a large areaetching uniformity, less pollution. Bosch process has been widely used in the ICP etchingprocess in deep silicon etching.
     The unique feature of ICP-Bosch etching process is its passivation and etchingalternately so as to achieve the selective and deep etching of the silicon substrate. Basedon the characteristics of the ICP-Bosch etching process,in this thesis,we used ICP-Boschprocess to transfer the photoresist pattern structure producing high aspect ratio micro/nanosilicon structure with super hydrophobic and broadband antireflection properties. It wasfollowed to use the sidewall corrugated structure prepared by alternate etching processingto fabricate silicon hierarchical micro/nano structure bio-inspired by the ridge-lamellaestructures on Morpho scales.
     The mechanism of ICP-Bosch process etching was firstly introduced. We usedICP-Bosch process to transfer the photoresist pattern structure producing periodic highaspect ratio micro/nano silicon gratings structure with sub-wavelength tapered structureson top of the silicon gratings. The innovation of this approach is the application ofdiffraction interference lithography process to prepare the sub-wavelength hollow andtapered contour photoresist gratings. Diffraction interference lithography was theoreticallysimulated by rigorous coupled wave analysis(RCWA), and achieved diffractionlithography on the aligner. The sub-wavelength hollow and tapered contour photoresistgratings were prepared. The sub-wavelength hollow and tapered contour photoresistgratings were transferred to the silicon substrate by ICP-Bosch process that producedperiodic high aspect ratio silicon tube gratings with sub-wavelength tapered structures onthe top of the gratings. We used an optical test platform to measure the reflectance of highaspect ratio tubular silicon gratings. It was found that the reflectance of periodic highaspect ratio silicon tube gratings with sub-wavelength tapered structures on the top of thegratings was less than5%in the visible band and near-infrared band. Themicro/nano-structure has the broadband antireflection property. We used the contact anglemeasuring instrument to test the wettability of periodic high aspect ratio silicon tubegratings with sub-wavelength tapered structures on the top of the gratings. The averagecontact angle was about156.2othat has reached the standard of the super-hydrophobicproperty.
     Base on the ICP-Bosch process, a novel method for preparation of biomimeticMorpho silicon hierarchical micro/nano structures was proposed. It was ingenious toutilize the micro/nanoscale corrugated structure on the sidewall of {110} crystal faces thatwere produced by the ICP-Bosch process etching and passivation alternately etching thesilicon wafer. This thesis focuses on the main impact factors that influence on the corrugated structure in the etching step: cycle time (etching and passivation time), the gasflow (SF6and C4F8), coil power (PC) and the RF power (PP) in the etching step byexperimental studies. We designed a feasible solution to measure the etching rate of {110}plane in (111) silicon wafer under the different temperatures and different concentrationsof the KOH solution by experimental methods. Electron beam evaporation coatingtechnology was applied inclined evaporation deposited covering layer on bottom of rippleson the {110} plane as mask for the wet etching. Finally, the silicon hierarchicalmicro/nano structure was prepared by using anisotropic wet etching process. The opticalperformance of the silicon hierarchical micro/nano structure was test. It was found thatwhen the incident light perpendicular to hierarchy grating lines direction, the measuredmaximum reflectance in the ultraviolet band was less than15%and about4%in the visibleand near-infraredband, that was less than the reflectance of the silicon grating in this angleof incidence. The heat transfer of the silicon hierarchical micro/nano structure was test.Compared with silicon grating, the maximum heat flux of the hierarchical micro/nanostructure improved11.2%. Compared with polished silicon, the maximum heat flux of thehierarchical micro/nano structure increased44.6%. Therefore, the structure has a goodcooling performance.
引文
[1] Kinoshita S, Yoshioka S, Miyazaki J. Physics of structural colors. Rep Prog Phys,2008,71(7):076401.
    [2] Vukusic P, Sambles J R, Lawrence C R, et al. Quantified interference anddiffraction in single Morpho butterfly scales. Proc R Soc Lond B,1999,266:1403-1411.
    [3] Ghiradella H. Light and color on the wing: structural colors in butterflies andmoths. Appl Optics,1991,30(24):3492~3500.
    [4]任露泉,邱兆美,韩志武,等.绿带翠凤蝶翅面结构光变色机理的试验研究.中国科学E辑:技术科学,2007,37(7):952~9057.
    [5] Ren L Q, Qiu Z M, Han Z W, et al. Experimental investigation on color variationmechanisms of structural light in Papilio maackii menetries butterfly wings. SciChina Ser E-Tech Sci,2007,50(4):430~436.
    [6]房岩,王同庆,孙刚,等.蛱蝶翅鳞片的超微结构观察.昆虫学报,2007,50(3):313~317.
    [7]房岩,孙刚,王同庆,等.蝴蝶翅膀表面非光滑鳞片对润湿性的影响.吉林大学学报(工学版),2007,37(3):582~586.
    [8]韩志武,邬立岩,邱兆美,等.紫斑环蝶鳞片的微结构及其结构色.科学通报,2008,53(22):2692~2696.
    [9] Han Z W, Wu L Y, Qiu Z M, et al. Microstructure and structural color in wingscales of butterfly Thaumantis diores. Chin Sci Bull,2009,54(4):535~540.
    [10]金魁,何小祥,陈如山.蓝蝴蝶翅膀结构电磁散射特性分析.南京理工大学学报,2007,31(1):118~120.
    [11]何小祥,李浩.特殊光子晶体电磁散射角偏特性及其应用研究.光学学报.2009,29(1)256~261.
    [12] Biro L P, Balint Z, Kertesz K,et al. Role of photonic-crystal-type structures in thethermal regulation of a Lycaenid butterfly sister species pair, Physical ReviewE.2003,67(2):021907.
    [13] Green M A, Zhao J H,Wang A H, et al. Efficient silicon light-emitting diodes,Nature.2001,412:805~808.
    [14] Leem J W, Song Y M, Yu J S, Effect of etching parameters on antireflectionproperties of Si subwavelength grating structures for solar cell applications.2010,100:891~896.
    [15] Lin Y R, Lai K Y, Wang H P, et al. Slope-tunable Si nanorod arrays with enhancedantireflection and self-cleaning properties, Nanoscale.2010,2:2765~2768.
    [16] Glaser T, Schroter S, Bartelt H, et al. Diffractive optical isolator made ofhigh-effciency dielectric gratings only Appl. Opt.2002,41:3558~3566.
    [17] Mait J N, Prather D W, Mirotznik M S. Binary subwavelength diffractive-lensdesign. Opt. Lett.1998,23:1343~1345.
    [18] Lalanne P, Morris G M. Antirefection behavior of silicon subwavelength periodicstructure for visible light. Nanotechnology,1997,8:53~56.
    [19] Barthlott W, Neinhuis C. Purity of the sacred lotus, or escape from contaminationin biological surfaces. Planta,1997,202:1~8.
    [20]左海波.仿蝴蝶鳞翅微纳结构光学特性研究,[硕士学位论文].华中科技大学机械电子工程2011.
    [21] Radislav A, Potyrailo H G, Alexei V, et al. Morpho butterfly wing scalesdemonstrate highly selective vapour response. nature photonics,2007,1:123~128.
    [22] Huang J Y, Wang X d. Controlled Replication of Butterfly Wings for AchievingTunable Photonic Properties. Nano Letters,2006,6:2325~2331.
    [23] Liu X Y, Zhu S M, Zhang D. Replication of butterfly wing in TiO2with orderedmesopores assembled inside for light harvesting. Materials Letters,2010,64:2745~2747.
    [24] Peng W H, Hun X B, Zhang D. Bioinspired fabrication of magneto-optichierarchical architecture by hydrothermal process from butterfly wing. Journal ofMagnetism and Magnetic Materials,2011,323:2064~2069.
    [25] Kang S H, Tai T Y, Fang T H. Replication of butterfly wing microstructuresusing molding lithography, Current Applied Physics,2010,10:625~630.
    [26] Watanabe K, Hoshino T, Kanda K et al. Optical measurement and fabricationfrom a Morpho-butterfly-scale quasistructure by focused ion beam chemical vapordeposition. J. Vac. Sci. Technol,2005,23:570~574.
    [27] Rebecca E C, Investigating the Use of Replica Morpho Butterfly Scales forColour Displays, UNIVERSITY OF SOUTHAMPTON, SCHOOL OFELECTRONICS AND COMPUTER SCIENCE.2007.
    [28] Huang Y F, Chattopadhyay S, Jun J Y. Improved broadband andquasi-omnidirectional anti-refection properties with biomimetic siliconnanostructures. Nature Nanotechnology2007,2:770~774.
    [29] Walheim S, Sch ffer E, Mlynek J. Nanophase-Separated Polymer Films asHigh-Performance Antireflection Coatings. Science,1999,22:520~522.
    [30] Hodgkinson I J, Linear and circular form birefringence of coatings fabricated byserial bideposition. Engineered Nanostructural Films and Materials,1999,3790:119~132.
    [31] Striemer C C. Dynamic etching of silicon for broadband antireflection applications.Applied Physics Letters,2002,81:2980~2982.
    [32] Beyer T, Antireflection coatings for PbSe diode lasers. Applied Physics Letters,1998,73:1191~1193.
    [33] Gombert A, Glaubitt W, Rose K, et al, Antireflective transparent covers for solardevices. Solar energy,2000,68:357~360.
    [34] Liu M C, Lee C C, Kaneko M, et al. Microstructure of magnesium fluoride filmsdeposited by boat evaporation at193nm. Applied Optics,2006,45:7319~7324.
    [35]李大琪,刘定权,张凤山.6.4-15μm宽带增透膜的设计与制作[J].红外与毫米波学报,2006,25:135~137.
    [36]谭天亚,黄建兵,占美琼等.三硼酸锂晶体上1064nm,532nm,355nm三倍频增透膜的设计[J].光学学报,2007,27:1327~1332.
    [37]赵培,吴福全,郝殿中.棱镜端面增透膜的研制[J].光子学报,2006,25:671~674.
    [38]徐晓峰,邢怀中,杜西亮等.利用非规整膜系实现宽角度入射减偏振、减反射薄膜的[J].光子学报,2007,36(9):1691~1693.
    [39] Xu Y, Zhang B, Fan W H. et al. Sol gel broaband ati reflective single-layer silicafilms with high laser damage threshold. Thin Solid Films,2003,440(3):180~183.
    [40] Laux S, Kaiser N, et al. Broad-band antireflectio coatings deposited withion-assisted evaporation. Part of the Europto Conference on Advnees in OpticalInterference Coatings. Ber-lin, Germany. SPIE,1999,3738:76~80.
    [41]徐江峰,陈秋灵.增透膜的遗传算法设计[J].中国激光,2007,34(9):1271~1275.
    [42]黄光伟,田维坚,江萍.超宽带增透膜新的设计方法[J].光子学报,2007,36(9):1694~1696.
    [43] Bernhard C G. Structural and functional adaptation in a visual system. Endeavour,1967,26:79~84.
    [44] Lin Y R, Lai K Y, Wang H P, et al. Slope-tunable Si nanorod arrays with enhancedantirefection and self-cleaning properties. Nanoscale,2010,2:2765~2768.
    [45] http://Physicsworld.com/cws/article/news/3771.
    [46] Watson G. Natural nano-structures on insects-Possible functions of ordered arrayscharacter by atomic microscopy. APPI Surf Sei,2004,235(1-2):139~144.
    [47] http://www.csmonitor.com/Science/2010/0525How a moths eye inspires glare freeTV screens.
    [48] Huang J Y, Wang X d, Wang Z L. Bio-inspired fabrication of antireflectionnanostructures by replicating fly eyes. Nanotechnology,2008,19:025602.
    [49] Lalanne L, Hutley M. Artifcial media optical properties subwavelength scaleEncyclopedia of Optical Engineering.2003.
    [50] Yeh P. Optical Waves in Layered Media.1991,0950-0340:1362~3044.
    [51] Chen F T,Craighead H G. Diffractive phase elements based on two-dimensionalartifcial dielectrics. Opt. Lett,1995,20:121~123.
    [52] Jackson J D. Classical Electrodynamics,1999,67(9):841.
    [53] Blossey R. Self-cleaning surfaces—virtual realities. Nat. Mater,2003.2:301~306.
    [54] Enger R C, Case S K. Optical elements with ultrahigh spatial-frequency surfacecorrugations. Appl. Opt,1983,22:3220~3228.
    [55] Ono Y, Kimura Y, Ohta Y, et al. Antirefection effect in ultrahighspatial-frequency holographic relief gratings. Appl. Opt,1987,26:1142~1146.
    [56] Raguin D, Morris G. Analysis of antirefection-structured surfaces with continuousone-dimensional surface profles. Appl. Opt,1993,32:2582~2599.
    [57] Kanamori Y, Sasaki M, Hane K. Broadband antirefection gratings fabricated uponsilicon substrates. Opt. Lett,1999,24:1422~1424.
    [58] Yamaguchi N, Tadanaga K, Matsuda A, et al. Antireflective properties offlowerlike alumina thin films on soda–lime silica glass substrates prepared by thesol–gel method with hot water treatment. Thin Solid Films,2007,515:3914~3917.
    [59] Wu Z, Walish J, Nolte A, et al. Deformable Antireflection Coatings from Polymerand Nanoparticle Multilayers. Advanced Materials,2006,18:2699~2702.
    [60] Podsiadlo P, Sui L, Elkasabi Y, et al. Layer-by-Layer Assembled Films ofCellulose Nanowires with Antireflective Properties. Langmuir,2007,23:7901~7906.
    [61] Park M S, Lee Y, and Kim J K. One-Step Preparation of Antireflection Film bySpin-Coating of Polymer/Solvent/Nonsolvent Ternary System. Chem. Mater,2005,17(15):3944~3950.
    [62] Hattori H. Anti-Reflection Surface with Particle Coating Deposited byElectrostatic Attraction. Advanced Materials,2001,13:51~54.
    [63] ASGHAR M H, KHAN M B, NASEEM S. Design and Preparation ofAntirefection Films on Glass Substrate. Turk J Phys,2005,29:43~53.
    [64] Gemici Z, Schwachulla P I, Williamson E H, et al. Targeted Functionalization ofNanoparticle Thin Films via Capillary Condensation. Nano Lett,2009,9(3):1064~1070.
    [65] Lee D, Gemici Z, Rubner M F, et al. Multilayers of Oppositely Charged SiO2Nanoparticles: Effect of Surface Charge on Multilayer Assembly. Langmuir,2007,23(17):8833~8837.
    [66] Lee D, Omolade D, Cohen R E. pH-Dependent Structure and Properties ofTiO2/SiO2Nanoparticle Multilayer Thin Films. Chem. Mater,2007,19(6):1427~1433.
    [67] Zhang L b, Li Y, Sun J. Mechanically Stable Antireflection and AntifoggingCoatings Fabricated by the Layer-by-Layer Deposition Process and Postcalcination.Langmuir,2008,24(19):10851~10857.
    [68] Zhao Q, Dong Y, Peng W, et al. CeO2-TiO2/SiO2Anti-Reflecting andUV-Shielding Double-Functional Films Coated on Glass Substrates Using Sol-GelMethod. Journal of Rare Earths,2007,25:64~67.
    [69] Schubert M F, Mont F W, Chhajed S, et al. Design of multilayer antireflectioncoatings made from co-sputtered and low-refractive-index materials by geneticalgorithm. Optics Express,2008,16:5290~5298.
    [70] Yu Z N, Gao H, Wu W. Fabrication of large area subwavelength antirefectionstructures on Si using trilayer resist nanoimprint lithography and liftoff. J. Vac. Sci.Technol. B212003,6:2874~2877.
    [71] Kanamori Y, Roy E, Chen Y. Antirefection sub-wavelength gratings fabricated byspin-coating replication. Microelectronic Engineering,2005,78:287~293.
    [72] Aydin C,Zaslavsky A,Sonek G J. et al. Reduction of refection losses in ZnGeP2using motheye antirefection surface relief structures. Appl. Phys. Lett,2002,80:2242~2244.
    [73] WALHEION S,SCHAFFER E,MLYNEK J,et al. Nanophase-Separated PolymerFilms as High Performance Antireflection Coatings. Seienee.1999,283:520~522.
    [74] KOO H Y, Yi D K, YOO S J, et al. Snowman-like Array of colloidal dimmers forantirefiction surfaces. Ady.Mater,2002,16:274~277.
    [75]]WU C T, KOA F H. Self-organized tantalum oxide nanopyrarnidal arrays forantireflective strueture. APPI.phys.Lett,2007,90:17191.
    [76] WANG S, YU X Z, FAN H T. Simple Lithographic Approach for SubwavelengthStructure Antireflection. APPI.Phys.Lett.2007,91: l~3.
    [77] FAN Y, HUANG S C,YI J J, et al. Improved broadband and quasi-omnidirectionalanti-refection properties with biomimetic silicon nanostructures. naturenanotechnology,2007,2:770~774.
    [78] Barthlott W, Neinhuis C. Purity of the sacred lotus, or escape from contaminationin biological surfaces. Planta,1997,202:1~8.
    [79] Koch K, Bhushan B, Jung Y C, et al. Fabrication of artifcial Lotus leaves andsignifcance of hierarchical structure for superhydrophobicity and low adhesion.Soft Matter,2009,5:1386~1393.
    [80] Wang L F, Zhao Y, Wang J M, et al. Ultra-Fast Spreading on SuperhydrophilicFibrous Mesh with Nanochannels. Appl. Surf, Sci,2009,255:4944.
    [81] Liu X M, Du X, He J H. Hierarchically Structured Porous Films of Silica HollowSpheres via Layer-by-Layer Assembly and Their Superhydrophilic andAntifogging Properties. Chemphyschem2008,9:305.
    [82] Feng L, Song Y L, Zhai J,et al. Creation of a Superhydrophobic Surface from AnAmphiphilic Polymer, Angew Chem. Int. Ed.2003,42:800.
    [83] Liu B, He Y N, Fan Y, et al. Fabricating Super-Hydrophobic Lotus-Leaf-LikeSurfaces through Soft-Lithographic Imprinting. Macromol. Rapid Commun.2006,27:1859.
    [84] Zhang L B, Chen H, Sun J Q, et al. Layer-by-Layer Deposition ofPoly(diallyldimethylammonium chloride) and Sodium Silicate Multilayers onSilica-Sphere-Coated Substrate-Facile Method to Prepare A Superhydrophobic.Surface, Chem. Mater.2007,19:948.
    [85] Zhang L B, Chen H, Sun J Q, et al. Layer-by-Layer Fabrication of Broad-BandSuperhydrophobic Antireflection Coatings in Near-Infrared Region, J. ColloidInterface Sci.2008,219:312.
    [86] Ma M L, Mao Y, Gupta M, et al. Superhydrophobic Fabrics Produced byElectrospinning and Chemical Vapor Deposition, Macromolecular2005,38:9742.
    [87]李书宏,冯琳,李欢军,宋延林,江雷,朱道本高等学校化学学报,2003,24:340.
    [88] Chung J W, An B K, Kim J W, et al. Photoluminescence and Electroluminescenceof Hexaphenylsilole are Enhanced by Pressurization in the Solid State. Chem.Commun.2008,2989~2991.
    [89] Wang S T, Feng L, Jiang L, One-Step Solution-Immersion Process for theFabrication of Stable Bionic Superhydrophobic Surfaces, Adv. Mater.2006,18:767.
    [90] Xu W G, Liu H Q, Lu S X, et al. Fabrication of Superhydrophobic Surfaces withHierarchical Structure through A Solution-Immersion Process on Copper andGalvanized Iron Substrates, Langmuir2008,24:10895.
    [91] Gu C D, Zhang T Y. Electrochemical Synthesis of Silver Polyhedrons andDendritic Films with Superhydrophobic Surfaces. Langmuir2008,24:12010.
    [92] Li M, Zhai J, Liu H, et al. Electrochemical Deposition of ConductiveSuperhydrophobic Zinc Oxide Thin Films, J. Phys. Chem. B2003,107:9954.
    [93] Prevo B G, Hon E W, Velev O D. Assembly and characterization of colloid-basedantirefective coatings on multicrystalline silicon solar cells. Mater. Chem.2007,17:791~799.
    [94] Duparre A, Flemming M, Steinert J et al. Optical coatings with enhancedroughness for ultra-hydrophobic, low-scatter applications Appl. Opt.2002,41:3294~3298.
    [95] Chang Y C, Mei G H, Chang T W, et al. Design and fabrication of ananostructured surface combining antirefective and enhanced-hydrophobic effects.Nanotechnology,2007,18:285303(6pp).
    [96] Lin Y R, Lai K Y, Wang H P, et al. Slope-tunable Si nanorod arrays with enhancedantirefection and self-cleaning properties. Nanoscale,2010,2:2765~2768
    [97] Plummer J D, Deal M D, Griffin P G. Silicon VLSI technology-Fundamentals,Practice and Modelling, Prentice Hall, Inc. Upper Saddle Ricer, New Jersey, ISBN0-13-085037-3,2000.
    [98] Tuomikoski S. Fabrication of SU-8microstructures for analytical microfluidicapplications, TKK dissertations,ISSN:1795~4584,58,2007.
    [99] Shaw J M, Gelorme J D, LaBianca N C, et al. Negative photoresists for opticallithography, IBM J. Res. Develop.1997,41:81~94.
    [100] FranssilaS. Introduction to Micro Fabrication,Wiley,ISBN:978-0-470-74983-82004.
    [101] Chui Z. Micro-Nanofabrication Technologies and Applications, Springer,2005,77~138.
    [102] Chou S Y,Krauss P R,and Renstrom P J. Imprint of sub‐25nm vias andtrenches in polymers. Appl.Phys. Lett.1995,67:3114~3116.
    [103] Chou S Y,Krauss P R,and Renstrom P J.25-Nanometer Resolution. Science,1996,272:85~87.
    [104] Chou S Y,Krauss P R,Renstrom P J. Nanoimprint lithography. Journal of VacuumScience&Technology B: Microelectronics and Nanometer Structures.Techn01.1996,14:4129~4133.
    [105] Resnick D J, Sreenivasan S V, Willson C G, Step&flash imprint lithography,Materials Today,2005,34~42.
    [106] Deckman H W, Dunsmuir J H. Natural lithography, App. Phys. Lett.411982:337~339.
    [107] Hulteen J C, Van Duyne R P, Nanosphere lithography: A materials generalfabrication process for periodic particle array surfaces, J. Vac. Sci. Technol. A1995,13(1)553~1558.
    [108] Hamley I W. Nanostructure fabrication using block copolymers, Nanotechnology,2003,14:39~54.
    [109] Krishnamoorthy S, Hinderling C, Heinzelmann H. Nanoscale patterning with blockcopolymers, Materials Today,2006,9:40~47.
    [110] Gowrishanker V, Miller N, McGhee M. D, et al. Fabrication of densely packed,well-ordered, high-aspect-ratio silicon nanopillars over large areas using blockcopolymer lithography, Thin Solid Films,2006,513:289~294.
    [111] Walker M J. Comparison of Bosch and cryogenic processes for patterning highaspect ratio features in silicon, Proc. of SPIE2001,4407:89~99.
    [112] Walter L. Photoresist damage in reactive ion etching, J. Electrochem. Soc.1997,144:2150~2154.
    [113]来五星,廖广兰,史铁林,等.反应离子刻蚀加工工艺技术的研究[J].半导体技术,2006,6.31(6):414~417.
    [114] Geng H. Semiconductor manufacturing handbook.2005: McGraw-Hill, Inc. NewYork, NY, USA.
    [115]赵智昊.感应耦合等离子体刻蚀及应用研究[D].广州:华南师范大学,2003.
    [116]徐新艳.硅基材料的ECR等离子体刻蚀工艺研究[D].西安:西安电子科技大学,2003.
    [117] Patents DM241045, US5501893and EP625285, authors Franz L rmer, AndreaSchilp.
    [118] Volland B E. Profile simulation of gas chopping etching processes, Ph.D. Thesis,Institute of Physics, University of Kassel,2004.
    [119] Becker F. I. Rangelow W, Kassing R. Ion energy distributions in SF6plasmas at aradio-frequency powered electrode, Journal of Applied Physics,1996,80:56~65.
    [120] Rauf S, Dauksher W J, Clemens S B. Model for a multiple-step deep Si etchprocess, Journal of Vacuum Science&Technology A: Vacuum, Surfaces, andFilms,2002,20:1177~1190.
    [121] Hayashi H, Morishita S, Tatsumi T, et al. Mechanism of C4F8dissociation inparallel-plate-type plasma, Journal of Vacuum Science&Technology A: Vacuum,Surfaces, and Films,1999,17:2557~2571.
    [122]曹艳波,闪蝶鳞翅微纳结构光学特性仿真与实验研究.[硕士学位论文],华中科技大学,2009.
    [123] Young T. An Essay on the Cohesion of Fluids Philos. Trans. R. Soc,1805,95:65.
    [124] Wenzel R N. Resistance of Solid Surfaces to Wetting by Water. Ind. Eng. Chem.1936,28:988.
    [125] Wenzel R N. Surface Roughness and Contact Angle. J. Phys. Chem.1949,53:1466.
    [126] Cassie A B D, Baxter S. Sruface Roughness and Contact Angle. Trans. FaradaySoc.1944,40:546.
    [127] Cassie A B D, Contact Angles, Discus. Faraday Soc.1948,3:11.
    [128] Wenzel R N, Surface Roughness and Contact Angle. J. Phys. Chem,1949,53:1466.
    [129] Leem J W, Song Y M,Yu J S. Hydrophobic and antireflective characteristics ofthermally oxidized periodic Si surface nanostructures, Applied Physics B,2012,107:409~414.
    [130]邬文俊,蝶翅微纳结构的光学特性及变色机理研究,[博士学位论文].华中科技大学2012.
    [131] Vukusic P, Sambles J R, Lawrence C R, et al. Quantified interference anddiffraction in single Morpho butterfly scales. Proc R Soc Lond B,1999,266:1403~1411.
    [132] Ayon A A, Braff R, Lin C C, et al. Characterization of a time multiplexedinductively coupled plasma etcher,"Journal of The Electrochemical Society,1999,146:339~349.
    [133] Steinsland E, Finstad T, Hanneborg A, Etch rates of (100)、(111) and (110) singlecrystal silicon in TMAH measured in situ by laser reflectanceinterferometry.SensorsandAetuators A,2000,86:73~80.
    [134]黄庆安,硅微机械加工技术.化学工业出版社2007.
    [135]徐泰然. MEMS和微系统——设计与制造[M].王晓浩等译.北京:机械工业出版社.2004.1.
    [136]张厥宗.硅单晶抛光片的加工技术.化学工业出版社,2005.8
    [137]刘泽文,王晓红,黄庆安等译,微系统设计.电子工业出版社.2004.
    [138] Mohamed Gad-el-Hak.微机电系统设计与加工[M].张海霞等译.机械工业出版社.2010.2.
    [139] Landsberger L M. On Hillocks Generated During Anisotropic Etching of SiinTMAH [J]. Micro-electromechanical Systems,1994.3(3):113~123.
    [140] Oosterbroek R E, Berenschot J W, Jansen H V, et al. Etching methodologies in<111>-oriented silicon wafers[J]. Journal of microelectromechanical systems,2000,9(3):390~398.
    [141]贾翠萍,董玮,徐宝琨等,KOH溶液中(110)硅片腐蚀特性的研究,Semiconductor Technology,2005,30:52~54.
    [142]赵树武,陈松,赵水林等译,半导体集成电路制造手册,电子工业出版社,2006.
    [143] Tasaka M, Shinohara K, Hayashi C, et al, Cooling performance of heat sinks withcorrugated-fins, Inter Society Conference on Thermal Phenomena,1998,104~111.
    [144] Bhattacharya A, Mahajan R L. Finned metal foam heat sinks for electronicscooling in forced convection, Journal of Electronics Packaging2002,124:155~163.
    [145] Li C, Wirtz R A. Development of a high performance heat sink based on screen-fintechnology,19thIEEE Semitherm,53~60.
    [146]李腾,刘静,芯片冷却技术的最新研究进展及其评价,制冷学报,2004,3:22~33.
    [147] Incropera, David P, DeWitt, Theodore L. Fundamentals of Heat and Mass Transfer[M],6th-edition.Transfer,4th ed, Wiley, New York,1996,445:844~846.
    [148] Carslaw H S, Jaeger J C. Conduction of Heat in Solids, Oxford Univ. Press,London1959.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700