四种引进树种对大庆地区土壤盐碱胁迫的生理响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对桃叶卫矛(Euonymus bungeanus)、金银忍冬(Lonicera maackii)、红皮云杉(Picea koraiensis)和樟子松(Pinus sylvestris var. Mongolica)等4种木本植物在NaHCO3胁迫下的生理反应进行了研究,对参试树种耐盐碱能力进行评估,确定各树种对盐碱胁迫的耐受范围。主要研究结论如下:
     (1)4个树种苗木抗盐碱能力依次为忍冬>卫矛>樟子松>云杉。
     随胁迫强度的增加,4个树种苗木根、茎、叶及整株相对增长量均呈下降趋势,但下降幅度存在差异,依次为忍冬>卫矛>樟子松>云杉。
     (2)盐碱胁迫下,4个树种苗木的光合作用受到明显抑制,表现为叶绿索含量降低,净光和速率(Pn)下降。NaHCO3胁迫对云杉和樟子松P。的影响明显大于卫矛和忍冬。轻度胁迫导致云杉和樟子松P。显著下降(P<0.01),分别下降21.7%和22.5%,对卫矛和忍冬P。没有显著影响(P>0.05);中、重度胁迫下云杉和樟子松Pn下降幅度大于卫矛和忍冬的下降幅度。
     樟子松光合速率降低的主导因素为气孔限制因素;非气孔因素是造成云杉光合作用降低的主导因素;在轻度胁迫下卫矛叶片光合下降的原因是气孔限制,而在中、重度胁迫时,其光合下降的主要原因是非气孔限制;忍冬与卫矛相反。
     (3)随胁迫时间的延长,4个树种苗木叶片中游离脯氨酸含量总体上呈现出先上升后下降的趋势,在各个胁迫时期,随胁迫强度的增加,4个树种游离脯氨酸含量总体呈逐渐上升趋势。随胁迫时间的延长和胁迫强度的增加,4个树种苗木叶片可溶性糖和可溶性蛋白含量总体呈上升趋势。
     随胁迫强度的增加,4个树种苗木地上部分和根中Na+含量均逐渐增加,K+含量则逐渐下降。相同胁迫强度下,忍冬和卫矛地上部分Na+含量低于根系,云杉和樟子松地上部分Na+含量高于根系。相同胁迫强度下,4个树种苗木根系K+含量均低于地上部分。各胁迫强度下忍冬和卫矛根系Na+/K+均高于地上部分,云杉和樟子松根系Na+/K+均低于地上部分。
     (4) NaHCO3胁迫下,4个树种苗木叶片均受到一定程度的氧化损伤,表现为MDA和H202大量积累,电解质渗透率明显增大,卫矛和忍冬受害程度低于云杉和樟子松。各种抗氧化酶和抗氧化剂协同作用,共同抵御活性氧的伤害。与云杉和樟子松相比,卫矛和忍冬具有较高的SOD、CAT和APX活性。随胁迫强度的增加,卫矛和忍冬CAT和GR活性逐渐升高,云杉和樟子松CAT和GR活性逐渐降低。同时,卫矛和忍冬POD活性逐渐降低,云杉和樟子松活性逐渐升高。以上研究结果表明这4个树种在抗氧化防御效率方面存在明显的差异。
In this paper, the responses of seedlings of Euonymus bungeanus, Lonicera maackii, Picea koraiensis and Pinus sylvestris var. mongolica under NaHCO3 stress were studied. Through this program, the tolerance scopes of woody plants refered in this research against saline and alkaline stress were tested. The main results were as follows:
     (1) The saline and alkaline stress tolerance of the five woody species followed L. maackii> E. bungeanus> P. koraiensis>P. sylvestris var. mongolica.
     With the increasing stress intensity, the relative growth increments of roots, shoots and leaves of seedlings of the five woody species expressed decresing trends as well as total biomass increments, but different species had different decresing scales. The order in decreasing scale of biomass increment of the five species followed P. koraiensis>P. sylvestris var. mongolica>E. bungeanus> L. maackii.
     (2) The photosynthesis was suppressed significantly in the above plants under saline and alkaline stress. It was expressed as the decrease of chlorophyll contents and net photosynthetic rate. The effects of NaHC03 stress on P. koraiensis and P. sylvestris var. mongolica were obviously larger than E. bungeanus and L. maackii. Mild stress led to a significant decrease in Pn of P. koraiensis and P. sylvestris var. mongolica,21.7% and 22.5% respectively, while it did not have significant effects on E. bungeanus and L. maackii. The decreasing scale of Pn of P. koraiensis and P. sylvestris var. mongolica larger than E. bungeanus and L. maackii under moderate and severe stress.
     According to the changes of photosynthesis parameters of the four seedlings, it was concluded that under lower stress intensity, The main factor leading to decreasing in photosynthesis rate of P. sylvestris var. mongolica was stomatal limitation. Non-stomatal limitation was the main factor leading to decreasing in photosynthesis rate of P. koraiensis. The main factor leading to decreasing in photosynthesis rate of E. bungeanus under mild strss was stomatal limitation, while non-stomatal limitation under higher stress intensity. L. maackii is contrary to E. bungeanus.
     (3) With the increasing stress time, the proline content contents in leaves of the four trees rose firstly, and then decreased. At any stage, with the increasing stress intensity, the proline contents in leaves of the four trees gradually increased. With the increasing stress time and intensity, the soluble sugar and protein contents in leaves of the four trees rose as a whole.
     With the increasing stress intensity, the shoot and root Na+ contents gradually increased, and K+ contents gradually decreased. Under the same stress intensity, the shoot Na+ contents and Na+/K+ ratio of E. bungeanus and L. maackii were lower than that of root, while the shoot Na+ contents and Na+/K+ ratio of P. koraiensis and P. sylvestris var. mongolica were higher than that of root. At the same time, the shoot K+ contents of the four seedlings were lower than that of root.
     (4) Under NaHCO3 stress, the leaves of the four trees suffered some from oxidative damage,it was testified as the increase in the MDA and H2O2 contents and electrolyte leakage rate. Compared with E. bungeanus and L. maackii,P. koraiensis and P. sylvestris var. mongolica suffed more damage.Different antioxidative enzyme and antioxidant cooperated with each other against reactive oxygen damage. E. bungeanus and L. maackii had higher SOD, CAT and APX activities than P. koraiensis and P. sylvestris var. mongolica. With the increasing stress intensity, the CAT and GR activities of E. bungeanus and L. maackii gradually increased while P. koraiensis and P. sylvestris var. mongolica gradually decreased. At the same time, the change of POD of the four trees were contrary to CAT and GR. The above results showed that the four trees had obviously different antioxidative ability.
引文
[1]贾恢先,孙学刚.中国西北内陆盐地植物图谱.北京:中国林业出版社,2005
    [2]姚荣江,杨劲松.东北地区盐碱土特征及其农业生物治理.土壤,2006,38(3):256-262
    [3]李取生,李秀军,李晓军,等.松嫩平原苏打盐碱地治理与利用.资源科学,2003,25(1):15-20
    [4]许祥明,叶和春,李国凤.植物抗盐机理的研究进展.应用与环境生物学报,2000,6(4):379-387
    [5]李国雷.盐胁迫下13个树种反应特性的研究.山东农业大学硕士论文.2004
    [6]聂晶.五个垂直绿化树种的耐盐特性及耐盐性评价.山东农业大学硕士论文.2004
    [7]宋立奕.盐胁迫对青檀幼苗生长及生理特性的影响.南京林业大学硕士论文.2004
    [8]孙贵.盐胁迫对沙枣种子萌发及幼苗生长的效应.山东师范大学硕士论文.2000
    [9]刘国强,鲁黎明,刘金定.棉花品种资源耐盐性鉴定研究.作物品种资源,1993,(2):21-22
    [10]左长青,奚道雷,赵芝芸,等.滨海盐渍土草坪建植及管理.中国园林,1993,9(2):56-67
    [11]Munns R. Physiological Processes Limiting Plant Growth in Saline Soils:Some Dogmas and Hypotheses. Plant, Cell and Environment,1993,16:15-18
    [12]赵可夫.植物抗盐生理.北京:中国科学技术出版社,1993
    [13]尹尚军,石德成,颜红.Na2CO3胁迫下星星草胁变反应部位的差异.草业学报,2001,10(4):101-106
    [14]Chaudhuri K, Choudhuri MA. Effect of short-term NaCl stress on water relations and gas exchange of two jute species. Biol. Plant,1997,40:373-380
    [15]李付广,李凤莲,李秀兰.盐胁迫对棉花幼苗不同组织水分含量的影响.河北农业大学学报,1994,4:5-7
    [16]任红旭,陈雄,王亚馥.抗旱性不同的小麦幼苗在水分和盐胁迫下抗氧化酶和多胺的变化.植物生态学报,2001,(06):709-715
    [17]付莉,孙玉峰,褚继芳,郭飙.耐盐碱植物研究概述.林业科技,2001,26(04):16-17
    [18]Muller M, Santarius KA. Changes in Chloroplast Membrane Lipids During Adaptation of Barley to Extreme Salinity. Plant Physiol,1978,62(3):326-333
    [19]Maslenkora LT. Adaptetion to Salinity as Monitored by PS Ⅱ Oxygen Evolving Reactions in Barley Thylakoids. Plant Physiol,1993,142:629-634
    [20]Marrilyn C B, Jan MA. Sensitivity of PS Ⅱ to Salinity Tolerance Comparative Studies with Thylakoids of the Salt-tolerance Mangrove, Avicennia Marina, and the Salt-sensitive Pea, Pisum Sativum Aust. Plant Physiol,1986,13:689-698
    [21]孙广玉.盐碱土上马蔺的渗透调节和光合适应性研究.中国农业大学博士论文.2005
    [22]林莺.NaCl对海滨锦葵光合作用特性的效应.山东师范大学硕士论文.2006
    [23]张其德.盐胁迫对植物及其光合作用的影响(上).植物杂志,1999,(06):32-33
    [24]Gramer G R, Lauchli A, Polito V S. Displacement of Ca2+ by Na+ Forms the Plasmalemma of Root Cells Primary Response to Salt Stress. Plant Physiol,1985,79:207-211
    [25]Hasegawa PM, Bressan RA, Handa AK. Cell mechanisms of salinity tolerance. HortScience,1986,21:1317-1324
    [26]杨晓慧,蒋卫杰,魏珉,等.植物对盐胁迫的反应及其抗盐机理研究进展.山东农业大学学报(自然科学版),2006,37(2):302-305
    [27]赵可夫,李法曾.中国盐生植物.北京:科学出版社,1999
    [28]朱新广,张其德,匡廷云.NaCl对小麦光合功能的伤害主要是由离子效应造成的.植物学通报,2000,17(4):360-365
    [29]潘瑞炽.植物生理学.第五版.北京:高等教育出版社,2004
    [30]白文波,李品芳.盐胁迫对马蔺生长及K+、Na+吸收与运输的影响.土壤,2005,37(4):415-420
    [31]Rathert G. Influence of extreme K/Na ratios and high substrate salinity on plant metabolism of crops differing in salt tolerance. J. Plant Nutr,1982,5:183-193
    [32]Bernstein L, Francoism LE, Clark RA. Interactive effects of saliniy and salinity and fertility on yields of grains and vegetables. Agron.1974,66:412-421
    [33]Gadallah MAA. Effects of proline and glycinebetaine on Vicia faba response to salt stress. Biol. Plant,1999,42:249-257
    [34]Lee TM, Liu CH. Correlation of decreases calcium contents with proline accumulation in the marine green macroalga Ulva fasciata exposed to elevated NaCl contents in seawater. J. Exp. Bot,1999,50:1855-1862
    [35]孙存普,张建中,段绍英.自由基生物学导论.合肥:中国科技大学出版社,1999:48-59
    [36]余叔文,汤章城.植物生理与分子生物学.北京:科学出版社,1998:366-389
    [37]Grant J J, Loake G J. Role of Reactive Oxygen Intermediates and Cognate Redox Signali-ng in Disease Resistance. Plant Physiol,2000,124(9):21-30
    [38]Mittler R. Oxidative Stress Antioxidants and Stress Tolerance. Trends in Plant Science, 2002,7(9):405-410
    [39]Neill S J, Desikan R, Clarke A, et al. Hydrogen Peroxide and Nitric Oxide as Signaling M-olecules in Plants. Journal of Experomental Botany,2002,53(372):1237-1247
    [40]Vranova E, Inze D, Van Breusegem F. Signal Transduction During Oxidative Stress. Jour-nal of Experomental Botany,2002,53(372):1227-1236
    [41]王瑞刚,陈少良,刘力源,等.盐胁迫下3种杨树的抗氧化能力与抗盐性研究.北京 林业大学学报,2005,27(03):46-52
    [42]陈少裕.膜脂过氧化对植物细胞的伤害.植物生理学通讯,1991,27(02):84-90
    [43]史兰波,李云荫.水分胁迫对冬小麦幼苗几种生理指标和叶绿体超微结构的影响(简报).植物生理学通讯,1990,(02):28-31
    [44]柯玉琴,潘廷国.NaCl胁迫对甘薯叶片叶绿体超微结构及一些酶活性的影响.植物生理学报,1999,(03):229-233
    [45]Schmitt J M, Piepenbrock M. Regulation Phosphoenolpyruvate and Carboxylase Crassulacean Acid Metabolism Induction in Mesembryanthemum Crystallinum L. by Cytokinin. Plant Physiology,1992,99:1664-1669
    [46]刁丰秋,章文华,刘有良.盐胁迫对大麦叶片类囊体膜组成和功能的影响.植物生理学报,1999,23(2):105-110
    [47]Rao G G, Rao G R. Pigment Composition and Chlorophyase Activity in Pigm Pea and Gi-ng ellye under NaCl Salinity. Indian Jexp Biol.1981, (19):768-770
    [48]龚明,丁念诚,贺子义,等.盐胁迫下大麦和小麦叶片脂质过氧化伤害与超微结构变化的关系.Journal of Integrative Plant Biology,1989,31 (11):541-846
    [49]Imlay J A, Linn S. DNA Damage and Oxygen Radical Toxicity. Science.1998,240 (485 7):1302-1309
    [50]Byrd S, Reins D, Doetsch P W. Effects of Oxidative DNA Damage on Transcription by RNA Polymerases. Free Radic Biol Med,1990,9(1):4722
    [51]马焕成,王沙生.胡杨膜系统的盐稳定性及盐胁迫下的代谢调节[J].西南林学院学报,1998,18(1):15-23
    [52]舒卫国,陈受宜.植物在渗透胁迫下基因表达及信号传递[J].生物工程进展,2000,20(3):3-6
    [53]杨敏生,李艳华,梁海永,等.盐胁迫下白杨无性系苗木体内离子分配及比较[J].生态学报,2003,23(2):271-277
    [54]Heuer B, Plaut Z. Carbon Dioxide Fixation of Isolated Chloroplasts and Intact Sugar Beet Plants Grown under Saline Conditions. Ann. Bot.,1981,48:261-268
    [55]Bethke Paul C, Drew Malcolm C. Stomatal and Nonstomatal Components to Inhibition of Photosythesis in Leaves of Capspcum Annuum During Progressive Exposure to NaCl Sal-init y. Plant Physiol,1992,99:219-226
    [56]Walker R R, D H Blackmore, Sun Qing. Carbon Dioxide Assimilation and Foliar Ion Con-centration in leaves of lemon (Citrus Limon L) trees irrigated with NaCl or Na2SO4. Plant Phyiol,1993, (20):173-185
    [57]Wolf D J. Effect of NaCl Salinity on Flows and Partitioning of C. N. and Mineral Ions in Whole Plants of white Lupin, Lupinus albus L. Journal of Experimental Botany,1992,(43): 777-788
    [58]Munns R. Physiological Processes Limiting Plant Growth in Saline Soils:Some Dogmas and Hypotheses. Plant Cell and Environment,1993, (16):15-24
    [59]Sultana N, Ikeda T, Itoh R. Effect of NaCl Salinity on Photosynthesis and Dry Matter Acc-u Mulation in Developing Rice Grains. Envirorunent and Experimental Botany,1999, (4 2):211-220
    [60]Sibole J Y, Montero E, Cabot G, Poschenrieder C, Barrielo J. Role of Sodium in the ABA-mediated Long-term Growth Response of Bean to Salt Stress. Physiol plant,1998,104:2 99-305
    [61]张其德.盐胁迫对植物及其光合作用的影响(中).植物杂志,2000,(01):28-29
    [62]许大全.气孔的不均匀关闭与光合作用的非气孔限制.植物生理学通讯,1995,(4):246-252
    [63]郭书奎.NaCl胁迫抑制小麦、玉米幼苗光合作用机理的研究.山东师范大学硕士论文.2001
    [64]朱新广,张其德,匡廷云.NaCl胁迫对PSⅡ光能利用和耗散的影响.生物物理学报,1999,15(4):787-791
    [65]Fry I V et al. Archives of Biochem and Biophy,1986, (24),686-691
    [66]陈俊.碱地肤幼苗抗氧化酶系统对盐碱混合胁迫的生理响应特点.东北师范大学硕士学位论文,2006
    [67]武维华.植物生理学.北京:科学出版社,2003
    [68]钱琼秋,朱祝军,何勇.硅对盐胁迫下黄瓜根系线粒体呼吸作用及脂质过氧化的影响.植物营养与肥料学报,2006,12(6):875-880
    [69]闫先喜.盐胁迫下对大麦胚根细胞膜系统的影响.植物学报,1994,36(增刊):33-36
    [70]陈月艳,孙国荣,李景信.Na2CO3胁迫对星星草种子萌发过程中水分吸收及膜透性的影响.草业科学,1997,14(2):27-30
    [71]孙国荣,陈月艳,关肠.阎秀峰盐碱胁迫下星星草种子萌发过程中有机物、呼吸作用及其几种酶活性的变化.植物研究,1999,19(4):445-451
    [72]Levitt DG. Kinetics of movements in narrow channels. Current Topics In Membranes And Transport,1984,21:181-197
    [73]Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ. Plant cellular and molecular responses to high salinity. Annu. Rev. Plant Physiol. Plant Mol. Biol.2000,51,463-499
    [74]刘杜丰,杨传平.盐逆境条件下三个树种的内源激素变化.1998,26(001):1-3
    [75]Ashraf M. Breeding for salinity tolerance in plants. Crit. Rev. Plant Sci,1994,13:17-42
    [76]Greenway H, Munns R. Mechanisms of salt tolerance in nonhalophytes. Annual Review of Plant Physiology,1980,31:149-190
    [77]张海燕,赵可夫.盐分和水分胁迫对盐地碱蓬幼苗渗透调节效应的研究.植物学报,1998,40(1):56-57
    [78]Mansour MMF. Nitrogen containing compounds and adaptation of plants to salinity stress. Biol. Plant,2000,43:491-500
    [79]Ashraf M. Organic substances responsible for salt tolerance in Eruca sativa. Biol. Plant, 1994,36:255-259
    [80]Rabe B. Stress physiology:the functional significance of the accumulation of nitrogen containing compounds. J. Hort. Sci,1990,65:231-243
    [81]Ashraf M, Fatima H. Responses of some salt tolerant and salt sensitive lines of safflower (Carthamus tinctorius L.), Acta Physiol. Plant,1995,17:61-71
    [82]Ashraf M, Tufail M. Variation in salinity tolerance in sunflower (Helianthus annuus L.), J. Agron. Soil Sci,1995,174:351-362
    [83]Hurkman WJ, Rao HP, Tanaka CK. Germin-like polypeptides increase in barley roots during salt stress. Plant Physiol,1991,97:366-374
    [84]Abraham E, Rigo G, Szekely G, Nagy R, Koncz C, Szabados L. Light-dependent induction of proline biosynthesis by abscisic acid and salt stress is inhibited by brassinosteroid in Arabidopsis, Plant Mol. Biol,2003,51:363-372
    [85]Ali G, Srivastava PS, Iqbal M. Proline accumulation, protein pattern and photosynthesis in regenerants grown under NaCl stress. Biol. Plant,1999,42:89-95
    [86]汪良驹,王业进,刘友良.盐逆境中无花果叶片蛋白质合成与脱落酸及脯氨酸积累的关系.江苏农业学报,1991,7(1):38-44
    [87]杨凯,昌小平,胡荣海,等.干旱胁迫下小麦脯氨酸积累相关基因的染色体定位.作物学报,2001,27(3):363-366
    [88]赵锁劳,窦延玲.小麦耐盐性鉴定指标及其分析评价.西北农业大学学报,1998,26(6):80-85
    [89]Khatkar D, Kuhad MS. Short-term salinity induced changes in two wheat cultivars at different growth stages. Biol. Plant,2000,43:629-632
    [90]Singh SK, Sharma HC, Goswami AM, Datta SP, Singh SP. In vitro growth and leaf composition of grapevine cultivars as affected by sodium chloride. Biol. Plant, 2000,43:283-286
    [91]Girousse C, Bournoville R, Bonnemain JL. Water deficit-induced changes in concentration in praline and some other amino acids in the phloem sap of alfalfa. Plant Physiol, 1996,111:109-113
    [92]Hare PD, Cress WA. Metabolic implications of stress-induced proline accumulation in plants. Plant Growth Regulation,1997,21:79-102
    [93]Lansac AR, Sullivan CY, Jonson BE. Accumulation of free praline in sorghum(Sorghum bicolor) pollen. Can. J. Bot.1996,74:40-45
    [94]Liu JP, Zhu JK. Proline accumulation and salt-stress-induced gene expression in a salt- hypersensitive mutant of arabidopsis. Plant Physiol,1997,114:591-596
    [95]Rentsch D, Himer B, Sclunelzer E, Fronuner WB. Salt stress-induced proline transporters and salt stress-repressed broad specificity amino acid permeases permease-targeting mutant. The Plant Cell,1996,8:1437-1446
    [96]Rudolph AS, Crowe JH, Crowe LM. Effect of three stabilizing agents-proline, betaine and trehalose, on membrane phospholipids. Arch. Biochem. Biophys,1986,245:134-143
    [97]Lone MI, Kueh JSH, Wyn Jones RG, Bright SWJ. Influence of proline and glycinebetaine on salt tolerance of cultured barley embryos. J. Exp. Bot,1987,38:479-490
    [98]Mansour MMF. Protection of plasma membrane of onion epidermal cells by glycinebetaine and proline against NaCl stress. Plant Physiol. Biochem,1998,36:767-772
    [99]Petrusa LM, Winicov I. Proline status in salt tolerant and salt sensitive alfalfa cell lines and plants in response to NaCl. Plant Physiol. Biochem,1997,35:303-310
    [100]傅秀云.冬小麦耐盐力与脯氨酸含量的关系.山东农业科学,1988,(2):5-7
    [101]Ahmad I, Wainwright SJ, Stewart GR. The solute and water relations of Agrostis stolonifera ecotypes differing in their salt tolerance, New Phytol,1981,87:615-629
    [102]Jain S, Nainawatee HS, Jain RK, Chowdhury JB. Proline status of genetically stable salt-tolerant Brassica juncea L. somaclones and their parent cv.'Parkash'. Plant Cell Rep, 1991,9:684-687
    [103]Lutts S, Kinet JM, Bouharmont J. Effects of salt stress on growth, mineral nutrition and proline accumulation in relation to osmotic adjustment in rice (Oryza sativa L.) cultivars differing in salinity tolerance. Plant Growth Regul,1996,19:207-218
    [104]孙金月,赵玉田.小麦细胞壁糖蛋白的耐盐性保护作用与机制研究.中国农业科学,1997,30(4):9-12
    [105]Sabu A, Sheeja TE. Comparison of proline accumulation in callus and seedlings of two cultivation of Oryza sativa L. differing in salt tolerance. Indian Journal of Expermential Biology,1995,33(2):139-141
    [106]Moftah AB. Michel BB. The effect of sodium chloride on solute potential and proline accumulation in soybean leaves. Plant Physiol,1987,83:283-286
    [107]曹礼.旱稻对盐胁迫的生理响应.兰州大学硕士论文,2006
    [108]Rhodes D Hanson AD. Quaternary ammonium and tertiary sulfonium compounds in higher plants. Annu. Rev. Plant Physiol. Plant Mol. Biol,1993,44:357-384
    [109]侯彩霞,汤章城.细胞相容性物质的生理功能及其作用机理.植物生理学通讯,1999,35(1):1-7
    [110]Gibon Y, Bessieres MA, Larher F. Is glycinebetaine a non-compatible solute in higher plants that do not accumulate it? Plant Cell and Environment,1997,20:329-340
    [111]Hanson AD, Roger W. Biosynthesis, Translocation, and accumulation of betaine in sugar beet and its progenitors in relation to salinity. Plant Physiol,1982,70:1191-1198
    [112]邱念伟,杨洪兵,王宝山.Na+/H+逆向转运蛋白及其与植物耐盐性的关系.植物生理学通讯,2001,37(3):260-264
    [113]Schachtman DP, Rana Munns. Sodium accumulation in leaves of Ttiticum species that differ in salt tolerance. J. Plant Physiol,1992,19:331-340
    [114]Papageogious G C, Murata N. The unusually strong stabilizing effects of glycine betaine on the structure and function of the oxygen-evolving photosystem II complex. Photosynth Res,1995,44:243-252
    [115]Robinson SP, Jones JP. Accumulation of Glycinebetaine in chloroplasts provides osmotic adjustment during salt stress. J. Plant Physiol.1986,13:659-668
    [116]Genard H, Le Saos J, Hillard J, Tremolieres A. Boucaud J. Effect of salinity on lipid composition, glycinebetaine content and photosynthetic activity in chloroplasts of Suaeda maritime. Plant Physiol. Biochem,1991,29:421-427
    [117]赵可夫.植物对盐渍逆境的适应.生物学通报,2002,37(6):7-9
    [118]赵利辉,罗庆云,章文华等.大麦幼苗根系液泡膜质子泵对苗的发育和盐胁迫的响应.植物生理学通讯,2001,37(2):95-97
    [119]Khan MA, Ungar IA, Showalter AM. Effects of sodium chloride treatments on growth and ion accumulation of the halophyte Haloxylon recurvum. Commun. Soil Sci. Plant Anal, 2000,31:2763-2774
    [120]Muthukumarasamy M, Gupta SD, Pannerselvam R. Enhancement of peroxidase, polyphenol oxidase and superoxide dismutage activities by triadimefon in NaCl stressed Raphanus sativus L. Biol. Plant,2000,43:317-320
    [121]Grieve CM, Maas EM. Betaine accumulation in salt stressed sorghum. Physiol. Plant, 1984,61:167-171
    [122]Rhodes DP, Rich J, Myers AC, Rueter CC, Jamieson GC. Determination of betaines by fast atom bombardment mass spectrometry:Identification of glycinebetaine deficient genotypes of Zea mays. Plant Physiol,1987,84:781-788
    [123]Saneoka H, Nagasaka C, Hahn DT, Yang WJ, Premachandra GS, Joly RJ, Rhodes D. Salt tolerance of glycinebetaine-deficient and-containing maize lines. Plant Physiol, 1995,107:631-1638
    [124]Colmer TD, Epstein E, Dvorak J. Differential solute regulation in leaf blades of various ages in salt sensitive wheat and a salt-tolerant wheat x Lophopyrum elongatum (Host.) A. Love amphiploid. Plant Physiol,1995,108:1715-1724
    [125]Varshney KA, Gangwar LP, Goel N. Choline and betaine accumulation in Trifolium alexandrinum L. during salt stress. Egyptian J. Bot,1988,31:81-86
    [126]Wyn Jones RG, Gorham J, McDonnell E. Organic and inorganic solute contents as selection criteria for salt tolerance in the Triticeae, in:R. Staples, G.H. Toennissen (Eds.), Salinity Tolerance in Plants:Strategies for Crop Improvement, Wiley, New York, 1984,189-203
    [127]Mansour MMF, Salama, K.H.A. A1-Mutawa, M.M. Transport proteins and salt tolerance in plants. Plant Sci,2003,164:891-900
    [128]邱念伟.不同类型盐生植物叶片Na+区域化作用机理的比较研究.山东师范大学硕士论文,2001
    [129]Blumwald E, Poole RJ. Na+/H+ antiport in isolated tonoplast vesicles from storage tissue of Beta vulgaris. Plant Physiol.1985,78:163-167
    [130]李艳艳.盐胁迫下盐地碱蓬叶片V-H+-ATPase H亚基的克隆与表达分析.济南:山东师范大学硕士论文,2006
    [131]Sarafian V, Poole RJ. Purification of a H+ translocating inorganic pyrophosphatase from vacuole membranes of red beet. Plant Physiol,1989,91:34-38
    [132]陈观平,王慧中,施农农,等.Na+/H+逆向转运蛋白与植物耐盐性关系研究进展.中国生物工程杂志,2006,26(5):101-106
    [133]Blumwald E, Aharon GS, Apse MP. Sodium transport in plant cells. Biochim Biophys Acta,2000,1465:140-151
    [134]Ohta M, Hayashi Y, Nakashima A, Hamada A, Tanaka A, Nakamura T, Hayakawa T. Introduction of a Na+/H+ antiporter gene from Atriplex gmelini confers salt tolerance to rice. FEBS Lett,2002,532 (3):279-282
    [135]刘友良.植物耐盐性的研究进展.植物生理学通讯,1987,(6):72-81
    [136]Tyerman SD, Skerett IM. Root ion channels and saliaity. Scientia Horticulture, 1999,78:175-325
    [137]吕慧颖,李银心,孔凡江,等.植物Na+/H+逆向转运蛋白研究进展.植物学通报,2003,20(3):363-369
    [138]杜秀敏,殷文璇,赵彦修,等.植物中活性氧的产生及清除机制.生物工程学报,2001,17(2):121-125
    [139]Thompson JE, Ledge RL, Barber RF. The role of free radicals in senescence and wounding. New Phytol,1987,105:317-344
    [140]Bowler C, Van CW, Montagu M, Inze D. Superoxide dismutase in Plants and salt stress toleranee. Annu. Rev. Plant Physiol. and Plant Mol,1992,43:83-116
    [141]Scandalios JG. Oxygen stress and superoxide dismutase. Plant Physiol,1993,101:7-12
    [142]Foyer CH, Halliwell B. The presence of glutathione and glutathione reductase in chloroplasts:aproposed rolein ascorbic acid metabolism. Planta,1976,133:21-25
    [143]Perl A, Perl-Treves R, Galili S, Aviv D, Shalgi E, Malkin S, Galun E. Enhanced oxidative stress defence in transgenic potato expressing tomato Cu, Zn superoxide dismutases. Theoretical and Applied Genetics,1993,85:568-576
    [144]Gossett DR, Millhollon EP, Lucas MC. Antioxidant response to NaCl stress in salt-tolerant and salt-sensitive cultivars of cotton. Crop Sci,1994,34:706-714
    [145]Gossett DR, Banks SW, Millhollon EP, Lucas MC. Antioxidant response to NaCl stress in a control and an NaCl-tolerant cotton cell line grown in the presence of paraquat, buthionine sulfoximine, and exogenous glutathione. Plant Physiol,1996,112:803-809
    [146]Willekens H, Chamnogopol S, Davey M, Schraudner M, Langebartels C. Catalase is a sink for H2O2 and is indispensable for stress defense in C3 plants. EMBO J., 1997,16:4806-4816
    [147]许长成,程丙嵩,邹琦.植物水分胁迫与活性氧代谢.山东农业大学学报,1993,24(3):113-116
    [148]Wittsuwannakul R, ittswwannakul D, Sattaysevana B, Pasitkul P. Peroxidase from Hevea Brasiliensis Bark:purification and properties. Phytochemistry,1997,44(2):223-241
    [149]Willekens H, Langebartels C, Tire C, et al. Differential expression of catalase genes in nicotiana plumbaginifolia. Proc NatlAcad Sci USA,1994,91:10450-10454
    [150]Mittova V, Volokita M, Guy M, Tal M. Activities of SOD and the ascorbate-glutathione cycle enzymes in subcellular compartments in leaves and roots of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii. Physiol. Plant,2000,110:42-51
    [151]Shalata A, Tal M. The effect of salt stress on lipid peroxidation and antioxidants in the leaf of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii. Physiol. Plant,1998,104:169-174
    [152]Gueta-Dahan Y, Yaniv Z, Zilinskas BA, Ben-Hayyim G. Salt and oxidative stress:similar and specific responses and their relation to salt tolerance in citrus. Planta,1997,203:460-469
    [153]Tsugane K, Kobayashi K, Niwa Y, Ohba Y, Wada K, Kobayashi H. A recessive Arabidopsis mutant that grows photoautotrophically under salt stress shows enhanced active oxygen detoxification. Plant Cell,1999,11:1195-1206
    [154]Edwards EA, Rawsthorne SR, Mullineaux PM. Subcellular distribution of multiple forms of glutathione reductase in leaves of pea (Pisum sativum L.). Planta,1990,180:278-284
    [155]Mallick N, Mohn FH. Reactive oxygen species:response of algal cells. J Plant Physiol, 2000,157:183-193
    [156]Alscher RG, Donahue JL, Cramer CL. Reactive oxygen species and antioxidants: Relationships in green cells. Physiol Plant,1997,100:224-233
    [157]Chinta Sudhakar, Lakshmi A, Giridarakumar S. Changes in the antioxidant enzyme efficacy in two high yielding genotypes of mulberry(Morus alba L.) under NaCl salinity. Plant Science,2001,161:613-619
    [158]Garratt LC, Janagoudar BS, Lowe KC, Anthony P, Power JB, Davey MR. Salinity tolerance and antioxidant status in cotton cultures. Free Radic. Biol. Med,2002,33:502-511
    [159]Noctor G, Foyer CH. Ascorbate and glutathione:Keeping active oxygen under control. Annu. Rev. Plant Physiol. Plant Mol. Biol.1998,49:249-279
    [160]Halliwell B. Oxidative damage, lipid peroxidation, and antioxidant protection in chloroplasts. Chem. Phys. Lipids,1987,44:327-340
    [161]Cushman JC, Meyer G, Michalowski CB, Schmitt JM, Bohnert HJ. Salt stress leads to differential expression of two isogenes of PEP Case during CAM induction in the common Ice plant. Plant Cell,1989,1:715-725
    [162]张丽杰,陈晓旭,周强,等.光照、琼脂和碳源对桃叶卫矛腋芽离体培养的影响.辽宁林业科技,2009(1):31-34
    [163]刘继生,张鹏,金春德,等.桃叶卫矛种子的发芽特性.延边大学农 学学报,2001,23(4):254-256
    [164]陈开秀,李先荣.桃叶卫矛种子休眠、催芽及芽苗移栽技术的探讨.八一农学院学报,1991,14(2):31-35
    [165]杨锦萍,符亚儒,李冬梅.桃叶卫矛生物学特性及引种栽培试验.防护林科技,2008(1):18-19
    [166]江萍,宋于洋,王雪莲,等.Na2SO4对桃叶卫矛幼苗抗氧化性的影响.浙江林业科技,2009,29(1):40-43
    [167]朱有昌.东北药用植物.哈尔滨:黑龙江科学技术出版社,1989:1061
    [168]李防.野生植物金银忍冬营养成分的测定.化学与生物工程,2007,24(1):77-78
    [169]李战国.优良观赏树种——金银木.林业实用技术,2003(10):43
    [170]沈夏淦.优良观花观果的灌木“金银木”.西南园艺,2004,32(3):34-35
    [171]李军,王中田.用金银木嫁接金银花技术.山东林业科技,2002(5):23
    [172]刘玉安.新疆杨、金银忍冬繁殖技术的研究.吉林林学院学报,2004,16(4):206-207
    [173]田丽.金银忍冬播种和绿枝扦插育苗.中国林副特产,2003(3):49
    [174]安蒲媛,孙秀琴.三种灌木种子萌发特性的研究.林业科技通讯,1995(9):11-13
    [175]张文庆,王勤,屠强,等.金银忍冬种子人工催芽试验.特产研究,2003,25(2):24-26
    [176]丁一上,安进莉,崔林,等.HPLC对5种新疆地产金银花绿原酸含量的测定.石河子医学院学报,1997,19(1):1-3
    [177]徐国钧.中药材粉末纤维鉴定.北京:人民卫生出版社,1986:356
    [178]姜凤岐,朱教君,曾德慧,等.防护林经营学.北京:中国林业出版社,2003:171-183
    [179]ZHU JJ, FAN ZP, ZENG DH, etal. Comparison of stand structure and growth between plantation and natural forests of Pinus sylvestris var. mongolica on sandy land. Journal of Forestry Research,2003,14(2):103-111
    [180]韩广,张桂芳,杨文斌.影响沙地樟子松天然更新的主要生态气候因子的定量分析.林业科学,1999,35(5):22-27
    [181]甘肃省林业局.主要树种造林技术.兰州:甘肃人民出版社,1980.85-90
    [182]王继和,满多清,刘虎俊.樟子松在甘肃干旱区的适应性及发展潜力研究.中国沙漠,1999,(4):390-394
    [183]赵文智.奈曼沙区樟子松生长状况与水分关系.中国沙漠,1992,12(1):64-69
    [184]吴祥云.辽宁省樟子松人工林立地类型的研究.东北林业大学学报,1991,19(2):42-49
    [185]惠晓萍,洪涛.甘肃“三北”荒漠地区樟子松引种与推广.甘肃林业科技,1997,(1):39-42
    [186]李爱平,唐维嘉,袁雪.樟子松播种苗当年生长规律与管理技术研究.防护林科技,1995,(3):12-14
    [187]刘世增,满多清,严子柱,等.荒漠区樟子松幼苗生长规律及管理技术.甘肃农业大学学报,2003,38(3):315-319
    [188]北京林学院.土壤学(上册).北京:中国林业出版社,1982:201-213
    [189]ZHU Jiao-jun, FAN Zhi-ping, ZENG De-hui, et al. Comparison of stand structure and growth between artificial and natural forests of Pinus sylvestris var. monglica on sandy land [J]. Journal of Forestry Research,2003,14(2):103-111
    [190]满多清,徐先英,吴春荣,等.干旱荒漠区沙地衬膜樟子松育苗技术研究.水土保持学报,2003,17(3):170-173
    [191]尤文忠,苑辉,云丽丽,等.沙地樟子松天然更新与降水因子的灰色关联度分析.辽宁林业科技,2002,(2):4-9
    [192]刘殿祥,万敏,王鸿涛.改土及接种菌根对樟子松碱地育苗效应的研究.哲里木畜牧学院学报,1994,(2):64-67
    [193]谢钰容,周志春,金国庆,等.马尾松不同种源磷素吸收动力学特征.林业科学研究,2003,16(5):548-553
    [194]吴春荣,王继和,刘世增,等.干旱沙区樟子松合理灌水量的探讨.防护林科技,2003,54(1):59-61
    [195]张含国,杨大海,王风君,等.红皮云杉同工酶位点及酶系统选择.东北林业大学学报,2000,28(2):9-13
    [196]李凤娟.红皮云杉种源间植物激素、硝酸还原酶和可溶性蛋白的遗传变异.东北林业大学,2002
    [197]张放,胡万良,孔祥文.红皮云杉幼树不同光环境下生理生态特征研究.辽宁林业科技,2003(5):1-5
    [198]韦淑英,马华文,黄青新,等.红皮云杉苗木生物量群体多样性的研究.北华大学学报,2001,2(3):246-251
    [199]Kennedy BF, De Fillippis LF. Physiological and oxidative response to NaCl of the salt tolerant Grevillea ilicifolia and the salt sensitive Grevillea arenaria. J. Plant Physiol. 1999,155,746-754
    [200]刁丰秋,章文华,刘友良.盐胁迫对大麦叶片类囊体膜脂组成和功能的影响.植物生理学报,1997,23(2):105-110
    [201]Wang Y, Nil N. Changes in chlorophyll, ribulose biphosphate carboxylase-oxygenase, glycine betaine content, photosynthesis and transpiration in Amaranthus tricolor leaves during salt stress. J. Hortic. Sci. Biotechnol,2000,75:623-627
    [202]Romero AR, Soria T, Cuartero J. Tomato plant-water uptake and plant-water relationships under saline growth conditions. Plant Sci.2001,160,265-272
    [203]郇树乾,刘国道,张绪元,等.NaCl胁迫对刚果臂形草种子萌发及幼苗生理效应的研究.中国草地,2004,26(6):45-49
    [204]董晓霞,赵树慧,孔令安,等.苇状羊茅盐胁迫下生理效应的研究.草业科学,1998,15(5):10-13
    [205]韩志平,郭世荣,冯吉庆,等.盐胁迫对西瓜幼苗生长、叶片光合色素和脯氨酸含量的影响.南京农业大学学报,2008,31(2):32-36
    [206]王仁雷,华春,刘友良.盐胁迫对水稻光合特性的影响.南京农业大学学报,200225(4):11-14
    [207]冯志红,闫立英,王久兴,等.Na2SO4和CaCl2胁迫对不同黄瓜品种种子萌发和幼苗生长的影响.河北农业科学,2004,8(4):47-51
    [208]王宝增,赵可夫.低浓度NaCl对玉米生长的效应.植物生理学通讯,2006,42(4):628-632
    [209]Winicov I, Button JD. Accumulation of photosynthesis gene transcripts in response to sodium chloride by salt tolerant alfalfa cells. Planta,1991,183:478-483
    [210]Locy RD, Chang CC, Nielsen BL, Singh NK. Photosynthesis in salt-adapted heterotrophic tobacco cells and regenerated plants. Plant Physiol.1996,110:321-328
    [211]杜中军,翟衡,潘志勇,等.盐胁迫下苹果砧木光合能力及光合色素的变化.果树学报,2001,18(4):200-1203
    [212]丁丽娜,金华,殷鸣放,等.盐胁迫对杨树幼苗叶片光合色素及气体交换特征的影响.西北植物学报,2006,26(12):2523-2527
    [213]夏阳,孙明高,李国雷,等.盐胁迫对四园林绿化树种叶片中叶绿素含量动态变化的影响.山东农业大学学报(自然科学版),2005,36(1):30-34
    [214]季静,杨晓慧,李然,等.盐胁迫下金银花叶片叶绿素含量的测定与分析.大连民族学院学报,2007,5:154
    [215]Parida A, Das AB, Das P. NaCl stress causes changes in photosynthetic pigments, proteins and other metabolic components in the leaves of a true mangrove, Bruguiera parviflora, in hydroponic cultures. J. Plant Biol.2002,45,28-36
    [216]廖祥儒,贺普超,朱新产.盐渍对葡萄光合色素含量的影响.园艺学报,1996,23(3):300-302
    [217]Mavrogianopoulos GN, Spanadis J. Tsikalas P. Effect of carbon dioxide enrichment and salinity on photosynthesis and yield in melon. Scientia Horticulture,1999,79:51-63
    [218]Kao WY, Tsai HC, Tsai TT. Effect of NaCl and nitrogen availability on growth and photosynthesis of seedlings of a mangrove species, Kandelia candel (L.) Druce. J. Plant Physiol.2001,158,841-846
    [219]Downton WJS, Grant WJR, Robinson SP. Photosynthetic and stomatal responses of spinach leaves to salt stress. Plant Physiol.,1985,77:85-88
    [220]Steduto P, Albrizio R, Giorio P, Sorrentino G. Gas-exchange response and stomatal and non-stomatal limitations to carbon assimilation of sunflower under salinity. Env. Exp. Bot., 2000,44:243-255
    [221]Heuer B, Plaut Z. Carbon dioxide fixation of isolated chloroplasts and intact sugar beet plants grown under saline conditions. Ann. Bot.,1981,48:261-268
    [222]Rajesh A, Arumugam R, Venkatesalu V. Growth and photosynthetic characterics of Ceriops roxburghiana under NaCl stress. Photosynthetica,1998,35:285-287
    [223]Kurban H, Saneoka H, Nehira K, Adilla R, Premachandra GS, Fujita K. Effect of salinity on growth, photosynthesis and mineral composition in leguminous plant Alhagi pseudoalhagi (Bieb.). Soil Sci. Plant Nutr.,1999,45:851-862
    [224]Yamaya T, Matsumoto H, Accumulation of asparagines in NaCl-stressed barley seedlings. Berichte des Ohara Institut fur Landwirtschaftliche Biologie, Okayama Universitat,1989, 19:181-188
    [225]El-Shourbagy MN, Koshk HT. Sodium chloride effects on the sugar metabolism of several plants. Phytochemistry,1975.17:101-108
    [226]Khavarinejad RA, Mostofi Y. Effects of NaCl on photosynthetic pigments, saccharides, and chloroplast ultrastructure in leaves of tomato cultivars. Photosynthetica,1998,35: 151-154
    [227]Murakeozy EP, Nagy Z, Duhaze C, Bouchereau A, Tuba Z. Seasonal changes in the levels of compatible osmolytes in three halophytic species of inland saline vegetation in Hungary. J. Plant Physiol.2003,160:395-401
    [228]Alamgir ANM, Ali MY, Effect of salinity on leaf pigments, sugar and protein concentrations and chloroplast ATPAase activity of rice (Oryza sativa L.). Bangladesh J. Bot.1999,28,145-149
    [229]Ashraf M, O'Leary JW. Changes in soluble proteins in spring wheat stressed with sodium chloride, Biol. Plant,1999,42:113-117
    [230]魏爱丽,杨臣,陈云昭,等.盐胁迫下大豆小真叶愈伤组织可溶性蛋白含量变化的 研究.山西农业大学学报,1997,17(4):318-321
    [231]田晓艳,刘延吉,郭迎春.盐胁迫对NHC牧草Na+、K+、Pro、可溶性糖及可溶性蛋白的影响.草业科学,2008,25(10):34-38
    [232]Ashraf M, Waheed A. Responses of some local/exotic accessions of lentil (Lens culinaris Medic.) to salt stress. J. Agron. Soil Sci.1993,170:103-112
    [233]牛东玲,王启基.盐碱地治理研究进展.土壤通报,2002,33(06):449-455
    [234]杨春武,李长有,张美丽,等.盐、碱胁迫下小冰麦体内的pH及离子平衡.应用生态学报,2008,19(5):1000-1005
    [235]贾娜尔·阿汗,杨春武,石德成,等.盐生植物碱地肽对盐碱胁迫的生理响应特点.西北植物学报.2007,27(1):79-84
    [236]马红媛,梁正伟,孔祥军.苏打盐碱胁迫下羊草的生长特性与适应机制.土壤学报,2008,45(006):1203-1207
    [237]曲元刚,赵可夫.NaCl和Na2CO3对玉米生长和生理胁迫效应的比较研究.作物学报,2004,30(4):334-341
    [238]张丽平,王秀峰,史庆华.黄瓜幼苗对氯化钠和碳酸氢钠胁迫的生理响应差异.应用生态学报.2008,19(008):1854-1859
    [239]殷立娟,石德成.东北碱化草地的主要盐分Na2CO3对羊草危害因素分析.草业学报,1993,2(1):1-5
    [240]Utriainen J, Holopainen T. Influence of nitrogen and phosphorus availability and ozone stress on Norway spruce seedlings. Tree Physiology,2001,21:447-456
    [241]潘保原,宫伟光,张子峰,等.大庆苏打盐渍土壤的分类与评价.东北林业大学学报,2006,34(2):57-59
    [242]李合生.植物生理生化实验原理与技术.北京:高等教育出版,2000,134-137,184-185,195-196,258-259
    [243]Rohacek K. Chlorophyll fluorescence parameters:the definitions, photosynthetic meaning and mutual relationships. Photosynthetica,2002,40(1):13-29
    [244]王宝山,赵可夫.小麦叶片中Na+、K+提取方法的比较.植物生理学通讯,1995,31(1):50-52
    [245]陈建勋,王晓峰.植物生理学实验指导.广州:华南理工大学出版社,2002
    [246]林植芳,李双顺,林桂珠,等.衰老叶片和叶绿体中H202的累积与膜脂过氧化的关系.植物生理学报,1988,14(1):16-22
    [247]Nakano Y, Asadas K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol,1981,22:867-880
    [248]Garg BK, Gupta IC. Saline Wastelands Environment and Plant Growth. Scientific Publishers, Jodhpur, India,1997,287 pp
    [249]Hernandez JA, Olmos E, Corpas FJ, Sevilla F, Del Rio LA. Salt-induced oxidative stress in chloroplast of pea plants. Plant Sci,1995,105:5151-5167
    [250]AliDinar HM, Ebert G, Ludders P. Growth, chlorophyll content, photosynthesis and water relations in guava (Psidium guajava L.) under salinity and different nitrogen supply. Gartenbauwissenschaft,1999,64:54-59
    [251]Chartzoulakis K, Klapaki G. Response of two green house pepper hybrids to NaCl salinity during different growth stages. Sci. Hortic,2000,86:247-260
    [252]Meloni DA, Oliva MA, Ruiz HA, Martinez CA. Contribution of proline and inorganic solutes to osmotic adjustment in cotton under salt stress. J. Plant Nutr,2001,24:599-612
    [253]Curtis PS, Lauchli A. The role of leaf area development and photosynthetic capacity in determining growth of Kenaf under moderate salt stress. Aust. J. Plant Physiol.1986,13, 553-565
    [254]张术忠,李悦,姜国斌,等.刺槐家系耐盐性状的变异、相关分析及选择.北京林业大学学报,2002,24(02):12-17
    [255]Chartzoulakis K, Klapaki G. Response of Two Green House Pepper Hybrids to NaCl Salinity During Different Growth Stages. Sci. Hortic,2000,86:247-260
    [256]Mohammad M, Shibli R, Ajouni M, Nimri L. Tomato Root and Shoot Responses to Salt Stress under Different Levels of Phosphorus Nutrition. Plant Nutr,1998,21:1667-1680
    [257]Kao WY, Tsai TT, Tsai HC, Shih CN. Response of three Glycine species to salt stress. Environmental and Experimental Botany.2006,56:120-125
    [258]Gouia H, Ghorbal MH, Touraine B. Effects of NaCl on flows of N and mineral ions and on NO3 reduction rate within whole plants of salt sensitive bean and salt-tolerant cotton. Plant Physiol.1994,105,1409-1418
    [259]聂晶.五个垂直绿化树种的耐盐特性及耐盐性评价.山东农业大学硕士论文.2004
    [260]骆建霞,柴慈江,史燕山,等.盐胁迫对7种草本地被植物生长及光合特性的影响.西北农林科技大学学报(自然科学版),2006,34(9):50-54
    [261]吴永波,薛建辉.盐胁迫对3种白蜡树幼苗生长与光合作用的影响[J]南京林业大学学报,2006,26(3):19-22
    [262]惠红霞,许兴,李守明.宁夏干旱地区盐胁迫下枸杞光合生理特性及耐盐性研究.中国农学通报,2002,18(5):29-34
    [263]马焕成,王沙生.盐胁迫下胡杨的光合和生长响应.西南林学院学报,1998,18(1):33-41
    [264]王素平,李娟,郭世荣,等.NaCl胁迫对黄瓜幼苗植株生长和光合特性的影响.西北植物学报,2006,26(3):455-461
    [265]武德,曹帮华,刘欣玲,等.盐碱胁迫对刺槐和绒毛白蜡叶片叶绿素含量的影响.西北林学院学报,2007,22(23):51-54
    [266]Romeroaranda R, Soria T, Cuartero J. Tomato plant-water uptake and plant-water relationships under saline growth conditions. Plant Sci.2001,160,265-272
    [267]Tezara W, Mitchell V, Driscoll SP & Lawlor DW. Effects of water deficit and its interaction with CO2 supply on the biochemistry and physiology of photosynthesis in sunflower. Exp. Bot.2002,53:1781-1791
    [268]Gibberd MR, Turner NC & Storey, R. Influence of saline irrigation on growth, ion accumulation and partitioning, and leaf gas exchange of carrot (Daucus carota L.). Ann. Bot.2002,90:715-724
    [269]Burman U, Garg BK & Kathju S. Water relations, photosynthesis and nitrogen metabolism of Indian mustard (Brassica juncea Czern. & Coss.) grown under salt and water stress. Plant Biol.2003,30:55-60
    [270]Ashraf M. Some important physiological selection criteria for salt tolerance in plants, Flora 2004,199:361-376
    [271]Brugnoli E, Lauteri M. Effects of salinity on stomatal conductance, photosynthetic capacity and carbon isotope discrimination of salt-tolerant (Gossypium hirsutum L.) and salt-sensitive (Phaseolus vulgaris L.) C3 non-halophytes. Plant Physiol.1991,95,628-635
    [272]朱新广,张其德.NaCl对光合作用影响的研究进展.植物学通报,1999,16(4):332-338
    [273]寇伟锋,刘兆普,陈铭达,等.不同浓度海水对油葵幼苗光合作用和叶绿素荧光特性的影响.西北植物学报,2006,26(1):73-77
    [274]Downton WJS, Loveys BR & Grant WJR. Salinity effects on the stomatal behaviour of grapevine. New Phytol.1990,116:499-503
    [275]Yeo AR, Lee KS, Izard P, Boursier PJ & Flowers T J. Short-and long-term effects of salinity on leaf growth in rice (Oryza sativa L.). Exp. Bot.1991,42:881-889
    [276]陈献勇,廖镜思.水分胁迫对果梅光合色素和光合作用的影响.福建农业大学学报,2000,29(1):35-39
    [277]林世青,许春辉,张其德,等.叶绿素荧光动力学在植物抗性生理、生态学和农业现代化中的应用.植物学通报,1992,9(1):1-16
    [278]Krause UH, Weis E. Chlorophyll fluorescence and photosynthesis. Plant Physiol. Plant Mol. Biol.,1991,42:313-349
    [279]Mishra S K, Subrahmanyam D, Singhal G S. Interactionship between salt and light stress on the primary process of photosynthesis. Plant Physiol.,1991,138:92-96
    [280]Sunyo J. Variation in antioxidant metabolism of young and mature leaves ofArabidopsis thalianasubjected to drought. Plant Science,2004,166:459-466
    [281]Lu C M, Qiu N W, Lu Q T. Does salt stress lead to increased susceptibility of photosystem Ⅱ to photoinhibition and changes in photosynthetic pigment composition in halophyte Suaeda salsagrown outdoors? Plant Science,2002,163:1063-1068
    [282]Meloni D A, Oliva M A, Martinez C A, et al. Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under saltstress. Environmental and Experimental Botany,2003,49:69-76
    [283]Morales F, Abadia A, Gomez-Aparis J. Effects of combined NaCl and CaCl2salinity on photosynthetic parameters of barley grown in nutrient solution. Plant Physiol,1992,86: 419-426
    [284]王建波,孙国荣,陈刚,等.Na2CO3胁迫下星星草幼苗叶PSⅡ光能利用和耗散与培养基质渗透势的关系.生态学报,2006,26(1):115-12
    [285]朱新广,王强,张其德等.冬小麦光合功能对盐胁迫的响应.2002,8(2):177-180
    [286]Hanson AD, Burnet M. Evolution and metabolic engineering of osmoprotectant accumulation in higher plants, in:J.H. Cherry (Ed.), Biochemical and Cellular Mechanisms of Stress Tolerance in Plants, Springer-Verlag, Berlin,1994,291-301
    [287]Kirti PB, Hadi S, Chopra VL. Seed transmission of salt tolerance in regenerants of Brassica juncea selected in vitro. Cruciferae Newsletter.1991,85:14-15
    [288]刘惠芬,高玉葆,张强,等.不同种群羊草幼苗对土壤干旱胁迫的生理生态响应.南开大学学报·自然科学版,2004,12(4):105-110
    [289]谭巍巍,李凤山,张玉霞,等.氯化钠和碳酸钠对芦笋的胁迫效应比较.植物生理科学,2006,22(7):322-325
    [290]Uma TG, Prasad MU. Genetic variability in recovery growth and synthesis of stress proteins in response to polyethylene glycol and salt stress in finger millet, Ann. Bot. 1995,76:43-49
    [291]樊怀福,郭世荣,杜长霞,等;外源NO对NaCl胁迫下黄瓜幼苗氮化合物和硝酸还原酶活性的影响.西北植物学报,2006,26(10):2063-2068
    [292]吴志华,曾富华,马生健,等.ABA对PEG胁迫下狗牙根可溶性蛋白质的影响.草业学报,2004,13(5):75-78
    [293]梁慧敏,夏阳,王太明.植物抗寒冻、耐旱、耐盐基因工程研究进展.草业学报,2003,12(3):1-7
    [294]王霞,候平,伊林克.水分胁迫对柽柳植物可溶性糖的影响.干旱地区研究,1999,16(2):1-10
    [295]Munns R. Comparative physiology of salt and water stress. Plant Cell Environ.2002,25: 239-250
    [296]冯衍枝,马焕成,王沙生.盐分处理对3种杨树离子吸收规律的影响.西南林学院学报,1998,18(1):48-51
    [297]王艳青,蒋湘宁等.盐胁迫对刺槐不同组织及细胞离子吸收和分配的变化.北京林业大学学报,2001,23(1):18-23
    [298]王丽燕.毕氏海篷子耐盐基础生理的研究.山东师范大学硕士论文.2003
    [299]朱会娟,王瑞刚,等.NaCl胁迫下胡杨(Populus euphratica)和群众杨(P.popularis)抗氧化能力及耐盐性.生态学报,2007,27(10):4113-4121
    [300]张建锋,李吉跃,宋玉民,等.植物耐盐机理与耐盐植物选育研究进展.世界林业研究,2003,16(2):16-22
    [301]周国贤,郭世荣,王素平.外源多胺对低氧胁迫下黄瓜幼苗光合特性和膜脂过氧化的影响.植物学通报,2006,23(4):341-347
    [302]Shalata A, Mittova V, Volokita M, Guy M, Tal M. Response of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii to salt-dependent oxidative stress:the root antioxidative system. Physiol Plant,2001,112:487-494
    [303]Bowler C, Van CW, Montagu M, Inze D. Superoxide dismutase in Plants and salt stress toleranee. Annu. Rev. Plant Physiol. and Plant Mol,1992,43:83-116
    [304]Escobar JA, Rubio MA, Lissi EA. SOD and catalase inactivation by singlet oxygen and peroxyl radicals. Free Radic. Biol. Med.1996,3:285-290
    [305]Dionisio-Sese ML, Tobita S. Antioxidant responses of rice seedlings to salinity stress. Plant Sci.1998,135:1-9
    [306]Mittal R, Dubey RS. Behaviour of peroxidases in rice:changes in enzyme activity and isoforms in relation to salt tolerance. Plant Physiol. Biochem.1991,1:31-40

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700