海底管道传感器阵列损伤信息的提取和融合研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海底管道检测技术及离线信号分析是目前国际无损检测领域的研究热点。开展管道检测相关技术、方法和手段的研究具有重大的理论和现实意义。论文依托国家“十五”863项目“海底管道内爬行器及其检测技术”,一方面以爬行器中超声传感器阵列获取的损伤信号为研究对象,提取了回波到达时刻特征,并通过特征级和决策级的融合,获取了损伤的尺寸、类型和等级等信息;另一方面,尝试将脉冲涡流这种新的检测技术应用于管道无损检测领域,提出了用于管道检测的脉冲涡流探头单元和阵列设计思路,在时域和频域提取了若干脉冲涡流信号的特征,并将其用于管道损伤的分类中,为研制具有我国自主知识产权的管道智能检测器的离线数据分析评估系统提供了关键技术。
     首先,根据项目需求和海底恶劣复杂的工况,为了最大可能的消除可以消除的不确定性,得出有效合理的分析结果,构建了离线数据处理和多级融合的策略。该策略首先采用不同的方法,对多种传感器阵列的检测信号分别进行独立的分析,提取出信号和(或)损伤的特征,然后进行特征级和决策级的融合,以消除不同类型传感器和不同技术之间的干扰,降低对归一化和配准等融合前提的要求,从不同角度更全面地掌握损伤状况。
     在基于超声信号的损伤信息提取部分,应用经验模态分解和Hilbert变换等时频分析方法,对非线性非稳态的超声射频信号进行分解、模态选择、重构和变换,可从含强噪声且混叠的信号中精确的提取出各次回波的到达时刻,进而获得准确的剩余壁厚。该方法不仅可明显提高管道剩余壁厚以及内部裂缝尺寸和位置的测量精度,还在很大程度上减小了超声衍射渡越时间法的盲区。
     在对脉冲涡流技术的研究中,首先,提出了用于管道检测的脉冲涡流探头单元和阵列布置的设计思路。其次,在时域提取出脉冲涡流差分信号的下降点,进而将信号分段,并分别提取出三对形状特征量;在频域提取出两个频谱特征量。此后,对特征量的鲁棒性和普适性以及相互关系进行了分析、比较和总结,得到了一些有价值的结论,丰富了信号解释和损伤分析的可用资源,为快速高效的检测和控制提供了理论依据。在实验中,还发现了信号的双峰现象。此现象未见论文报道。最后,鉴于特征量在数量上和种类上的优势,通过合理集成和组合,实现了损伤的二维和三维快速精确分类。推荐了最佳的二维和三维分类组合,并通过实验,验证了最佳组合的稳定性和普适性。
     除了基于脉冲涡流信号特征的损伤分类,在对管道损伤的原因和类别进行分析的基础上,基于独立分量分析得到的信号分量,构建了互信息矩阵,提取出了超声射频信号的互信息特征。基于这些特征,利用神经网络对损伤进行了分类,得到了满意的分类结果。
     在损伤尺寸融合部分,采用神经网络和基于层次分析思想的加权平均两种方法,实现了同类和异类传感器信息的特征级融合,并对两种融合方法的精度、速度和计算负担进行了比较分析。其中,基于层次分析的加权平均法从实际检测信息出发,不需要任何先验信息,计算负担轻,精度较神经网络方法稍差。建议根据实际需要选择合适的方法或将两种方法结合起来以提高融合性能。
     在损伤等级评估部分,研究了基于不确定性推理的决策级融合方法,分析了证据理论的失效问题,比较了现有的解决方法,从证据源本身出发,提出了基于焦元相似度和证据可信度的两种加权平均方法。通过证据的加权平均预处理,解决了失效问题。此外,基于改进的证据理论,构建了管道损伤等级评价策略,通过综合来自多个评估规则的信息,可以得到更合理可靠的融合结果。为模拟样机编制了管道损伤等级评估和三维显示软件。
     本文提出的超声信号特征提取和各种融合方法也可用于其它类似情况的信号处理中。
Currently, offshore pipeline detection technology and offline signal analysis are research hotspots in the international non-destructive testing (NDT) field. The research on technologies, methods, and approaches for pipeline detection makes great theoretical and realistic sense. Based on“863”of the high technology research and development program“Offshore pipeline detection device and inspection technology”, this dissertation extracted the echo arrival time feature from ultrasonic signal provided by large amounts of ultrasonic sensors built in the detection device, obtained defect dimension, type, and level information by feature level and decision level fusion approaches. In addition, this dissertation attempted to apply a new technology, pulse eddy current (PEC), to the area of pipeline nondestructive testing by designing the structure of a PEC probe and probe array for pipeline detection preliminarily, by extracting a lot of new signal features, and by combining different features for defect classification. All these provide key technologies for the offline data analysis system of the program.
     Considering the project demand and the harsh and complicated offshore environment, in order to eliminate the uncertainty as much as possible, and to achieve reasonable and effective result, an offline data processing strategy with multiple fusion levels was built. This strategy analyzes data from different types of sensors separately by using different approaches and then combines the extracted signal and/or defect features on feature and decision levels. Thus, the negative interplay between different types of sensors and technologies can be removed, the prerequisites of fusion such as normalization and association can be reduced, and the overall status of a defect can be mastered from multiple points of view.
     In the section of defect information extraction based on ultrasonic signal, the nonlinear and non-stable ultrasonic signal was decomposed, selected, reconstructed, and transformed by using time-frequency analysis approaches such as Empirical Mode Decomposition (EMD) and Hilbert transform. The arrival time of each echo was extracted from noisy and overlapped ultrasonic signal for getting accurate pipeline wall thickness. This method can not only improve the measurement precision of pipeline wall thickness and the dimension and location of inner crack distinctively, but can also diminish the blind area of ultrasonic time-of flight technology.
     In the research on PEC technology, the idea of special PEC probe and probe array for pipeline detection was proposed preliminarily. Then, a descending point of PEC differential signal was extracted in time domain and so the signal can be divided into several segments. Three pairs of shape features from each segment respectively and two spectrum features were extracted. Thereafter, the robustness and generalization of new features were analyzed, compared, and summarized and some valuable conclusions were obtained. These conclusions enriched the useable resources for PEC signal explanation and provided theoretic basis for fast and effective detection. Furthermore, by plenty of experiments, a“dual peak”signal phenomenon was discovered which has not been reported at present. Finally, as a result of large numbers of and various types of features, defects can be classified in 2-D and 3-D spaces quickly and accurately by combining different features properly. The best 2-D and 3-D combinations were recommended and the stability and generalization of the two recommended combinations were validated.
     Besides PEC signal features, ultrasonic signal can be used for defect classification as well. After the introduction of the cause and category of pipeline defects, a mutual information matrix was built by using all the components decomposed from ultrasonic signal (by using the independent component analysis approach). Then, the mutual information features of ultrasonic signal can be extracted. Based on these features, a defect can be classified correctly into certain category by using neural network fusion.
     In the section of defect dimension fusion, two approaches were proposed for feature level fusion based on the information from same or different types of sensors. Their accuracy, speed, and computation burden were compared and analyzed. The weighted addition approach referring the hierarchy analysis idea is based on real measurement data. It does not need any prior information and so has less computation burden but less accuracy as well. It is wise to select an appropriate method or combine two methods together for the improvement of fusion efficiency.
     In the section of defect level assessment, some research was conducted on the fusion methods based on uncertainty reasoning. Then, the invalidation problem of evidence theory was analyzed and some typical modification methods were compared. Two weighted addition approaches based on basic probability assignment (BPA) similarity and evidence reliability respectively were proposed and the invalidation problem was solved by weighted averaging all the evidences before combining them. On the basis of revised evidence theory, a strategy for pipeline defect level assessment was built. A more reasonable and more reliable result can be deduced by integrating information from several assessment rules. A 3-D simulation display and level assessment software for pipeline defects was made.
     All the approaches regarding ultrasonic signal feature extraction and information fusion can be used in other similar signal processing cases.
引文
[1] 王金英 and 刘马, "海底管道检测技术," 中国海洋平台, vol. 9, pp. 160-165, 1994.
    [2] 黄建东, "我国油气管道检测技术应用市场前景广阔," 能源工程, pp. 9-13, 2003.
    [3] 宋生奎, 宫敬, and 才建, "油气管道内检测技术研究进展," 石油工程建设, pp. 10-15, 2005.4.
    [4] 杜晓春 and 黄坤, "埋地管道腐蚀检测新技术," 天然气与石油, 2003.
    [5] 龙伟, 周明, and 黄杰, "在役管道超声检测系统的现状及发展趋势," 中国机械工程, vol. 7, pp. 52-55, 1996.
    [6] "国家十五 863 计划"海底管道内爬行器及其检测技术"课题实施方案报告," R 2001.
    [7] 刘海峰, 胡剑, and 杨俊, "国内油气长输管道检测技术的现状与发展趋势," 天然气工业, vol. 24, pp. 147-151, 2004.
    [8] D. Jones, "Pipeline inspection: The key to a reliable future," Corrosion Prevention & Control, vol. 44, pp. 3-5, 1997.
    [9] W. Moher and P. Holler, "On inspection of thin walled tubes for transverse and longitudinal flaws by guided ultrasonic waves," IEEE Trans. Sonics and Ultrasonics, vol. SU-23, pp. 369-374, 1976.
    [10] 宋寿鹏, "海底管道检测中缺陷重构及超声回波信号处理方法的研究." 上海: 上海交通大学 博士学位论文, 2006, pp. 178.
    [11] 金涛, "海底管道漏磁检测信号处理及缺陷识别研." 上海: 上海交通大学 博士学位论文, 2005, pp. 168.
    [12] H. Goedecke, "Ultrasonic or MFL inspection: Which technology is better for you?" Pipeline and Gas Journal, vol. 230, pp. 34-45, 2003.
    [13] 邓睿 and 胡志勇, "数据融合发展的综述," 连云港师范高等专科学校学报, pp. 76-78, 2005.
    [14] 董志荣, "论信息融合," 情报指挥控制系统与仿真技术, pp. 27-36, 2001.
    [15] 何友 and 王国宏, 多传感器信息融合及应用. 北京: 电子工业出版社, 2001.4.
    [16] X. E. Gros, NDT data fusion: John Wiley & Sons, Inc., 1997.
    [17] H. Kropas and V. Claudia, "Data fusion for NDT: What, where, why and how," Materials Evaluation, vol. 61, pp. 1118-1120, 2003.
    [18] X. E. Gros, Application of NDT Data Fusion: John Wiley & Sons, Inc., 2001.
    [19] G. Y. Tian, Z. X. Zhao, and R. W. Baines, "The research of inhomogeniety in eddy current sensors," Sensors and Actuators A, vol. 58, pp. 153-156, 1998.
    [20] G. Y. Tian and A. Sophian, "Defect classification using a new feature for pulsed eddy current sensors," NDT&E International, vol. 38, pp. 77-82, 2005.
    [21] A. Sophian, "Characterisation of Surface and Sub-surface Discontinuities in Metals Using Pulsed Eddy Current Sensors," vol. Ph. D. Huddersfield, UK: Huddersfield University, 2003.
    [22] 华正汉, 朱敬德, and 周明, "超声波检测在石油管道检测机器人中的应用," 机械工程师, pp. 61-63, 2003.
    [23] 西拉德编, 陈积懋, and 余南廷译, 超声检测新技术. 北京: 科学出版社, 1991.
    [24] 蒋危平 and 王务同, "超声探伤仪发展简史," 无损检测, vol. 19, pp. 55-59, 1997.
    [25] B. Tittmann, R. Alers, and R. Lerch, "Ultrasonics for locomotive wheel integrity," IEEE Ultrasonics Symposium, pp. 743-746, 2000.
    [26] S. Wolfgang and N. H. Nelson, Ultrasonic transducer for materials testing and their characterization: Academic Press, 1979.
    [27] E. P. Papadakis, R. B. Thompson, D. D. Bluhm, S. J. Wormley, H. D. Skank, K. Forourghi, and G. A. Alers, "Ultrasonic instrument to predict drawability of sheet metal," IEEE Ultrasonics Symposium, pp. 1007-1015, 1990.
    [28] Anon, "Ultrasonic in-line inspection tools for the metal loss and crack inspection of pipelines," Oil Gas European Magazine, vol. 29, pp. 88-89, 2003.
    [29] L. Joseph, D. J. Rose, and S. Jack, "Ultrasonic guided wave NDE for piping," Material Evaluation, 1996.
    [30] B. Chris and C. Robert, "Ultrasonic detection of heat fronts in continuously cast steel product," IEEE Ultrasonics Symposium, pp. 957-960, 2000.
    [31] R.L.Situoer, 史乃, and 译, 涡流分析. 哈尔滨: 黑龙江科学技术出版社, 1983.
    [32] A. Wilbrand, "Review of Progress in QNDE," Thompson and D.E. Chimenti, Eds., vol. 7A, pp. 671-680, 1987.
    [33] 陈亮, "海底输油管道漏磁信号分析及其噪声自适应滤波的研究." 上海: 上海交通大学 博士学位论文, 2005, pp. 138.
    [34] R. Kania and L. B. Carroll, Non-destructive techniques for measurement and assessment of corrosion damage on pipelines. Calgary, Can, 1998.
    [35] Y. M. Shkarlet and S. J, Nondestr. Test. (English Translation), vol. 10, 1974.
    [36] 中国机械工程学会无损检测分会, 超声波检测: 机械工业出版社, 2000.4.
    [37] 于喜元, 楼俊君, and 杨平, "管道超声波检测器的应用与发展趋势," 油气储运, vol. 22, pp. 35-37, 2003.
    [38] 袁少山, "管道自动焊与全自动超声波检测技术在西气东输管道工程中的应用," 石油工程建设, vol. 30, pp. 36-41, 2004.
    [39] 美国无损检测学会, 编, 《美国超声检测手册》译审委员会, and 译, 美国无损检测手册(超声卷,下册): 世界图书出版公司, 1996.
    [40] 美国无损检测学会, 编, 《美国超声检测手册》译审委员会, and 译, 美国无损检测手册(超声卷,上册): 世界图书出版公司, 1996.
    [41] L. Morgan, P. Nolan, and A. Kirkham, "The use of automated ultrasonic testing (AUT) in pipeline construction," Insight: Non-Destructive Testing and Condition Monitoring, vol. 45, pp. 746-755, 2003.
    [42] R. Halmshaw, Introduction to the Non-destructive Testing of Welded Joints: Abington Publishing, 1996.
    [43] H. J. M. Jansen and M. M. Festen, "Intelligent pigging developments for metal loss and crack detection," Insight: Non-Destructive Testing and Condition Monitoring, vol. 37, pp. 421-428, 1995.
    [44] 于大安, "超声检测技术讲座," 基础自动化, pp. 53-56, 1996.
    [45] 应崇福, 超声学. 北京: 科学出版社, 1990.
    [46] M. Kobayashi, H. Minato, and M. Kondo, "NKK ultrasonic pipeline inspection pig," NKK Technical Review, vol. 80, pp. 46-55, 1999.
    [47] 刘镇清, "超声无损检测与评价中的信号处理及模式识别," 无损检测, vol. 23, pp. 31-34, 42, 2001.
    [48] 李衍 and 李华, "用超声偶波法对管道焊缝缺陷定性定量: 国外超声检测新技术介绍," 无损探伤, pp. 8-12, 2000.6.
    [49] R. Ionescu and E. Llobet, "Wavelet transform-based fast feature extraction from temperature modulated semiconductor gas sensors," Sensors and Actuators B: Chemical, vol. 81, pp. 289-295, 2002.
    [50] S. Baby, T. Balasubramanian, and R. J. Pardikar, "Ultrasonic sizing of embedded vertical cracks in ferritic steel welds," Theoretical and Applied Fracture Mechanics, vol. 40, pp. 145-151, 2003.
    [51] R. G. Pita, R. Vicen, M. Rosa, M. P. Jarabo, P. Vera, and J. Curpian, "Ultrasonic flaw detection using radial basis function networks (RBFNs)," Ultrasonics, vol. 42, pp. 361-365, 2004.
    [52] N. Uzelac, "Pipeline inspection with the Pipetronix Ultrascan CD," Pipeline & Gas Journal, vol. 224, pp. 61-63, 1997.
    [53] Anon, "A new generation: Ultrasonic in-line inspection tools for the metal loss and crack inspection of pipelines," Oil Gas European Magazine, vol. 119, pp. 88-89, 2003.
    [54] T. Gang, Y. Takahashi, and L. Wu, "Intelligent pattern recognition and diagnosis of ultrasonic inspection of welding defects based on neural network and information fusion," Science and Technology of Welding and Joining, vol. 7, pp. 314-320, 2002.
    [55] F. Honarvar, H. Sheikhzadeh, and M. Moles, "Improving the time-resolution and signal-to-noise ratio of ultrasonic NDE signals," Ultrasonics, vol. 41, pp. 755-763, 2004.
    [56] F. Bettayeb, T. Rachedi, and H. Benbartaoui, "An improved automated ultrasonic NDE system by wavelet and neuron networks," Ultrasonics, vol. 42, pp. 853-858, 2004.
    [57] A. Yamani, M. Bettayeb, and L. Ghouti, "High-order spectra-based deconvolution of ultrasonic NDT signals for defect identification," Ultrasonics, vol. 35, pp. 525-537, 1997.
    [58] S. I. Aksenov, B. P. Vikin, and K. V. Vladimirskii, "The excitation of ultrasonic vibrations by ponderomotive forces," J. Exper. Theoret. Phys. USSR., vol. 28, pp. 762, 1955.
    [59] M. C. Renken, S. Kim, K. W. Hollman, and C. M. Fortunko, "Accuracy of resonant ultrasound spectroscopy: an experimental study," IEEE Ultrasonics Symposium, pp. 483-488, 1997.
    [60] 刘旭, 夏金东, 弓乐, and 吴淼, "超声检测缺陷分类中信号处理方法的探讨," 仪器仪表学报, vol. 23, pp. 638-641, 2002.
    [61] 王明泉, 史步青, and 李建华, "超声检测信号的特征分析," 华北工学院学报, vol. 19, pp. 121-123, 1998.
    [62] 郭成彬, "超声检测中的结构噪声," 应用声学, vol. 17, pp. 1-5, 1998.
    [63] 张小飞, 王茁, and 周有鹏, "超声检测中的噪声处理," 无损检测, vol. 24, pp. 200-203, 2002.
    [64] 刘清坤, "超声无损检测信号及图像处理新方法的研究." 上海: 上海交通大学 博士学位论文, 2006, pp. 133.
    [65] M. A. Rodriguez-Hernandez, "Ultrasonic Non-Destructive evaluation with spatial combination of Wigner-Ville transforms," NDT and E International, vol. 36, pp. 441-453, 2003.
    [66] S. Legendre, J. Goyette, and D. Massicotte, "Ultrasonic NDE of composite material structures using wavelet coefficients," NDT and E International, pp. 31-37, 2001.
    [67] A. Sophian, G. Y. Tian, D. Taylor, and J. Rudlin, "Electromagnetic and Eddy Current NDT: A Review," Insight, vol. 43, pp. 308-313, 2001.
    [68] R. A. Smith and G. R. Hugo, "Deep Corrosion and Crack Detection in Aging Aircraft using Transient Eddy-current NDE," presented at Aging Aircraft 2001, 2001.
    [69] M. S. Safizadeh, B. A. Lepine, D. S. Forsyth, and A. Fahr, "Time-Frequency Analysis of Pulsed Eddy Current Signals," Journal of Nondestruction Evaluation, vol. 20, pp. 73-86,2001.
    [70] G. Y. Tian and A. Sophian, "Reduction of lift-off effects for pulsed eddy current NDT," NDT&E International, vol. 38, pp. 319-324, 2005.
    [71] B. A. Lepine, B. P. Wallace, D. S. Forsyth, and A. Wyglinski, "Pulsed Eddy Current Method Developments for Hidden Corrosion Detection in Aircraft Structures," presented at PACNDT '98, 1999.
    [72] B. A. Lepine, J. S. R. Giguere, D. S. Forsyth, J. M. S. Dubois, and A. Chahbaz, "Applying Pulsed Eddy Current NDI to the Aircraft Hidden Corrosion Problem," presented at Aging Aircraft 2001, Orlando, Florida, 2001.
    [73] B. A. Lepine, G. Giguere, D. S. Forsyth, A. Chahbaz, and J. M. S. Dubois, "Interpretation of Pulsed Eddy Current Signals for Locating and Qualifying Metal Loss in Thin Skin Lap Splices," Review of Quantitative Nondestructive Evaluation, vol. 21, pp. 415-422, 2002.
    [74] B. Lebrun, Y. Jayet, and J.-C. Baboux, "Pulsed eddy current signal analysis: application to the experimental detection and characterization of deep flaws in highly conductive materials," NDT & E International, vol. 30, pp. 163-170, 1997.
    [75] K. Koyama, H. Hiroshikawa, and N. Taniyama, "Investigation of Eddy Current Testing of Weld Zone by Uniform Eddy Current Probe," presented at 15th World Conference on NDT, Roma, 2000.
    [76] T. Clauzon, F. Thollon, and A. Nicolas, "Flaws Characterisation with pulsed eddy current N.D.T.," IEEE Transactions on Magnetics, vol. 35, pp. 1-3, 1999.
    [77] J. Blitz and T. S. Peat, "The Application of Multi-frequency Eddy Currents to Testing Ferromagnetic Metals," NDT International, vol. 14, pp. 15-17, 1981.
    [78] Z. Liu, K. Tsukada, and K. Hanasaki, "One-dimensional Eddy Current Multi-frequency Data Fusion: A Multi-resolution Analysis Approach," Insight, vol. 40, pp. 286-289, 1998.
    [79] R. A. Smith and G. R. Hugo, "Transient eddy current NDE for ageing aircraft - capabilities and limitations," Insight: Non-Destructive Testing and Condition Monitoring, vol. 43, pp. 14-25, 2001.
    [80] L. Oukhellou, P. Aknin, and J. P. Perrin, "Dedicated sensor and classifier of rail head defects," Control Engineering Practice, vol. 7, pp. 57-61, 1999.
    [81] M. Attaar and J. B. Davis, "Ultrasonic and Eddy Current Inspection of a Reactor Vessel Drain," presented at The 14th Int Conf on NDE in the Nuclear and Pressure Vessel Indutries, 1997.
    [82] G. Y. Tian, Z. X. Zhao, and R. W. Baines, "Precision measurement using an eddy current sensor device," presented at Proceedings of twelfth National Conference on Manufacturing Research, Bath, UK, 1996.
    [83] G. Y. Tian, Z. X. Zhao, R. W. Baines, and P. Corcoran, "The design of miniaturised displacement transducers for deep hole diameter measurement," Mechatronics, vol. 9, pp. 317-327, 1999.
    [84] G. Y. Tian, "Frequency output eddy current sensors for precision engineering," Insight, vol. 43, pp. 315-318, 2001.
    [85] M. A. Robers and R. Scottini, "Pulsed Eddy Current in Corrosion Detection," presented at 8th ECNDT, Barcelona, 2001.
    [86] B. de Halleux, B. de Limburg Stirum, and A. Ptchelintsev, "Eddy current measurement of the wall thickness and conductivity of circular non-magnetic conductive tubes," NDT & EInternational, vol. 29, pp. 103-109, 1996.
    [87] E. Bray and R. K. Stanley, Nondestructive Evaluation - A tool in Design, Manufacturing, and Service: CRC Press Inc, 1997.
    [88] F. Thollon and N. Burais, "Geometrical Optimization of Sensors for Eddy Currents Non-Destructive Testing and Evaluation," IEEE Transactions on Magnetics, vol. 31, pp. 2026-2031, 1995.
    [89] H. L. Libby, Multiparameter Eddy Current Concepts. Research Techniques in Nondestructive Testing. London: Academic Press Inc. Ltd., 1970.
    [90] S. Giguere and J. M. S. Dubois, "Pulsed Eddy Current: Finding Corrosion Independently of Transducer Lift-off," Review of Progress in Quantitative Nondestructive Evaluation, pp. 456-459, 2000.
    [91] J. C. Moulder, S. K. Shaligram, J. A. Bieber, and J. H. Rose, "Pulsed Eddy Current Inspections and the Calibration and Display of Inspection Results," USA, Iowa State University Research Foundation, Inc. 2000.
    [92] G. Panaitov, H.-J. Krause, and Y. Zhang, "Pulsed eddy current transient technique with HTS SQUID magnetometer for non-destructive evaluation," Physica C, pp. 278-281, 2002.
    [93] A. Plotnikov and L. Clapham, "Stress effects and magnetic nde methods for pipeline inspection: A study of interacting defects," Insight, vol. 44, pp. 74-78, 2002.
    [94] H. J. Krause, "Nondestructive Evaluation of Aircraft Wheels and Fuselage with SQUIDs," in http://www.fz-juelich.de/isg/Krause/aircraft.htm, 2003.
    [95] M. A. Robers and R. Scottini, "Pulsed Eddy Current in Corrosion Detection," presented at 8th ECNDT8th ECNDT, Barcelona, 2002.
    [96] C. C. Tai, H. C. Yang, and D. S. Liang, "Pulsed Eddy Current for Metal Surface Cracks Inspection: Theory and Experiment," Review of Quantitative Nondestructive Evaluation, vol. 21, pp. 388-395, 2002.
    [97] 徐毅, 金德琨, and 敬忠良, "数据融合研究的 回顾与展望," 信息与控制, vol. 31, pp. 250-255, 2002.6.
    [98] 何友, 王国宏, and 陆大金, 多传感器信息融合及应用. 北京: 电子工业出版社, 2000.
    [99] 董志荣, "再论信息融合," 情报指挥控制系统与仿真技术, pp. 30-34, 2002.
    [100] 康耀红, 信息融合理论与应用. 西安: 西安电子科技大学出版社, 1997.
    [101] 李洪志, 信息融合技术: 国防工业出版社, 1996.
    [102] 董志荣, 信息融合原理与算法. 连云港: 江苏自动化研究所, 2001.
    [103] 权太范, 信息融合:神经网络- 模糊推理理论与应用. 北京: 国防工业出版社, 2001.
    [104] 董志荣, "三论信息融合: 研究与应用中的几个问题," 电光与控制, vol. 12, pp. 1-5, 2005.4.
    [105] F. Jin and H. Cai, "Data fusion and sensors model," High Technology Letters, vol. 6, pp. 18-21, 2000.
    [106] 邓勇, "不确定性信息的融合及其应用研究." 上海: 上海交通大学 博士学位论文, 2003, pp. 158.
    [107] T. Sheng, "Data fusion of multisensor data," presented at International Conference on Knowledge-Based Intelligent Electronic Systems, 2000.
    [108] H. Varma, K. Fadaie, M. Habbane, and J. Stockhausen, "Confusion in data fusion," International Journal of Remote Sensing, vol. 24, pp. 627-636, 2003.
    [109] S. J. Peri, "Approaches to multisensor data fusion," Johns Hopkins APL Technical Digest(Applied Physics Laboratory), vol. 22, pp. 624-633, 2001.
    [110] R. Cortesao, R. Koeppe, U. Nunes, and G. Hirzinger, "Data fusion for robotic assembly tasks based on human skills," IEEE Transactions on Robotics, vol. 20, pp. 941-952, 2004.
    [111] C. Hu, W. Zhao, and G. Li, "Application of data fusion on multi-function earth drill," Journal of Harbin Institute of Technology (New Series), vol. 10, pp. 89-92, 2003.
    [112] S. S. Iyengar, S. Sastry, and N. Balakrishnan, "Foundations of data fusion for automation," IEEE Instrumentation and Measurement Magazine, vol. 6, pp. 35-41, 2003.
    [113] L. A. Kelein, 著, 戴亚平, 刘征, 郁光辉, and 译, 多传感器数据融合理论及应用. 北京: 北京理工大学出版社, 2004.
    [114] T. A. Richard, Principles of Data Fusion Automation. Boston, 1995.
    [115] J. Z. Sasiadek, "Sensor Fusion," Annual Reviews in Control, vol. 26, pp. 203-228, 2002.
    [116] V. Schmidt, "Control, data acquisition, and remote participation for fusion research," Fusion Engineering and Design, vol. 60, pp. 227-228, 2002.
    [117] A. Starr, R. Willetts, P. Hannah, W. Hu, D. Banjevic, and A. K. S. Ardine, "Data fusion applications in intelligent condition monitoring," Recent Advances in Computers, Computing and Communications, pp. 110-115, 2002.
    [118] A. N. Steinberg, "Data fusion system engineering," IEEE Aerospace and Electronic Systems Magazine, vol. 16, pp. 7-14, 2001.
    [119] Y. Wang, F. Chu, Y. He, and D. Guo, "Multisensor data fusion for automotive engine fault diagnosis," Tsinghua Science and Technology, vol. 9, pp. 262-265, 2004.
    [120] 刘同明, 夏祖勋, and 解洪成, 数据融合技术及其应用: 国防工业出版社, 1998.
    [121] 曾庆茂 and 丁正生, "多传感器信息融合技术综述," 赣南师范学院学报, pp. 20-23, 2004.
    [122] 杨万海, 多传感器数据融合及其应用. 西安: 西安电子科技大学出版社, 2004.
    [123] 王会清 and 韩艳玲, "基于多传感器与数据融合技术的研究," 计算机与现代化, pp. 64-67, 2002.
    [124] 王耀南 and 李树涛, "多传感器信息融合及其应用综述," 控制与决策, vol. 16, pp. 518-521, 2001.
    [125] Z. Elouedi, "Assessing sensor reliability for multi-sensor data fusion within the transferable belief model," IEEE Trans. SMC., B, Cybern, vol. 34, pp. 782-787, 2004.
    [126] B. McHarg, "Control, data acquisition, and remote participation for fusion research," Fusion Engineering and Design, vol. 71, pp. 1-3, 2004.
    [127] H. Kantz and T. Schreiber, Nonlinear time series analysis. Cambridge: Cambridge Univ. Press, 1997.
    [128] 毛捷, 简晓明, 李明轩, and 黄振俨, "信号处理在超声检测中的应用," 应用声学, vol. 19, pp. 45-47, 2000.
    [129] K. D. Konohue, J. M. Bressler, and T. Varghese, "Spectral correlation in ultrasonic pulse echo signal processing," IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 40, pp. 330-341, 1993.
    [130] 胡广书, 数字信号处理-理论、算法与实现. 北京: 清华大学出版社, 2003.
    [131] S. Qian and D. Chen, Joint time-frequency analysis: methods and applications. Englewood Cliffs, NJ: Prentice Hall, 1996.
    [132] S. Suranthiran and S. Jayasuriya, "Optimal fusion of multiple nonlinear sensor data," IEEE Sensors Journal, vol. 4, pp. 651-663, 2004.
    [133] A. Abbate, J. Frankel, and P. Das, "Wavelet transform signal processing for dispersion analysisof ultrasonic signals," IEEE Ultrasonics Symposium, pp. 751-755, 1995.
    [134] 黄晶 and 阙沛文, "小波分析在管道缺陷超声检测中的应用," 传感技术学报, pp. 263-266, 2003.
    [135] K. Hwang, S. Mandayam, and S. S. Udpa, "Characterization of gas pipeline inspection signals using wavelet basis function neural networks," NDT & E International, vol. 33, pp. 531-545, 2000.
    [136] N. E. Huang, Z. Shen, and S. R. Long, "The Empirical Mode Decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis," Proceedings of the Royal Society of London, pp. A454: 903-995, 1998.
    [137] N. E. Huang, M. C. Wu, and S. R. Long, "A confidence limit for the empirical mode decomposition and Hilbert spectral analysis," Mathematical, Physical & Engineering Sciences Proceedings, vol. 459, pp. 2317-2345, 2001.
    [138] N. E. Huang, "Review of empirical mode decomposition," Proc. SPIE Int. Soc. Opt. Eng., pp. 4391-4408, 2001.
    [139] N. E. Huang, "A new method for nonlinear and nonstationary time series analysis: empirical mode decomposition and Hilbert spectral analysis," Proc. SPIE Int. Soc. Opt. Eng., pp. 4056-4069, 2000.
    [140] R. Dernirli, S. Mfmber, and J. Saniic, "Model-Based Estimation of Ultrasonic Echoes Part 1: Nondestructive Evaluation Applications," IEEE Trans. on UFFC, vol. 48, pp. 803-811, 2001.
    [141] O. Zahran, S. Shihab, and W. Al-Nuaimy, "Discussion of the ability of defect detection classification in weld inspection using ultrasonic time-of-flight diffraction technique," presented at PREP 2004 Conference, UK, 2004.
    [142] O. Zahran, S. Shihab, and W. AL-Nuaimy, "Comparison between Surface Impulse Ground Penetrating Radar Signals and Ultrasonic Time-of-Flight-Diffraction Signals," presented at IEEE Conference, 2002.
    [143] 姚力, "超声波检测裂纹尺寸的不确定度分析," 无损检测, vol. 24, pp. 147-150, 2002.
    [144] S. Mondal and T. Sattar, "An overview of TOFD method and its mathematical model," NDT&E International, vol. 5, 2000.
    [145] B. Browne, "Time of Flight Diffraction Its Limitations," NDT, vol. 2, pp. 365-371, 1997.
    [146] G. Baskaran, K. Balasubramaniam, and C. V. Krishnamurthy, "Ultrasonic TOFD flaw sizing and imaging in thin plates using embedded signal identification technique (ESIT)," Insight, vol. 46, pp. 1-6, 2004.
    [147] D. Dirk, "New trends in eddy current testing. Qualities digest magazine," http://www.qualitydigest.com/dec03/articles/01_article.shtml, 2006.
    [148] A. Sophian, G. Y. Tian, D. Taylor, and J. Rudlin, "A feature extraction technique based on principal component analysis for pulsed Eddy current NDT," NDT&E International, vol. 36, pp. 37-41, 2003.
    [149] C. Mandache and J. H. V. Lefebvre, "Transient and harmonic eddy currents: Lift-off point of intersection," NDT & E International, vol. 39, pp. 57-60, 2006.
    [150] G. Y. Tian, A. Sophian, and Taylor, "Wavelet-based PCA defect classification and quantification for pulsed eddy current NDT," presented at IEE Proc.-Sci. mean. Technol., 2005.
    [151] R. Bracewell, The Fourier Transform and Its Applications. 2nd ed: McGraw-Hill, 1986.
    [152] F. Mokhtarian and A. Mackworth, "Theory of multiscale, curvature-based shape representationfor planar curves," IEEE Trans. On pattern analysis and machine intelligence, vol. 14, pp. 789-805, 1992.
    [153] A. Sophian, "Characterisation of Surface and Sub-surface Discontinuities in Metals Using Pulsed Eddy Current Sensors." Huddersfield, UK: Huddersfield University, 2003.
    [154] D. Horn and W. R. Mayo, "NDE reliability gains from combining eddy-current and ultrasonic testing," NDT&E International, vol. 33, pp. 351-362, 2000.
    [155] C. L. Ren, C. Y. Chih, and L. S. Kuo, "Multisensor Fusion and Integration: Approaches, Applications, and Future Research Directions," IEEE SENSORS JOURNAL, vol. 2, pp. 107-119, 2002.
    [156] 寇雪芹 and 师帅兵, "人工神经网络在传感器数据融合中的应用," 传感器技术, vol. 21, pp. 49-51, 2002.
    [157] 吕俊 and 张兴华, "几种快速 BP 算法的比较研究," 现代电子技术, pp. 96-99, 2003.
    [158] 许东 and 吴铮, 基于 MATLAB 6.x 的系统分析与设计-神经网络(第二版). 西安: 电子科技大学出版社, 2002.9.
    [159] R. Sundarraj, "A web-based AHP approach to standardize the process of managing service-contracts," Decision Support Systems, vol. 37, pp. 343-365, 2004.
    [160] 谢承华, "AHP 及其应用," 兰州商学院学报, vol. 17, pp. 79-82, 2001.
    [161] 潘寒尽 and 张多林, "AHP 方法存在的问题及改进的方法," 航空兵器, pp. 16-17, 2003.
    [162] 洪源源 and 邱菀华, "AHP, GEM 及其综合算法," 中国管理科学, vol. 8, pp. 36-42, 2000.
    [163] 刘万里 and 雷治军, "关于 AHP 中判断矩阵校正方法的研究," 系统工程理论与实践, vol. 17, pp. 30-34, 1997.
    [164] 王国华 and 梁梁, "专家判断信息的提取及一致性调整," 系统工程理论方法应用, vol. 10, pp. 68-71, 2001.
    [165] 陈伟, "正确认识层次分析法(AHP 法)," 人类功效学, vol. 6, pp. 32-35, 2000.
    [166] 张仁荣, "炼油厂管线局部及高温腐蚀寿命评估和管线检查策略之研究," vol. 博士论文: 国立云林科技大学工程科技研究所, 2004.4, pp. 199.
    [167] 金伟良, 付勇, 赵冬岩, and 白秉, "具有裂纹损伤的海底管道断裂及疲劳评估," 海洋工程, vol. 23, pp. 7-16, 2003.
    [168] P. D. Panetta, A. A. Diaz, R. A. Pappas, T. T. Taylor, R. B. Francini, and K. I. Johnson, "Mechanical damage characterization in pipeline," 2001.
    [169] 翁永基, "腐蚀管道安全管理体系," 油气储运, vol. 22, pp. 1-15, 2003.
    [170] 帅健, 张春娥, and 陈福来, "腐蚀管道剩余强度评价方法的对比研究," 天然气工业, vol. 26, pp. 122-126, 2006.
    [171] 赵新伟, 路民旭, and 白真权, "含裂纹管道剩余强度评价方法及其应用," 石油矿场机械, vol. 28, pp. 24-26, 1999.
    [172] 左尚志, 钟群鹏, 武淮生, and 张. 峥, "含平面缺陷的压力管道在静载下的可靠性指标," 机械强度, vol. 22, pp. 67-69, 2000.
    [173] 郭松, "独立分量分析及其应用研究," vol. 博士论文. 武汉: 武汉大学, 2004.
    [174] B. A. Pearlmutter and L. Parra, "A context-sensitive generalization of ICA," presented at Proc. Int. Conf. Neural Information Procesing, ICONIP'96, Hong Kong, 1996.
    [175] A. J. Bell and T. J. Sejnowski, "An information-maximisation approach to blind separation and blind deconvolution," Neural Computation, vol. 17, pp. 1129-1159, 1995.
    [176] P. Comon, "Independent component analysis, a new concept," Signal Processing, vol. 36, pp. 287-314, 1994.
    [177] 游荣易 and 陈忠, "一种基于 ICA 的忙信号分离快速算法," 电子学报, vol. 32, pp. 670-673, 2004.
    [178] A. Hyvarinen and E. Oja, "Independent component analysis: a tutorial," Neural Networks, vol. 13, pp. 411-430, 2000.
    [179] A. Hyvarinen and E. Oja, "Independent component analysis: a tutorial," Neural Networks, vol. 13, pp. 411-430, 2000.
    [180] H. Ren, X. Hu, and P. Wei, "Independent Component Analysis for Fault Detection of the Liquid Propellant Rocket Engine," Journal of national university of defense technology, vol. 26, pp. 34-40, 2004.
    [181] 姜静清, 宋初一, and 刘娜仁等, "RBF 神经网络的训练方法及分析," 内蒙古民族大学学报, pp. 301-303, 2003.
    [182] A. Hyvarinen, "Fast and robust fixed-point algorithms for independent component analysis," IEEE Transactions on Neural Networks, vol. 10, pp. 626-637, 1999.
    [183] A. Hyvarinen and E. Oja, "A Fast fixed-point algorithm for independent component analysis," Neural Computation, vol. 9, pp. 1483-1492, 1997.
    [184] W. Liu, Y. Lu, and J. S. Fu, "Data fusion of multiradar system by using genetic algorithm," IEEE Transactions on Aerospace and Electronic Systems, vol. 38, pp. 601-612, 2002.
    [185] S. Giguere, B. A. Lepine, and J. M. S. Dubois, "Pulsed Eddy Current Technology: Characterizing Material Loss with Gap and Lift-off Variations," Research in Nondestructive Evaluation, vol. 13, pp. 119-129, 2001.
    [186] L. A. Zadeh, "Toward a generalized theory of uncertainty (GTU)--an Outline," Information Sciences, vol. 172, pp. 1-40, 2005.
    [187] I. Lira, "Evaluating the measurement uncertainty: fundamentals and practical guidance," Inst. of Phys, London, UK 2002.
    [188] W. E. Walker, P. Harremo?s, J. P. Sluijs, P. Janssen, and K. Krauss, "Defining uncertainty: A conceptual basis for uncertainty management in model-based decision support," Integrated Assessment, pp. 5-17, 2003.
    [189] B. Klauer and J. D. Brown, "Conceptualising imperfect knowledge in public decision making: ignorance, uncertainty, error and risk situations," Environmental research, engineering, and management, vol. 27, pp. 124-128, 2004.
    [190] BIPM, IEC, IFCC, ISO, IUPAP, and OIML, Guide to the expression of uncertainty in measurement 2nd ed. ISBN: 92-67-10188-9, 1995.
    [191] M. E. Borsuk, C. A. Stow, and K. H. Reckhow, "A Bayesian network of eutrophication models for synthesis, prediction, and uncertainty analysis," Ecological Modelling, vol. 173, pp. 219-239, 2004.
    [192] 陈良洲, "信息融合中的关键理论及其在目标识别中的应用研究." 上海: 上海交通大学 博士学位论文, 2006, pp. 116.
    [193] A. P. Dempster, "Upper and lower probabilities induced by a multi-valued mapping," Annual Math Statist, vol. 38, pp. 325-339, 1967.
    [194] G. Shafer, A Mathematical Theory of Evidence. Princeton: Princeton University Press, 1976.
    [195] 徐从富, 耿卫东, and 潘云鹤, "面向数据融合的 DS 方法综述," 电子学报, vol. 29, pp. 393-396, 2001.
    [196] R. R. Yager, "On the Dempster-Shafer framework and new combination rules," Information Sciences, vol. 41, pp. 93-137, 1989.
    [197] H. Dubois, "Representation and combination of uncertainty with belief functions and possibility measures," Computational Intelligence, pp. 88-101, 1998.
    [198] Smets, "The combination of evidence in the transferable belief model," IEEE Trans.on Pattern Analysis and Machine Intelligence, pp. 202-216, 1990.
    [199] 孙全, 叶秀清, and 顾伟康, "一种新的基于证据理论的合成公式," 电子学报, vol. 28, pp. 117-119, 2000.
    [200] E. lefevre, "Belief function combination and conflict management," Information Fusion, pp. 111-114, 2002.
    [201] R. Haenni, "Are alternatives to Dempster's rule of combination real alternatives? Comments on "About the belief function combination and the conflict management problem"," Information Fusion, vol. 3, pp. 237-239, 2002.
    [202] C. K. Murphy, "Combining belief functions when evidence conflicts," Decision support systems, vol. 29, pp. 1-9, 2000.
    [203] 王晓峰 and 赵. 英, "相关集合: 集合的相关强度与相似关系," 沈阳化工学院学报, vol. 11, pp. 213-217, 1997.
    [204] 石纯一 and 王家二, 数理逻辑与集合论. 北京: 清华大学出版社, 2000.
    [205] B. C. Yoseph, "Emerging NDE. Technologies and challenges at the beginning of the 3rd millennium-part 1," Material Evaluation, vol. 58, pp. 17-30, 2000.
    [206] 钟群鹏, 李培宁, 李学仁, and 陈. 钢, "国家标准《在用含缺陷压力容器安全评定》的特色和创新点综述," 管道技术与设备, pp. 1-5, 2006.
    [207] 李东升, 王昌明, 施祖康, and 沈勇, "管道壁缺陷超声波在役检测的量化分析研究," 仪器仪表学报, vol. 24, pp. 131-134, 2002.
    [208] 钟群鹏, 武淮生, 田永江, and 张峥, "我国压力容器安全评定技术的现状和发展," 中国机械工程, vol. 8, pp. 95-102, 1997.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700