兴安藜芦抗肿瘤活性成分的发现及结构修饰
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
藜芦属(Veratrum Linn.)为百合科(Liliaceae)植物,据《中国植物志》记载我国有13个种和一个变种。中医用兴安藜芦(V. dahuricum)等四种藜芦属植物的根和根茎入药,用于中风痰壅,癫痫、喉痹不通,及疥癣和恶疮。藜芦属植物化学成分包括甾体生物碱类化合物、茋类化合物、二肽类、黄酮类及其它类化合物,其中生物碱是其主要活性成分。
     1.兴安藜芦植物的化学成分研究
     本课题中采用多种现代色谱手段系统分离了兴安藜芦根及根茎中的化学成分,从中得到60个单体化合物。并应用光谱学方法(1H-NMR, 13C-NMR, DEPT, 1H-1HCOSY, NOESY, HMQC, HMBC, ESI-MS, IR)鉴定其化学结构。分别为: XL-1:14α-羟基-?11-环杷明XL-2:Veratrobasine XL-3:环杷明XL-4:介芬胺XL-5:藜芦胺XL-6:藜芦托素XL-7:伪介芬胺XL-8:藜芦嗪XL-9:Veramitaline XL-10:Etioline XL-11:Etioline-3-O-glucoside XL-12:3-乙酰基-15-当归酰基计明碱XL-13:3, 7-二乙酰基-15-当归酰基计明碱XL-14:3-藜芦酰基计明碱XL-15:3-藜芦酰基-15-当归酰基计明碱XL-16:3-藜芦酰基-15-异戊酰基计明碱XL-17:3-乙酰基-15-异戊酰基计明碱XL-18:Germerine XL-19:15-当归酰基计明碱XL-20:3, 7-二当归酰基计明碱XL-21:3, 15-二当归酰基-7-乙酰基计明碱XL-22:3-当归酰计明碱XL-23:3-当归酰基棋盘花胺XL-24:3-藜芦酰基棋盘花胺XL-25:棋盘花胺XL-26:计明碱XL-27:白藜芦醇XL-28:2'-羟基白藜芦醇XL-29:(E)-白藜芦醇-3-O-葡萄糖苷XL-30:(Z)-白藜芦醇-3-O-葡萄糖苷XL-31:2'-羟基白藜芦醇-3-O-葡萄糖苷XL-32:白藜芦醇-4'-O-葡萄糖苷XL-33:2'-羟基白藜芦醇-4'-O-葡萄糖苷XL-34:4'-甲基白藜芦醇-3-O-葡萄糖苷XL-35:5-甲基白藜芦醇-3, 4'-O-二葡萄糖苷XL-36:2'-羟基白藜芦醇-3, 4'-O-二葡萄糖苷XL-37:异泽兰素XL-38:3', 4', 7-三甲基木犀草素XL-39:4'-甲基异鼠李素XL-40:木犀草素XL-41:山柰酚XL-42:槲皮素XL-43:芹菜素XL-44:4', 6-二甲氧基-5, 7-二羟基黄酮XL-45:金合欢素XL-46:槲皮素-7-O-鼠李糖苷XL-47:4', 5, 7-三羟基-6-甲氧基黄酮-7-O-葡萄糖苷XL-48:4'-羟基-3', 5-二甲基黄酮-7-O-葡萄糖苷XL-49:木犀草素-7-O-葡萄糖苷XL-50:金合欢素-7-O-葡萄糖苷XL-51:芹菜素-7-O-葡萄糖苷XL-52:槲皮素-3-O-葡萄糖苷XL-53:槲皮素-3-O-鼠李糖苷XL-54:蔗糖XL-55:β-谷甾醇XL-56:胡萝卜苷XL-57:苯甲酸XL-58:蜡醇XL-59:3, 4-二羟基苯甲酸XL-60:钩吻素子
     其中,XL-1, 12, 13, 14, 15和35为新化合物;XL-2, 3, 9~11, 16~23, 25, 27~34, 36~54, 57~60为首次从兴安藜芦中分得。
     2.兴安藜芦各提取部位和单体的药理活性研究
     经过兴安藜芦总提取物、四个极性部位及总生物碱的急性毒性实验,发现藜芦的主要毒性成分为藜芦生物碱,主要存在于氯仿部位。兴安藜芦总提取物、总生物碱及单体化合物抑制肿瘤细胞增生的活性研究及体内抗肿瘤活性研究证明,藜芦中的藜芦胺和环杷明具有较强的肿瘤细胞毒活性,而环杷明则表现出良好的抗肿瘤活性,推测介芬胺类生物碱可能是藜芦抗肿瘤活性的物质基础。3.兴安藜芦药材的质量分析
     建立了兴安藜芦HPLC-ELSD-MSn的质量控制方法,测定8批药材中6个主要有效成分的含量,结果显示各批次之间成分的含量相差很大。建立的检测方法可以方便的进行药材质量分析,便于控制质量,同时也确定了藜芦的最佳采收季节。
     4.活性化合物的结构修饰
     以藜芦胺,介芬胺和环杷明为底物,进行化学修饰,得到107个化合物,经过MTT法筛选出24个较先导化合物活性有明显增强的衍生物,选择其中3个化合物进行植入PANC-1肿瘤的小鼠的体内抗肿瘤活性研究,发现均有良好的体内抗肿瘤活性。
Veratrum dahuricum (Liliaceae) is one of the 14 species of the genus Veratrum in China. The rhizomes of some Veratrum species incuding Veratrum dahuricum, named as Lilu in Chinese traditional medicine, are used for some diseases such as aphasia arising apoplexy, epilepsy, wind type dysentery, jaundice, chronic malaria and acariasis. The crude extracts and compounds isolated from Veratrum plant havd benn reported possessing various pharmacological activities, including hypotensive, antithrombotic and antitumor function.
     1. Chemical investigation of Veratrum dahuricum
     By modern chromatographic methods, 60 compounds were isolated from the ethanol extract of rhizomes of Veratrum dahuricum. Their structures were elucidated on the basis of spectral data including 1H-NMR, 13C-NMR, DEPT, 1H-1HCOSY, NOESY, HMQC, HMBC, ESI-MS, IR, as follows: XL-1: 14α-hydroxy-?11-cyclopamine XL-2: Veratrobasine XL-3: Cyclopamine XL-4: Jervine XL-5: Veratramine XL-6: Veratrsine XL-7: Pseudojervine XL-8: Verazine XL-9: Veramitaline XL-10: Etioline XL-11: Etioline-3-O-glucoside XL-12: 3-acetyl-15-angyloylgermine XL-13: 3, 7-diacetyl-15-angeloylgermine XL-14: 3-veratroylgermine XL-15: 3-veratroyl-15angyloylgermine XL-16: 3-veratroyl-15-methylbutyrylgermine XL-17: 3-acetyl-15-methylbutyroylgermine XL-18: Germerine XL-19: 15-angyloylgermine XL-20: 3, 7-diangyloylgermine XL-21: 3, 15-diangyloyl-7-acetylgermine XL-22: 3-angeloylgermine XL-23: 3-angeloylzygadenine XL-24: 3-veratroylzygadenine XL-25: Zygadenine XL-26: Germine XL-27: Resveratrol XL-28: Oxyresveratrol XL-29: (E)-piceid XL-30: (Z)-piceid XL-31: Oxyresveratrol-3-O-glucoside XL-32: Resveratrol-4'-O-glucoside XL-33: Oxyresveratrol-4'-O-glucoside XL-34: 4'-methylresveratrol-3-O-glucoside XL-35: 2'-hydroxy-5-methylresveratrol-3, 4'- diglucosides XL-36: Mulberroside A XL-37: Eupatilin XL-38: 3', 4', 7-trimethylluteolin XL-39: 4'-methylisorhamnetin XL-40: Luteolin XL-41: Kaempferol XL-42: Quercetin XL-43: Apigenin XL-44: Pectolinaringenin XL-45: Acacetin XL-46: Quercetin-7-O-rhamnoside XL-47: 4', 5, 7-trihydroxy-6-methoxyl-7-O- glucoside XL-48: 4'-hydroxyl-3', 5-dimethoxylflavone-7-O -glucoside XL-49: Luteolin-7-O-glucoside XL-50: Acacetin-7-O-glucoside XL-51: Apigenin-7-O-glucoside XL-52: Quercetin-3-O-glucoside XL-53: Quercetin-3-O-rhamnoside XL-54: Sucrose XL-55:β-sitosterol XL-56:β-daucosterol XL-57: Benzoic acid XL-58: Cerylalcohol XL-59: 3, 4-dihydroxylbenzoic acid XL-60: Koumine
     2. Pharmacology research on Veratrum dahuricum
     The acute toxic trials showed that the total alkaloids extract was the most toxic of all the samples, including petroleum ether, CHCl3, EtOAC, n-BuOH fraction, ethanol extract and total alkaloids. The better cytotoxic and antitumor activities were found on the jerveratrum alkaloids compared to the ceveratrum alkaloids.
     3. Determination of Six Steroidal Alkaloids of Veratrum dahuricum
     A high performance liquid chromatography coupled with evaporative light scattering detection (HPLC-ELSD) and electrospray ionization multistage mass spectrometry (HPLC-ESI-MSn), respectively, has been performed for the simultaneous determination of six steroidal alkaloids, including pseudojervine, veratrosine, jervine, veratramine, 3-veratroylzygadenine, 3-angeloylzygadenine, in Veratrum dahuricum of different season. The plants were soaked in methanol and extracted ultrasonically. The intra-day and inter-day precisions of the method were evaluated and were less than 1.4%. The content of steroidal alkaloids in the plant varied significantly from spring to autumn, confirming the necessity to control the quality of Veratrum dahuricum during its preparation and application. And we know from this assay that the appropriate time for collecting the Veratrum dahuricum was from June 25 to July 10 for higher content of jervine.
     4. The modification of three active compounds
     We have gained above 107 derivatives of veratramine, jervine and cyclopamine by chemical and biotransformational methods. Among them, 24 compounds further optimized exhibited significent activities, thereinto, 3 compounds were tested in vivo assay, with promising antitumor activity. Especially, cyclopamine from Veratrum plant we studied, a special inhibitor to the Hedgehog signal pathway, had significant antitumor avtivity.
引文
[1]陈世忠,徐国钧,徐珞珊,等.藜芦属药用植物两新种.中国药科大学学, 1991, 22(6): 338-340.
    [2]任毅.秦岭种子植物补遗—裸子植物门和被子植物门的单子叶植物.西北植物学报, 2000, 20(4): 658-660.
    [3]杜贵友,方文贤.有毒中药现代化研究与合理应用.北京:人民卫生出版社, 2003, 949-953.
    [4]谢宗万.全国中草药汇编.北京:人民卫生出版社, 1996, 957-958.
    [5]国家中医药管理局《中华本草》编委会.中华本草(八).上海:上海科学技术出版社, 1999, 183-188.
    [6]梁光义.藜芦属植物生物碱的研究概况.药学学报, 1984, 19(4):309-320.
    [7]吴寿金,赵泰,秦永祺.现代中草药成分化学.北京:中国医药科技出版社, 2002, 952-956.
    [8]中国药科大学、中国医药出版社.中药辞海(第四卷).北京:中国医药科技出版社, 1998, 8-13.
    [9] Cong, Y, Jia, W, Chen, J, et al. Steroidal alkaloids from the roots and rhizomes of Veratrum nigrum L. Hel. Chim. Acta, 2007, 90: 1038-1042.
    [10]梁广义,孙南君.狭叶藜芦中活性成分的化学研究I.狭叶藜芦乙的结构以及其它成分的鉴定.药学学报, 1984, 19 (2):131-136.
    [11] Mizuno, M, Tan, R X, Zhen, P, et al. Two steroidal alkaloid glucosides from Veratrum taliense. Phytochemistry, 1990, 29(1):359-361.
    [12] Zhou C X, Liu J L, Ye W C, et al., Neoverataline A and B,two antifungal alkaloids with a novel carbon skeleton from Veratrum taliense. Tetrahedron, 2003, 59, 5743-5747.
    [13] Zhao W J, Tezuka, Y, Kikuchi, T, et al., Studies on constituents of Veratrum plants.Ⅱ. Constituents of Veratrum nigrum L.var.ussuriense.(1).Structure and 1H–and 13C-Nuclear Magnetic.Resonance Spectra of a new alkaloid,verussurinine,and related alkaloids.Chem. Pharm.Bull., 1991, 39(3): 549-554.
    [14] Tezuka, Y, Kikuchi, T, Zhao W J, et al., (+)-Verussurine, a New Steroidal Alkaloid from the roots and rhizomes of Veratrum nigrum L. var. ussuriense and Structure Revision of(+)-Verabenzoamine1. J. Nat.Prod., 1998, 61, 1397-1399.
    [15]全香花,朴惠善,孙向红,等.兴安藜芦的化学成分研究.中国药学杂志, 2003, 38(12): 914-916.
    [16] Tezuka, Y, Kikuchi, T, Zhao W J, et al. Two new steroidal alkaloids, 20-isoveratramine and verapatul-ine, from the roots and rhizomes of Veratrum patulum. J. Nat. Prod. 1998, 61(9): 1078-1081.
    [17]徐暾海,徐雅红.藜芦属植物化学成分和药理作用.国外医药·植物药分册, 2002, 17(5): 185-189.
    [18] Zhao, W J, Tezuka, Y, Kikuchi, T, et al. Studies on constituents of Veratrum plants. I. Constituents of Veratrum maackii Regel.; Isolation and structure determination of a new alkaloid,maackinine.Chem. Pharm. Bull., 1989, 37(11): 2920-2928.
    [19]张宝庆,夏光成.有毒中草药彩色图鉴.天津:天津科技翻译出版公司, 1994, 218.
    [20] Kadota, S, Chen, S Z, Li, J X, et al. A steroidal alkaloid from Veratrum oblongum. Phytochemistry, 1995, 38(3): 777-781.
    [21]杨崇仁,刘润民,周俊,等.蒙自藜芦的甾体生物碱研究.云南植物研究, 1987, 9(3): 359-364.
    [22]赵伟杰,孟庆伟,王世盛.天目藜芦生物碱的化学研究.中国中药杂志, 2003, 28 (10): 985-986.
    [23]毛晓峰,史志诚,王亚洲.我国藜芦属植物研究进展.动物毒物学, 2003, 18(1,2): 17-21.
    [24] Mei-ing Chung, Cheming Teng, Kamlin Cheng, et al. An antiplatelet principle of Veratrum formosanum. Planta Medica, 1992, 58(3):274-275.
    [25] Cong, Y, Guo, L, Yang, J Y, et al. Steroidal alkaloids from Veratrum japonicum with genotoxicity on brain cell DNA of the cerebellum and cerebral cortex in mice. Planta Medica, 2007, 73(15): 1588-1591.
    [26]赵伟杰,郭永沺,手塚康弘,等.乌苏里藜芦中茋类化合物的化学研究.中国药物化学杂志, 1998, 8(1): 35-37.
    [27]赵伟杰,郭永沺,王世盛,等.毛穗藜芦中茋类化合物的化学研究.中国中药杂志, 1998, 23(10): 619.
    [28]赵伟杰,郭永沺,手塚康弘,等.藜芦生物碱中刺孢麴霉碱的分离与鉴定.中国中药杂志, 1991, 16(7): 425-426.
    [29]赵伟杰,郭永沺,手塚康弘,等.乌苏里藜芦中橙黄胡椒酰胺的分离鉴定.中国中药杂志, 1998, 23(1) :41.
    [30]徐国钧,徐珞珊,王峥涛,等.常用中药材品种整理和质量研究(第四册).福建:福建科学技术出版社, 2001, 121-178.
    [31]赵录英,赵画晨,吴博威.藜芦混碱对离体心泵功能的效应及其与洋地黄类药物的对比.山西医科大学学报, 2002, 33(3): 231-232.
    [32]康毅,王国祥.牛磺酸抗藜芦碱实验性心律失常作用.天津医药,1989, (4):199-201.
    [33]郭春花.甘草酸钾和阿托品抗藜芦碱实验性心率失常作用.长治医学院学报, 1998, 12(4): 251-252.
    [34]王建民,魏苑,钟慈声,等.乌苏里藜芦生物碱对豚鼠心肌细胞动作电位及钙电流的影响.第三军医大学学报, 2001, 23(12):1403-1405.
    [35]李淑媛,李卫平,李传勋,等.盐酸乌苏里藜芦碱对麻醉犬血流动力学的研究.中国药学杂志, 1997, 32 (7):407-409.
    [36]刘燕,高广猷,叶丽虹.光脉黎芦碱的降压作用.大连医学院学报, 1991,13(4): 68-71.
    [37]李华,高广猷,李淑媛,等.乌苏里藜芦碱对肾性高血压大鼠中枢儿茶酚胺能神经元的作用.中国药理学报, 2000, 21(1):23-28.
    [38]马丽焱,周远鹏,江京俐,等.狭叶藜芦碱甲对犬血流动力学的影响.中草药, 1998, 29(2): 105-107.
    [39]李欣燕,韩国柱,张书文,等.乌苏里藜芦碱对血小板聚集及凝血与出血时间的影响.中草药, 2004, 35 (11):1269-1272.
    [40]邓伟峰,赵伟杰,吕莉,等.乌苏瑞宁的抗血栓作用.中草药, 2007, 38(12): 1836-1838.
    [41]由广旭,周琴,李卫平,等.乌苏里藜芦碱对大鼠脑缺血一再灌注损伤的保护作用.中草药, 2004, 35(8): 908-911.
    [42]杨静娴,戴淑芳,韩国柱,等.乌苏里藜芦碱对家兔和大鼠血液流变学及小鼠出血时间的影响.中药药理与临床, 1998, 14(6): 22-24.
    [43]李欣燕,任洪灿,韩国柱,等.乌苏里藜芦碱在大鼠的血液流变学作用.大连医科大学学报, 2004, 26(3): 165-167.
    [44]卢步峰,鲁友明,黄诒森.藜芦碱对分离的大鼠神经细胞内游离钙的影响.中国药理学通报, 1994, 10(3): 214-216.
    [45]段建红,段玉斌,韩晟,等.藜芦碱引起神经元放电峰峰间期慢波振荡.生物物理学报, 2002, 18(1): 49-52.
    [46]段建红,段玉斌,邢俊玲,等.藜芦碱致使大鼠背根神经节A类神经元产生触发性振荡.生理学报, 2002, 54(3): 208-212.
    [47]谢勇,段玉斌,徐健学,等.在大鼠受损坐骨神经上由藜芦碱诱发的抛物线簇放电.生物化学与生物物理学报, 2003, 35(9):806-810.
    [48]雷革胜,朱俊玲,万业宏,等.小剂量藜芦碱诱发大鼠脑海马CA1区锥体神经元异常放电癫痫脑片模型的特征.中国临床康复, 2005, 9(25): 238-239.
    [49]郑善子,崔春权,申成华,等.藜芦乳膏对毛囊蠕形螨的体外杀虫作用.延边大学医学学报, 2004, 27(1): 31-32.
    [50]杨素华,李东宁,孙健.藜芦乳膏治疗疥疮的疗效观察.辽宁中医杂志, 2002, 29(11): 664.
    [51]李太一,申成华,郑善子,等.藜芦乳膏的皮肤毒性实验研究.延边大学医学学报, 2004, 27(2):118-120.
    [52]周剑侠,康露,毕京博,等.异甾体生物碱—环巴胺的研究进展.中国天然药物, 2006, 4(6): 468-472
    [53]李同琴,郭秋红,仝利琪,等.党参反藜芦的动物实验研究.陕西中医, 2003, 23(8): 744-745.
    [54]潘浪胜,吕秀阳,吴平东.藜芦混碱与芍药苷配伍引起的化学反应研究.中国现代应用药学, 2005,22(增刊): 13-615.
    [55]唐自明.赤芍、藜芦配伍后化学成分的研究.云南中医学院学报, 1998, 21(增刊):47.
    [56]唐自明.苦参、藜芦配伍前后化学成分的研究.云南中医学院学报,1998, 21(增刊):48.
    [57]杨秀英,毛小平,毛晓健,等.丹参、苦参、玄参与藜芦配伍前后对血压的影响.云南中医学院学报, 1998, 21(增刊):46.
    [58]关天增,潘先琼,常洪志,等.“诸参辛芍叛藜芦”之实验研究.河南中医, 1993, 13(5): 204-205.
    [59]王宇光,高月.中药十八反药理毒理研究进展.中国实验方剂学杂志, 2003, 9(3): 60 -63.
    [60]王宇光,高月,柴彪新,等.人参、藜芦合用对大鼠肝P450酶活性及mRNA表达的调控作用.中国中药杂志, 2004, 29(4): 366-370.
    [1] Gaffield W, Benson M, Lundin R E, et al., Carbon-13 and proton nuclear magnetic resonance spectra of Veratrum alkaloids. J. Nat. Prod., 1986, 49(2): 286-292.
    [2] Tezuka, Y, Kikuchi, T, Zhao W J, et al. Two new steroidal alkaloids, 20-isoveratramine and verapatul-ine, from the roots and rhizomes of veratrum patulum. J. Nat. Prod. 1998, 61(9): 1078-1081.
    [3] Irsch E M, Pachaly P, Breitmaier E, et al., Isolierung und strukturaufl?rung neuer steroid- alkaloidglycoside. Liebigs. Ann. Chem, 1993, 281-285.
    [4] Kanchanapoom T, Suga K, Kasai R, et al., Stilbene and 2-arylbenzofuran glucosides from the rhizomes of Schoencaulon officinale. Chem. Pharm. Bull., 2002, 50(6): 863-865.
    [5]赵伟杰,陈均,郭永沺,等.藜芦生物碱的化学研究.中药通报. 1987, 12(1): 34-35.
    [6] Zhou, C X, Tan, R X, Steroidal alkaloids from Veratrum taliense. Indian J Chemistry, 2000, 39B: 283-286.
    [7] Helmut Ripperger, Steroidal alkaloids from roots of Solanum spirale. Phytochemistry, 1996, 43(3):705-707.
    [8]王斌.学位论文. 2007, 5, 28.
    [9] Zhao, W J, Tezuka, Y, Kikuchi, T, et al., Studies on constituents of Veratrum plants.Ⅱ. Constituents of Veratrum nigrum L.var. ussuriense. (1). Structure and 1H–and 13C- Nuclear Magnetic Resonance Spectra of a new alkaloid,verussurinine,and related alkaloids. Chem. Pharm.Bull., 1991, 39(3): 549-554.
    [10] Zhou C X, Tanaka J, Cheng C H K, et al., Steroidal alkaloids and stilbenoids from Veratrum taliense Planta Medica, 1999, 65: 480-482.
    [11]杨崇仁,刘润民,周俊,等.蒙自藜芦的甾体生物碱研究.云南植物研究, 1987, 9(3): 359-364.
    [12] Zhao, W J, Tezuka, Y, Kikuchi, T, et al., Studies on constituents of Veratrum plants. I. Constituents of Veratrum maackii Regel.; Isolation and structure determination of a new alkaloid, maackinine. Chem. Pharm. Bull., 1989, 37(11): 2920-2928.
    [13]颜世利,巴杭,阿吉艾克拜尔.新疆醉马草化学成分的研究.天然产物研究与开发, 2004, 16(5): 395-398.
    [14] El Sayed K A, McChesney J D, Halim A F, et al., A study of alkaloids in Veratrum viride ation. Int. J. Pharm. 1996, 34(3): 161-173.
    [15]华燕,周建于,倪伟,等.虎帐的化学成分研究.天然产物研究与开发. 2001, 13(6): 16-18.
    [16]戴胜军,于德泉,吕子明,等.光叶桑中酚类化合物德分离与鉴定.中国药物化学杂志, 2006, 16(2): 102-105.
    [17] Teguo P W, Decendit A, Krisa S, et al., The accumulation of stilbene glycosides in Vitis vinifera cell suspension cultures. J. Nat. Prod., 1996, 59(12): 1189-1191.
    [18] Qiu F, Komatsu K, Kawasaki K, et al., A novel stilbene glucoside, oxyresveratrol 3'-O-β- glucopyranoside, from the root bark of Morus alba. Planta Medica, 1996, 62: 559-561.
    [19] Atta-ur-rahman, Ali R A, Ashraf M, et al., Steroidal alkaloids from Veratrum album. Phytochemistry, 1996, 43(4): 907-911.
    [20] Hakim E H, Achmad S A, Aimi N, et al., Regioselective glucosylation of oxyresveratrol by cell suspension cultures of Solanum mammosum. J. Chem. Res., 2004, (10): 706-707.
    [21] Kashiwada Y, Nonaka GI, Nishioka I, Studies on Rhubarb (Rhei Rhizoma). VI. Isolation and characterization of stilbenes, Chem. Pharm. Bull., 1984, 32(9): 3501-3517.
    [22] Suleimenov, E M, Smagulova, F M, Morozova, O V, et al., Sesquiterpene Lactones and Flavonoids from Artemisia albida. Chem. Nat. Comp., 2005, 41(6): 689-691.
    [23]黄丽瑛,吕植棚,李继彪,等.中药金银花化学成分的研究. 1996, 27(11): 645-647.
    [24]邓银华,徐康平,章为,等.山豆根化学成分研究.天然产物研究与开发. 2005, 17(2): 172-174.
    [25]沈进,梁健,彭树林,等.星状凤毛菊的化学成分研究.天然产物研究与开发, 2004, 16(5): 391-394.
    [26]罗建光,孔令义.巴西甘薯叶黄酮类成分的研究.中国中药杂志, 2005, 30(7): 516-518.
    [27]于德泉.分析化学手册.第七分册.北京:科学工业出版社, 1999. 20.
    [28]王明时,刘卫国,忻莉娟.唐古特瑞香化学成分的研究.南京药学院学报. 1984, 15(2): 1-5.
    [29] Hanawa, F, Towers, G. H. Neil., Flavones from Alnus rubra Bong. Seed coat. Bull. FFPRI, 2003, 2 (2): 85-91.
    [30]周伯庭,李新中,徐平声,等.华紫珠化学成分研究.广东药学院学报, 2005, 21(6): 695-696.
    [31]吴斐华,梁敬钰,陈荣,等.毛平车前的化学成分和保肝活性.中国天然药物, 2006, 4(2): 435-439.
    [32] Ozawa T, Sakuta H, Negishi O, et al., Identification of species-specific flavone glucosides useful as chemotaxonomic markers in the genus Pyrus. Biosci. Biotechnol. Biochem., 1995, 59(12):2244-2246.
    [33]刘金旗,沈其权,刘劲松,等.贡菊化学成分德研究,中国中药杂志, 2001, 26(8): 547-548.
    [34]张仲平,牛超,孙英,等.香椿叶黄酮类成分的分离与鉴定.中药材, 2001, 24(10): 725-726.
    [35]刘铸晋,王绮文,王其灏.钩吻素子的结构.化学学报, 1985, 44:157-172.
    [36]杜贵友,方文贤.有毒中药现代化研究与合理应用.北京:人民卫生出版社, 2003, 949- 953.
    [37] Masamune, T, Mori, Y, Takasugi, M, et al., 11-Deoxojervine, a new alkaloid from Veratrum species. Bull. Chem. Soc. Jap. 1965, 38:1374-1378.
    [38] Shi, Q R, Yan, S K, Liang, M J, et al., Simultaneous determination of eight components in Radix Tinosporae by hign performance liquid chromatography coupled with diode array detector and electrospray tandem mass spectrometry. J. Phar. Bioch. Anal. 2007, 43: 994- 999.
    [39] Li, H L, Tang, J, Liu, R H,et al., Characterization and identification of steroidal alkaloids in the Chinese herb veratrum nigrum L. by highn-performance liquid chromatography/ electrospray ionization with multistage mass spectrometry. Rapid.Commun. Mass. Spectrom. 2007, 21: 869–879.
    [1] Reed, L J, Muench, H, A simple method of estimating fifty percent endpoints. Am. J. Hyg. 1938, 27, 493-497.
    [2]杜贵友,方文贤.有毒中药现代化研究与合理应用.北京:人民卫生出版社, 2003, 949-953.
    [3] Carmichael, J, DeGraff, W G, Gazdar, A F, Minna, J D, Mitchell J B, 1987. Evaluation of a tetrazolium-based semiautomated colorimetric assay-assessment of chemosensitivity testing. Cancer Res., 47, 936-942.
    [4] Chen, S Z, Xu, G J, Wang, Z T, et al., 2001. Special research on Veratrum plants. In: Xu, G.J., Xu, L.S., Wang, Z.T. (Eds.), Species systematization and quality evaluation of commonly used Chinese traditional drugs, Forth section. Fujian Science and Technology Press, Fujian, pp.121-178.
    [5] Berman, D M, Karhadkar, S S, Hallahan, A R, et al., Medulloblastoma growth inhibition by hedgehog pathway blockade. Science, 2002, 297, 1559-1561.
    [6] Thayer, S P, Di Magliano, M P, Heiser, P W, et al., Hedgehog is an early and late mediator of pancreatic cancer tumorigenesis. Nature, 2003, 425, 851-856.
    [7] Feldmann G, Dhara S, Fendrich V, et al., Blockade of hedgehog signaling inhibits pancreatic cancer invasion and metastases: A new paradigm for combination therapy in solid cancers. Cancer Res. 2007, 67: 2187-2196.
    [8] Watkins D N, Berman DM, Burkholder S G et al., Hedgehog signalling within airway epithelial progenitors and in small-cell lung cancer. Nature 2003, 422: 313-317.
    [1] Masamune, T, Mori, Y, Takasugi, M, et al., 11-Deoxojervine, a new alkaloid from Veratrum species. Bull. Chem. Soc. Jap., 1965, 38(8): 1374-1378.
    [2] Keeler, R F, Binns, W, Chemical compounds of Veratrum californicum related to conhenital ovine cyclopia malforations: extraction of active material. Proc. Soc. Exp. Biol. Med., 1964, 116(1):123-127.
    [3] Keeler, R F, Teratogenic compounds of Veratrum californicum (Durand)-VI: The structure of cyclopamine. Phytochemistry, 1969, 8(1): 223-225.
    [4] Cooper, M K, Porter, J A, Young, K E, et al., Teratogen-mediated inhibition of target tissue response to Shh signaling. Science, 1998, 280(5369): 1603-1607.
    [5] Hammerschmidt, M, Brook, A, Mcmahon, A P, The world according to hedgehog. Trends Genet. 1997, 13(1): 14-21.
    [6]周剑侠,康露,毕京博,等.异甾体生物碱—环巴胺的研究进展.中国天然药物, 2006, 4(6): 468-472.
    [7] Gerhart, J, 1998 Warkany lecture: signaling pathways in development . Teratology, 1999, 60(4): 226-239.
    [8] Wicking, C, Smyth, I, Bale, A, The hedgehog signaling pathway in tumorigenesis and development. Oncogene, 1999, 18(55): 7844-7851.
    [9] Murone, M, Rosenthal, A, De Sauvage, J, Hedgehog signaling transduction: from flies to vertebrates. Exp. Cell. Res., 1999, 253(1): 25-33.
    [10] Chiang, C, litingtung, Y, Lee, E, et al., Cyclopia and defective axial patterning in mice lacking sonic hedgehog gene function. Nature, 1996, 383(6599): 407-413.
    [11] Taipale, J, Chen, J K, Cooper, M K, et al. Effects of oncogenic mutations in smoothened and patched can cyclopamine. Nature, 2000, 406(6799), 1005-1009.
    [12] Romer, JT, Kimura, H, Magdaleno, S, et al., Suppression of the Shh pathway using a small molecule inhibitor eliminates medulloblastoma in Ptc1+/-p53-/- mice. Cancer Cell, 2004, 6(3): 229-240.
    [13] Taipale, J, Beachy, P A, The Hedgehog and Wnt signalling pathways in cancer. Nature, 2001, 411(6835): 349-354.
    [14] Chen, J K, Taipale, J, Cooper, M K, et al., Inhibition of Hedgehog signaling by direct binding of cyclopamine to smoothened. Genes and Development, 2002, 16: 2743-2748.
    [15] Berman, D M, Karhadkar, S S, Hallahan, A R, et al., Medulloblastoma growth inhibition by hedgehog pathway blockage. Science, 2002, 297(5586): 1559-1561.
    [16] Watkins, D N, Berman, D M, Burkholder, S G, et al., Hedgehog signalling within airway epithelial progenitors and in small-cell lung cancer. Nature, 2003, 422(6929): 313-317.
    [17] Thayer, P S, Di Magliano, M P, Heiser, P W, et al., Hedgehog is an early and late mediator of pancreatic cancer tumorigenesis. Nature, 2003, 425(6960): 851-856.
    [18] Keeler, R F, Teratogenic compounds in Veratrum californicum (Durand) IX. Structure-activity relation. Teratology, 1970, 3(2): 169-173.
    [19] Keeler, R F, Teratogenic compounds in Veratrum californicum (Durand) IX. Structure of muldamine. Steroids, 1971, 18(6): 741-752.
    [20] Gaffield, W, Keeler, R F, Structure-activity relations of teratogenic natural products. Pure and Appl. Chem., 1994, 66(10/11): 2407-2410.
    [21] Beachy, P A, Regulators of the Hedgehog pathway, compositions and uses related thereof. WO 01/27135 A2.
    [22] Janardanannair, S, Adams, J, Ripka, A S, et al., Cyclopamine analogues and methods of use thereof. WO 2006/026430.
    [23] Kiselyov, S, Targeting the Hedgehog Signaling Pathway with Small Molecules. Anticancer Agents Med. Chem., 2006, 6: 445-449.
    [24] Rubin, L L, De Sauvage, F J, Targeting the Hedgehog pathway in cancer. Nat. Rev. Drug. Discov., 2006, 5(12):1026-1033.
    [25] Keeler, R F, Binns, W, Teratogenic compounds of Veratrum californicum as a function of plant part, stage, and site of growth. Phytochemistry, 1971, 10(7): 1765-1769.
    [26] Kutney, J P, Synthetic studies in the Veratrum alkaloid series—The total synthesis of verarine, veratramine, jervine, veratrobasine, and verticine. Bioorg. Chem., 1977, 6(3): 371-391.
    [27]周剑侠,康露,沈征武.黑紫藜芦化学成分研究.中国药物化学杂志, 2006, 16(5): 303-305.
    [28]闻韧,药物合成反应.北京:化学工业出版社, 2001, 28a, 423-424; 28b, 346-347; 28c, 32-33; 28d, 387-388; 28e, 344-345.
    [29] Carmichael, J, DeGraff, W G, Gazdar, A F, Minna, J D, Mitchell J B, Evaluation of a tetrazolium-based semiautomated colorimetric assay-assessment of chemosensitivity testing. Cancer Res., 1987, 47, 936-942.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700