载脂蛋白C3、A1基因多态性及其相互作用与血脂和脑血管疾病
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景:载脂蛋白C3(ApoC3)是富含甘油三酯(TG)的脂蛋白及高密度脂蛋白(HDL)的主要成分,在调节血浆TG水平中起重要作用,与血浆TG水平呈正相关。ApoC3-482C>T基因多态性位于ApoC3启动子区胰岛素反应原件附近,它的多态性变化与高TG血症、胰岛素抵抗及冠心病密切相关,但不同的学者研究结果又有差别。迄今为止,国内外尚无有关ApoC3基因变异与脑卒中关系的研究。
     与ApoC3作用相反,ApoA1与动脉粥样硬化及心血管病呈负相关。ApoA1是HDL的主要组成成分,ApoA1和HDL都是胆固醇逆转运的主要元素。ApoA1-75G>A与血浆ApoA1和HDL-C水平密切相关,携带者血浆HDL-C和ApoA1水平升高,而Lp(a)水平下降,与心血管疾病呈负相关。但其与脑卒中的相关性研究还少见报道。
     APOA1/C3/A4/A5基因簇在血脂代谢中的作用以及与动脉粥样硬化性疾病的关系越来越受到重视,该基因簇位于人类的11号染色体长臂。大量的研究表明,过度表达或缺乏这些基因,都会导致血脂水平的改变。这个基因簇的多个基因变异与血脂水平及冠心病密切相关。这个基因簇的单基因变异与血脂及动脉粥样硬化相关性的研究比较多,ApoA5与ApoC3多态性之间相互作用对血脂水平的影响也有一些报道,但ApoA1与ApoC3相互作用与脑卒中的关系还未见报道。
     目的
     1、探讨ApoC3-482C>T基因多态性与脑卒中的关系
     2、探讨ApoA1-75G>A基因多态性与脑卒中关系。
     3、探讨ApoC3-482C>T与ApoA1-75G>A相互作用对脑卒中的影响。
     方法
     采用病例-对照设计,筛选脑梗死212例(动脉血栓性脑梗死165例和腔隙性脑梗死47例),脑出血209例,对照组291例(非心脑血管疾病人群)为研究对象。采用聚合酶链式反应-限制性片段长度多态性方法测定ApoC3、ApoA1基因多态性。
     结果:
     1、在湖南汉族人群中,ApoC3-482C>T基因型分布为CC 28%,CT 48%和TT 24%;等位基因C、T的频率分别为52%和48%。
     2、ApoC3-482C>T基因型分布在三组有显著性差异(P<0.05),脑出血组和脑梗死组的CT、TT基因型频率高于对照组,CC型在对照组和脑梗死组之间有差异;TT型频率分布在三组无差异。
     3、T携带者的TG水平高于非携带者,HDL-C水平明显低于非携带者,差异有显著性。
     4、T等位基因对糖尿病患者的TG、ApoA1有影响。在CT型中,非糖尿病患者的ApoA1水平明显高于糖尿病者;在TT型中,糖尿病者的TG明显高于非糖尿病者。
     5、吸烟与T等位基因相互作用,影响血脂水平。吸姻者中T携带者的HDL-C水平低于非携带者。
     6、单因素logistic回归显示CT+TT基因型对脑梗死有显著影响而对脑出血影响不显著。(脑梗死:OR=1.478,95%CI1.107-2.150,P=0.038;脑出血:OR=1.082,95%CI0.752-1.557,P=0.18)。
     7、在湖南汉族人群中,ApoA1基因型分布为GG 58.16%,AG 24.77%和AA 17.07%,等位基因G、A的频率分别为70.54%和29.46%。
     8、ApoA1-75G>A三种基因型在脑出血、脑梗死和对照组分布有显著性差异(P<0.05);脑出血组和脑梗死组的GG基因型频率高于对照组,AG型、AA型对照组明显高于脑出血和脑梗死组(P<0.05)。
     9、A携带者的ApoA1、HDL-C水平高于非携带者,有显著差异(P<0.05)。
     10、单因素logistic回归分析显示ApoA1-75G>A对脑出血有显著影响,但对脑梗死影响无显著性。(脑出血AG+AA基因型OR=0.725,95%CI0.548-1.073,p=0.047;脑梗死:AG+AA基因型OR=0.805,95%CI 0.501-1.151)。
     11、ApoA1和ApoC3基因型对血脂水平、BMI的相互作用不明显。
     12、ApoA1和ApoC3基因型相互作用对脑卒中有影响。ApoA1 GG型/ApoC3 TT型脑卒中发生率高于其他基因型(P<0.05),其中AA/CC型脑卒中发生率最低。
     13、AA/CC基因型的糖尿病发生率最低,与其它基因型比较有显著差异(P<0.05)。在脑卒中家族史中,A携带者明显低于非携带者(P<0.05)。
     14、logistic回归进行单变量分析,AA/CC型显示对脑梗死有保护作用,对脑出血无明显保护作用,(脑出血:OR=0.987,95%CI 0.741-1.899,P=0.477;脑梗死:OR=0.205,95%CI 0.101-0.417,P=0.003.)。
     结论
     1、在中国湖南汉族人群中ApoC3-482C>T基因变异T等位基因频率高于欧洲人群。该基因变异在脑出血和脑梗死患者与对照组间有显著性差异。携带者(型)产生不利的临床血脂谱,这种作用在糖尿病和吸烟人群中尤为明显。ApoC3-482T基因型对脑卒中的正相关作用独立于其它危险因素
     2、在脑卒中与对照组之间ApoA1-75G>A基因型和基因频率分布有显著性差异。携带者(型)产生有利的临床血脂谱。ApoA1-75G>A基因型对脑卒中具有负相关作用
     3、对ApoA1和ApoC3基因多态性对血脂水平、体重指数无明显影响,但ApoA1-75A等位基因的ApoC3-482CC型对脑卒中、糖尿病及脑卒中家族史有保护作用。
Background: ApoC3 is a major component of triglyceride (TG)-rich lipoproteins (TRLs) and HDL. ApoC3 and serum TG levels are positively correlated. The rare allele of the polymorphic -482C>T in the promoter region of the ApoC3 gene has frequently been associated with raised ApoC3 and TG levels and correlated to CAD.
     A common G-to-A substitution in the promoter area of the ApoA1 gene has been described. The A allele was shown to be associated with higher HDL-cholesterol concentrations and can decreased progression of atherosclerosis and reduced risk of coronary events. It is suggested that ApoA1-75G>A is candidate protective gene for strokes.
     The opposing effects of ApoA1 and ApoC3 on triglyceride metabolism are intriguing and clinically relevant. Both the ApoA1 and ApoC3 genes are located in the APOA1-C3-A4 gene cluster. Several polymorphic sites have been identified in this gene cluster, and. have been associated with lipid levels and coronary artery disease. It was not known whether there are interaction between the polymorphic ApoA1-75G>A and ApoC3-482C>T.
     Objective:
     1、To investigate the correlation between stroke and common genetic variants in ApoC3
     2、To investigate the correlation between stroke and common genetic variants in ApoA1.
     3、To explore the association of interaction between ApoC3 gene polymorphisms and common genetic variants in ApoA1 on the presence of strokes.
     Method: This was a case-control study, which enrolled 209 cases with cerebral hemorrhage, 212 cases with cerebral infarction and 291 controls without CHD and CVD. Polymerase chain reaction-restricted fragments length polymorphism was used to determine ApoA1 genotype.
     Results:
     1. The ApoC3-482C>T genotype distribution in the subjects was CC 28%, CT 48% and TT 24%, respectively. Allele frequencies for C and T were 52% and 48%, respectively。
     2. The ApoC3-482C>T allele and genotype distribution among three groups showed a significant difference. TT genotype frequencies showed a higher frequency in both cerebral hemorrhage group and cerebral infarction compared to control (P<0.05).
     3. The levels of TG among CC、CT and TT genotype tended upward respectively. The levels of HDL-C in CT and TT was lower than that of CC, there were significant differences each other.
     4. In CT genotype, the levels of ApoA1 of diabetic patients Was lower than that of the nodiabetic patients. In TT, the levels of TG of diabetic patients was higher than that of the nodiabetic patients, and the levels of HDL-C was lower than that of the nodiabetic patients.
     5. In the smoking people, the levels of HDL-C was lower in carriers than in noncarriers.
     6. The CT+TT genotype is positively correlated to cerebral infarction but there are no correlated between ApoC3-482C>T and cerebral hemorrhage, (cerebral hemorrhage: OR=1.082, 95% CI0.752-1.557, P=0.18; cerebral infarction: OR=1.478, 95%CI 1.107-2.150, P=0.038。)
     7. The ApoA1-75G>A genotype distribution in subjects was GG 58.16%, AG 24.77% and AA 17.07%, respectively. Allele frequencies for G and A were 70.54% and 29.46%, respectively.
     8. The ApoA1-75G>A allele and genotype distribution among stroke and control showed a significant difference. GG genotype frequencies showed a higher frequency in both cerebral hemorrhage group and cerebral infarction compared to control (P<0.05). AG and AA genotype frequencies showed a higher frequency in control compared to both cerebral hemorrhage group and cerebral infarction (P<0.05).
     9. The levels of HDL-C in AA was highter than that of GG. (P<0.05). The levels of TC, ApoB, LDL-C, LP(a), HDL-C/TC were no significant differences between AA genotype and GG genotype.
     10. The AA+AG genotype had an independent effect on cerebral hemorrhage (OR=0.725, 95% CI0.548-1.073, p=0.047); but there are no significant protectively effect, on cerebral infarction (OR=0.805, 95%CI0.501-1.151。)
     11. The interaction between the polymorphic ApoA1-75G>A and ApoC3-482C>T had not significant effect on the levels of lipid and MBI.
     12. In the patients with stroke, GG/TT and GG/CT genotype distribution frequency was significant higher than frequencies of AA/CC genotype. In the individuals with stroke family history, A carriers was significant lower than nocarriers (P<0.05). The AA/CC genotype carriers had a lowest frequency of diabetic than other genotype.
     13. The AA/CC genotype had a protective effect on cerebral infarction (OR=0.205, 95%CI0.101-0.417, P=0.003), but had no protective effect on cerebral hemorrhage (OR=0.987, 95%CI0.741-1.899, P=0.477).
     Conclusion:
     1、This is the first observation of common genetic variants distribution of ApoC3 in Chinese people. The T allele frequency showed a higher frequency in Chinese compared in Europeans. There were significant differences in ApoC3-482C>T genotype amorig three groups. The carriers results in a unfavourable of blood lipids, exceptionally in the smoking people and diabetic patients. The CT、TT genotype had an independent unfavourable effect on strokes.
     2、There were significant differences in ApoA1-75G>A genotype among three groups. The carriers results in a beneficial profile of blood lipids, The AA+AG genotype had an independent protective effect on strokes.
     3、The result exhibited an interaction of two genes on stroke. The AA/CC genotype had an protective effect on the individuals with stroke family history, diabetic, and had an protective effect on cerebral infarction.
引文
[1] Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature. 1993;362:801-809.
    [2] Goodman DWS. Cholesterol revisited: molecule, medicine, and media. Arteriosclerosis. 1989;9:430-438.
    [3] Fuster V, Badimon L, Badimon JJ, Chesebro JH. The pathogenesis of coronary artery disease and the acute coronary syndromes. N Engl J Meal. 1992;326:242-250.
    [4] Welin L, Svardsudd K, Wilhelmsen L, Larsson B, Tibblin G. Analysis of risk factors for stroke in a cohort of men born in 1913. N Engl J Med. 1987;317:521-526.
    [5] Assmann G ,Gullen P ,Schulte H ,et al.The muenster heart study (PROCAM) Results of follow up at 8 years [J].Eur Hear J. 1998;19:2-11
    [6] Laloux P, Galanti L, Jamart J. Lipids in ischemic stroke subtypes. Acta Neurol Belg. 2004 ;104:13-9.
    [7] Castelli WP. Lipids, risk factors and ischaemic heart disease. Atherosclerosis, 1996 ;124:1-9
    [8] Demchuk AM, Hess DC, Brass LM, et al. Is cholesterol a risk factor for stroke? Yes. Arch Neurol. 1999;56:1518-1520.
    [9] Landau WM. Is cholesterol a risk factor for stroke? No. Arch Neurol. 1999;56:1521-1524.
    [10] Gordon T, Castelli WP, Hjortland MC, et al. High density lipoprotein as a protective factor against coronary heart disease. The Framingham Study.Am J Med. 1997; 62:7007-714.
    [11] Genest JJ, McNamara JR, Salem DN, et al. Prevalence of risk factors in men with premature coronary artery disease. Am J Cardiol. 1991 ;67:1185-1189.
    [12] Bolibar I, von Eckardstein A, Assmann G, et al. Short-term prognostic value of lipid measurements for coronary events in patients with angina pectoris. Thromb Haemost. 2000;84:955-961.
    [13] Soyama SG; Miura K, Morikawa Y, et al. High-density lipoprotein cholesterol and risk of stroke in Japanese men and women:the Oyabe Study. Stroke, 2003;34:863-886
    [14] WannameSG ,Shaper AG, Ebranhim S.HDL-cholesterol,total cholesterol, and the risk of stroke in middle-aged British men.Stroke, 2000; 31:1882-1888
    [15] Ito Y, Azrolan N, O'Connell A, et al. Hypertriglyceridemia as a result of human ApoCⅢ gene expression in transgenic mice. Science. 1990;249:790-793.
    [16] Jong MC, Hofker MH, Havekes LM.Role of ApoCs in metabolism: functional differences between ApoC1, ApoC2, and ApoC3. Arterioscler Thromb Vasc Biol. 1999; 19:472-484
    [17] 王琳芳,杨克恭(主编).医学分子生物学原理.北京:高等教育出版社.2001:7
    [18] Wang C, McConathy WJ, Kloer HU, et al. Modulation of lipoprotein lipase activity by Apolipoproteins, J Clin Invest. 1985;75:384-390.
    [19] Ginsberg HN, Jones J, Blaner WS, et al. Association of postprandial triglyceride and retinyl palmitate responses with newly diagnosed exercise-induced myocardial ischemia in middle-aged men and women. Arterioscler Thromb Vasc Biol. 1995;15:1829-1838.
    [20] Sharrett AR, Chambless LE, Heiss G, et al. Association of postprandial triglyceride and retinyl palmitate responses with asymptomatic carotid artery atherosclerosis in middle-aged men and women. Arterioscler Thromb Vasc Biol. 1995;15:2122-2129.
    [21] Uiterwaal CSPM, Grobbee DE, Witteman JCM, et al. Postprandial triglyceride response in young adult men and familial risk for coronary atherosclerosis. Ann Intern Med. 1994; 121:576-583
    [22] Talmud PJ, Hawe E, Martin S, et al.Olivier M, Relative contribution of variation within the APOC3/A4/A5 gene cluster in determining plasma triglycerides.Hum Mol Genet. 2002 Nov 15;11(24):3039-3046.
    [23] Waterworth DM, Talmud PJ, et al. Bujac SR, Contribution of Apolipoprotein C-Ⅲ gene variants to determination of triglyceride levels and interaction with smoking in middle-aged men. Arterioscler Thromb Vasc Biol. 2000 ;20:2663-2669.
    [24] Hubacek JA, Waterworth DM, Poledne R, et al. Genetic determination of plasma lipids and insulin in the Czech population. Clin Biochem. 2001 ;34:113-118
    [25] Groenendijk M, Cantor RM, Blom NH, et al.Association of plasma lipids and Apolipoproteins with the insulin response element in the ApoC-Ⅲ promoter region in familial combined hyperlipidemia. J Lipid Res. 1999 ;40:1036-1044
    [26] Shoulders CC, Grantham TT, North JD, et al.Hypertriglyceridemia and the Apolipoprotein CⅢ gene locus: lack of association with the variant insulin response element in Italian school children. Hum Genet. 1996 ;98:557-566
    [27] 杨期东主编.神经病学.第一版.北京:人民卫生出版社.2002:118-149.
    [28] 中华神经科学会、中华神经外科学会.脑血管疾病分类(1995).中华神经科杂志.1996;29:376-380.
    [29] Maeda N, Li H, Lee D, et al. Targeted disruption of the Apolipoprotein CⅢ gene in mice results in hypotriglyceridemia and protection from postprandial hypertriglyceridemia. J Biol Chem. 1995; 269:23610-23616.
    [30] Guettier JM, Georgopoulos A, Tsai MY, et al. Polymorphisms in the fatty acid-binding protein 2 and Apolipoprotein C-Ⅲ genes are associated with the metabolic syndrome and dyslipidemia in a South Indian population. J Clin Endocrinol Metab. 2005 ;90:1705-11.
    [31] Third JL, Montay J, Flynn M, et al. Primary and familial hypoalphalipoproteinemia. Metabolism. 1984;33:136-146.
    [32] Natowicz M, Kelley RL. Mendelian etiologies of stroke. Ann Neurol. 1987;22:175-192
    [33] Botma GJ, Verhoeven AJ, Jansen H: Hepatic lipase promoter, activity is reduced by the C-480T and G-216A substitutions present in the common LIPC gene variant, and is increased by upstream stimulatory factor. Atherosclerosis. 2001; 154:625-632.
    [34] Tu AY, Albers JJ: Glucose regulates the transcription of human genes relevant to HDL metabolism: responsive elements for peroxisome proliferator-activated receptor are involved in the regulation of phospholipid transfer protein. Diabetes.2001 ;50:1851-1856.
    [35] Ashavaid TF, Shalia KK, Kondkar AA, et al. Gene polymorphism and coronary risk factors in Indian population. Clin Chem Lab Med .2002;40:975-985.
    [36] Aalto-Setala K, Fisher EA, Chen X, et al. Mechanism of hypertriglyceridemia in human Apolipoprotein CⅢ transgenic mice. J Clin Invest. 1992; 90:1889-1890
    [37] Onat A, Hergenc G, Sansoy V, et al. Apolipoprotein C-Ⅲ, a strong discriminant of coronary risk in men and a determinant of the metabolic syndrome in both genders. Atherosclerosis 2003; 168:81-89
    [38] Lambert DA, Catapano AL, Smith LC, et al. Effect of the Apolipoprotein C-Ⅱ/C-Ⅲ1 ratio on the capacity of purified milk lipoprotein lipase to hydrolyse triglycerides in monolayer vesicles. Atherosclerosis, 1996; 127:205-212
    [39] Gordon T, Castelli WP, Hjortland MC, et al. High density lipoprotein as a protective factor against coronary heart disease. The Framingham Study.Am J Med. 1997; 62:7007-714.
    [40] Genest JJ, McNamara JR, Salem DN, et al. Prevalence of risk factors in men with premature coronary artery disease. Am J Cardiol. 1991 ;67:1185-1189.
    [41] Bolibar I, von Eckardstein A, Assmann G, et al. Short-term prognostic value of lipid measurements for coronary events in patients with angina pectoris. Thromb Haemost. 2000; 84: 955-961.
    [42] Li, W. W., Dammerman, M. M., Smith, J. D., et al.Common genetic variation in the promoter of the human ApoCⅢ gene abolishes regulation by insulin and may contribute to hypertriglyceridemia. J Clin Invest. 1995 ;96:2601-2605
    [43] Hegele, Robert A.; Connelly, et al.Common Genomic Variation in the APOC3 Promoter Associated With Variation in Plasma Lipoproteins. Arterioscler Thromb Vasc Biol. 1997; 17: 2753-8.
    [44] Larry Baum, PHD, Maggie C.Y. Ng, et al. Effect of Hepatic Lipase-514C→T Polymorphism and Its Interactions With Apolipoprotein C3-482C→T and Apolipoprotein E Exon 4 Polymorphisms on the Risk of Nephropathy in Chinese Type 2 Diabetic Patients. Diabetes Care. 2005; 28: 1704-1709.
    [45] WHO task force on stroke and other cerebrovascular disorders. Stroke 1989, recommendations on stroke prevention, diagnosis, and therapy. Stroke. 1989; 20: 1407-1431.
    [46] 赵水平主编.临床血脂学.长沙:湖南科技出版社.1997:225-231.
    [47] 吴锡柱,何琳,郝建生,等.首钢工人脑卒中发病危险因素的前瞻性研究.中华心血管病杂志.1987;15:239
    [48] Lindenstrom E, Bogsen G; Nyboe J, et al. Influence of total cholesterol, high density lipoprotein cholesterol, and triglycerides on risk of cerebrovascular disease: the CopenhagenCity Heart Study.BMJ. 1994;309:11-15.
    [49] Milionis HJ, Liberopoulos E, Goudevenos J et al. Risk factors for first-ever acute ischemic non-embolic stroke in elderly individuals. Int J Cardiol. 2005; Mar 18;99:269-75.
    [50] Peng DQ, Zhao SP, Wang JL. Lipoprotein(a) and Apolipoprotein E ε4 as independent risk factor for stroke. J Cardiovasc Risk. 1999;6:1-6.
    [51] Woo J, Lau E, Lam CWK, et al. Prevalence of asymptomatic internal carotid artery stenosis. Neuroepidemiology,. 1987;6:150-152.
    [52] Erdos B, Snipes JA, Tulbert CD,et al. Rosuvastatin improves cerebrovascular function in Zucker obese rats by inhibiting NAD(P)H oxidase-dependent superoxide production. Am J Physiol Heart Circ Physiol. 2006 ;290:H1264-70.
    [1] 赵水平.临床血脂学[M] .长沙:长沙科学技术出版社,1999;226-230.
    [2] 程虹,姚娟,王颖,等.动脉粥样硬化性脑梗死患者血脂水平相关因素分析.江苏临床医学杂志,2001;5:305-306
    [3] 周娟,张敃,李小娟.脑出血与脑梗死患者血脂和血清质蛋白谱的比较.第一军医大学学报,2003;23:262-264
    [4] 任艳,唐力,聂迎雪,等,颈动脉粥样硬化与短暂性脑缺血发作的相关性[J].中国动脉硬化杂志,2003;11:63-65
    [5] Soyama SG, Miura K,Morikawa Y, et al. High-density lipoprotein cholesterol and risk of stroke in Japanese men and women:the Oyabe Study. Stroke, 2003;34:863-886
    [6] Wanname SG, Shaper AG, Ebranhim S.HDL-cholesterol,total cholesterol,and the risk of stroke in middle-aged British men. Stroke. 2000; 31: 1882-1888
    [7] Walldius G, Aastveit AH, Jungner Ⅰ. Stroke mortality and the ApoB/ApoA-Ⅰ ratio: results of the AMORIS prospective study. J Intern Med. 2006 .;259:259-66.
    [8] Fielding PE, Nagao K, Hakamata H, et al. A two-step mechanism for free cholesterol and phospholipid efflux from human vascular cells tO Apolipoprotein A-1. Biochemistry. 2000;39:14113-20.
    [9] A.Abdul Ajees, G.M. Anantharamaiah, Vinod K. Mishra et al.Crystal structure of human Apolipoprotein A-I: insights into its protective effect against cardiovascular diseases.Proc Natl Acad Sci U S A. 2006 14;103:2126-31.
    [10] Jahangir Iqbal ,M. Mahmood Hussain. Evidence for multiple complementary pathways for efficient cholesterol absorption in mice J. Lipid Res, 2005; 46: 1491-1501
    [11] Barter, P. J., Nicholls, S., Rye, K. A et al. Antiinflammatory Properties of HDL Circulation Research. 2004; 95:764-772
    [12] Wilson PW, Anderson KM, Harris T, et al.Determinants of change in total cholesterol and HDL-C with age: the Framingham Study. J Gerontol, 1994; 49: M252-M257
    [13] Breslow JL, Eisenberg S, Brinton EA . Metabolic determinants of low HDL-C levels. (Review). Ann N Y Acad Sci, 1993; 676:157-162
    [14] Ordovas JM, Schaefer EJ, Salem D, et al. Karathanasis SK Apolipoprotein A-I gene polymorphism associated with premature coronary artery disease and familial hypoalphalipoproteinaemia. N Engl J Med, 1986 ;314:671-677
    [15]Wile DB, Barbir M, Gallagher J, et al. Apolipoprotein A-I gene polymorphisms: frequency in patients with coronary artery disease and healthy controls and association with serum Apo A-I and HDL-cholesterol concentration. Atherosclerosis, 1989;78: 9-18
    
    [16] Moll PP, Michels W, Weidman WH, et al.Genetic determination of plasma Apolipoprotein A-I in a population-based sample. Am J Hum Genet, 1989; 44: 124-139
    
    [17]Prenger VL, Beaty TH, Kwiterovich PO . Genetic determination of high density lipoprotein-cholesterpl and Apolipoprotein A-I plasma levels in a family study of cardiac catheterization patients. Am J Hum Genet, 1992;51: 1047-1057
    
    [18] Hasstedt SJ, Albers JJ, Cheung MC, et al. The inheritance of high density lipoprotein cholesterol and Apolipoproteins A-I and A-II. Atherosclerosis, 1984;85: 21-29
    
    [19]Borecki IB, Rao DC, Third JL,et al. A major gene for primary hyperalphalipoproteinemia. Am J Hum Genet 1986, 38: 373-381
    
    [20]Brooks-Wilson A, Marcil M, Clee SM,et al. Mutations in ABC1 in Tangier disease and familial high-density lipoprotein deficiency. Nat Genet, 1999;22: 336-345
    
    [21]Bodzioch M, Orso E, Klucken J,et al. The gene encoding ATP-binding cassette transporter 1 is mutated in Tangier disease. Nat Genet, 1999;22: 347-351
    
    [22]Rust S, Rosier M, Funke H, et al. Tangier disease is caused by mutations in the gene encoding ATP-binding cassette transporter 1. Naf Genet,1999 ;22: 352-355
    
    [23]Karathanasis SK Apolipoprotein multigene family: tandem organization of human Apolipoprotein A-I, C-III and A-IV genes. Proc Natl Acad Sci USA ,1985;82:6374-6378
    
    [24]Bruns GA, Karathanasis SK, Breslow JL. Human Apolipoprotein A-I C-III gene complex is located in chromosome 11. Arteriosclerosis, 1984 ;4: 79-83
    
    [25] Jeenah M, Kessling A, Miller N,et al. G to A substitution in the promoter region of the Apolipoprotein A-I gene is associated with elevated A-I and high density lipoprotein cholesterol concentrations. Mol Biol Med, 1990;7: 233-241
    
    [26]Pagani F, Sidoli A, Giudici GA, et al.Human Apolipoprotein A-I gene promoter polymorphism: association with hyperalphalipoproteinemia. J Lipid Res,1990;31: 1371-1377
    [27] Sigurdsson G Jr, Gudnason V, Sigurdsson G, et al. Interaction between a polymorphism of the Apo A-I promoter region and smoking determines plasma levels of HDL and Apo A-I. Arterioscler Thromb, 1992; 12:1017-1022
    [28] Saha N, Tay JSH, Low PS, et al. Guanidine to adenine (G/A) substitution in the promoter region of the Apolipoprotein AI gene is associated with elevated serum Apolipoprotein AI levels in Chinese non-smokers. Genet Epidemiol ,1994;11: 255-264
    [29] Xu C-F, Angelico F, Del Ben M, et al. Role of genetic variation at the ApoA-Ⅰ-C-Ⅲ-A-Ⅳ gene cluster in determining plasma Apo A-Ⅰ levels in boys and girls. Genet Epidemiol,1993; 10:113-122
    [30] Humphries S, Gudnason V, Paul-Hayse H, et al. Identification of common genetic polymorphism that determine plasma levels of Apo A-Ⅰ and HDL-C. In: Sirtori CR, Franceschini G, Brewer BH Jr (eds) Human Apolipoprotein Mutants Ⅲ: Diagnosis and Treatment. Springer-Verlag, Berlin, pp,1993; 247-260
    [31] Talmud PJ, Ye S, Humphries, EARS Group Polymorphism in the promoter region of the Apolipoprotein AI gene associated with differences in Apolipoprotein AI levels. The European Atherosclerosis Research Study. Genet Epidemiol, 1994; 11:265-280
    [32] Paul-Hayase H, Rosseneu M, Robinson D, et al. Polymorphisms in the Apolipoprotein (Apo) A-Ⅰ-CⅢ-AⅣ gene cluster: detection of genetic variation determining plasma Apo A-Ⅰ, Apo C-Ⅲ and Apo A-Ⅳ concentrations. Hum Genet, 1992;88:439-446
    [33] Smith J-D, Brinton EA, Breslow JL Polymorphism in the human Apolipoprotein A-Ⅰ gene promoter region. Association of the minor allele with decreased production rate in vivo and promoter activity in vitro. J Clin Invest, 1992;89:1796-1800
    [34] Juo SH, Wyszynski DF, Beaty TH, et al. Mild association between the A/G polymorphism in the promoter of the Apolipoprotein A-Ⅰ gene and Apolipoprotein A-1 levels: a meta-analysis. Am J Med Genet,1999; 82:235-241
    [35] Sylvie B,Cynthia RC, Tracey AMN, et al.Effect of acylglyceride content on the structure and function of reconstituted high density lipoprotein particles.J lipid Res,2001;42:79-87
    [36] 中华神经科学会、中华神经外科学会.脑血管疾病分类(1995).中华神经科杂志.1996;29:376-380.
    [37] Nissen, S. E., Tsunoda, T., Tuzcu, E. M., et al. Effect of recombinant ApoA-I Milano on coronary atherosclerosis in patients with acute coronary syndromes. J. Am. Med. Assoc, 2003; 290: 2292-2300.
    
    [38] Heng CK, Low PS, Saha N. Variations in the Promoter Region of the Apolipoprotein A-1 Gene Influence Plasma Lipoprotein(a) Levels in Asian Indian Neonates from SingApore.Pediatric Research ,2001;49:514-518 $
    
    [39] Jose M Ordovas, Dolores Corella, L Adrienne Cupples, et al.Polyunsaturated fatty acids modulate the effects of the APOA1 G-A polymorphism on HDL-cholesterol concentrations in a sex-specific manner: the Framingham Study American Journal of Clinical Nutrition, 2002; 75: 38-46.
    
    [40] Third JL, Montay J, Flynn M, et al. Primary and familial hypoalphalipoproteinemia. Metabolism. 1984;33:136-146.
    
    [41]Natowicz M, Kelley RL. Mendelian etiologies of stroke. Ann Neurol. 1987;22: 175-192
    
    [42] Jeenah M, Kessling A, Miller N,et al. G to A substitution in the promoter region of the Apolipoprotein AI gene is associated with elevated serum Apolipoprotein AI and high density lipoprotein cholesterol concentrations. Mol Biol Med 1990;7:233-41.
    
    [43] Pagani F, Sidoli A, Giudici GA, et al. Human Apolipoprotein A-I gene promoter polymorphism: association with hyperalphalipoproteinemia. J Lipid Res 1990;31:1371-7.
    
    [44] Meng QH, Pajukanta P, Valsta L,et al. Influence of Apolipoprotein A-1 promoter polymorphism on lipid levels and responses to dietary change in Finnish adults. J Intern Med 1997;241:373-8.
    
    [45] Curb JD, Abbott RD, Rodriguez BL,et al. High density lipoprotein cholesterol and the risk of stroke in elderly men: the Honolulu heart program.Am J Epidemiol. 2004 15;160:150-7.
    
    [46] Rashid S, Lewis GF. The mechanisms of differential glucocorticoid and mineralocorticoid action in the brain and peripheral tissues.Clin Biochem. 2005 ;38:401-9.
    
    [47] Wang N, Tall AR. Regulation and mechanisms of ATP-binding cassette transporter A1-mediated cellular cholesterol efflux. Arterioscler Thromb Vase Biol. 2003 ;23:1178-84.
    
    [48] Ansell BJ, Navab M, Hama S,et al, Inflammatory/antiinflammatory properties of high-density lipoprotein distinguish patients from control subjects better than high-density lipoprotein cholesterol levels and are favorably affected by simvastatin treatment.Circulation. 2003;108:2751-6.
    
    [49] Francis MC, Frohlich JJ. Coronary artery disease in patients at low risk—Apolipoprotein AI as an independent risk factor. Atherosclerosis. 2001 ; 155:165-70. j?
    
    [50] Moore RE, Kawashiri MA, Kitajima K,et al. Apolipoprotein A-I deficiency results in markedly increased atherosclerosis in mice lacking the LDL receptor. Arterioscler Thromb Vase Biol. 2003;23:1914-20.
    
    [51] Plump AS, Scott CJ, Breslow JL. Human Apolipoprotein A-I gene expression increases high density lipoprotein and suppresses atherosclerosis in the Apolipoprotein E-deficient mouse. Proc Natl Acad Sci USA. 1994 ;91:9607-ll.
    
    [52] Tangirala RK, Tsukamoto K, Chun SH,et al. Regression of atherosclerosis induced by liver-directed gene transfer of Apolipoprotein A-I in mice.Circulation. 1999;100:1816-22.
    
    [53] Koltringer P,Jurgens G. A dominant role of lipoprotein(a) in the investigation and evaluation of parameters indicating the development of cervical atherosclerosis. Atherosclerosis, 1985;58:187-198
    
    [54] Heng CK, Low PS, Saha N Variations in the Promoter Region of the Apolipoprotein A-1 Gene Influence. Plasma Lipoprotein(a) Levels in Asian Indian Neonates from SingApore Pediatr Res. 2001 ;49:514-8.
    
    [55]eenah M, Kessling A, Miller N, et al. G to A substitution in the promoter region of the Apolipoprotein A-I gene is associated with elevated A-I and high density lipoprotein cholesterol concentrations. Mol Biol Med. 1990;7: 233-241
    
    [56]Pagani F, Sidoli A, Giudici GA, et al. Human Apolipoprotein A-I gene promoter polymorphism: association with hyperalphalipoproteinemia. J Lipid Res.1990;31: 1371-1377
    
    [57]Sigurdsson G Jr, Gudnason V, Sigurdsson G, et al. Interaction between a polymorphism of the Apo A-I promoter region and smoking determines plasma levels of HDL and Apo A-I. Arterioscler Thromb .1992;12: 1017-1022
    
    [58]Saha N, Tay JSH, Low PS,et al. Guanidine to adenine (G/A) substitution in the promoter region of the Apolipoprotein AI gene is associated with elevated serum Apolipoprotein AI levels in Chinese non-smokers. Genet Epidemiol . 1994;11: 255-264
    [59] 吴锡柱,何琳,郝建生,等.首钢工人脑卒中发病危险因素的前瞻性研究.中华心血管病杂志.1987;15:239
    [60] Lindenstrom E, Bogsen G, Nyboe J, et al. Influence of total cholesterol, high density lipoprotein cholesterol, and triglycerides on risk of cerebrovascular disease: the Copenhagen City Heart Study.BMJ. 1994;309:11-15.
    [61] Milionis HJ, Liberopoulos E, Goudevenos J et al. Risk factors for first-ever acute ischemic non-embolic stroke in elderly individuals. Int J Cardiol. 2005; 99:269-75.
    [62] Peng DQ, Zhao SH, Wang JL. Lipoprotein(a) and Apolipoprotein E ε4 as independent risk factor for stroke. J Cardiovasc Risk. 1999;6:1-6.
    [63] Woo J, Lau E, Lam CWK, et al. Prevalence of asymptomatic internal carotid artery stenosis. Neuroepidemiology,. 1987;6: 150-152.
    [1] WHO. Task force on stroke and other cerebrovascular disorders. Recommendations on stroke prevention, diagnosis, and therapy. Stroke, 1989, 20:1407-1431.
    
    [2] Benes P, Muzik J, Benedik J, et al. Single effects of ApolipoproteinB,(a),and E polymorphisms and interaction between plasminogen activator inhibitor-1 and Apolipoprotein(a) genotypes and the risk of coronary artery disease in Czech male Caucasians. Mol Genet Metab. 2000:69:137-143.
    
    [3] Karathanasis SK . Apolipoprotein multigene family: tandem organization of human Apolipoprotein AI, CIII, and AIV genes. Proceedings of the National Academy of Sciences, USA, 1985 ; 82: 6374-6378.
    
    [4]Fielding CJ , Fielding PE . Molecular physiology of reverse cholesterol transport. Journal of Lipid Research, 1995; 36: 211-228.
    
    [5] Tangirala RK, Tsukamoto K, Chun SH,et al. Regression of atherosclerosis induced by liver-directed gene transfer of Apolipoprotein A-I in mice.Circulation. 1999;100:1816-22.
    
    [6] Shioji K, Mannami T, Kokubo Y, et al. An association analysis between ApoA1 polymorphisms and the high-density lipoprotein (HDL) cholesterol level and myocardial infarction (MI) in Japanese. J Hum Genet 2004; 49:433-439.
    
    [7] Jong MC, Hofker MH , Havekes LM .Role of ApoCs in lipoprotein metabolism: functional differences between ApoC1, ApoC2, and ApoC3. Arteriosclerosis, Thrombosis, and Vascular Biology, 1999 19: 472-484.
    
    [8] Ito Y, Azrolan N, O'Connell A, et al. Hypertriglyceridemia as a result of human Apo CIII gene expression in transgenic mice. Science 1990, 249:790-793.
    
    [9]Maeda N, Li H, Lee D, et al. Targeted disruption of the Apolipoprotein C-III gene in mice results in hypotriglyceridemia and protection from postprandial hypertriglyceridemia. J Biol Chem 1994; 269:23610-23616.
    
    [10] Weinberg RB . Apolipoprotein A-IV polymorphisms and diet-gene interactions. Current Opinion in Lipidology, 2002; 13: 125-134.
    
    [11] Pennacchio LA, Olivier M, Hubacek JA,et al. An Apolipoprotein influencing triglycerides in humans and mice revealed by comparative sequencing.Science. 2001 ;294:169-73.
    
    [12] Olivieri O, Bassi A, Stranieri C, et al. Apolipoprotein C-III, metabolic syndrome, and risk of coronary artery disease. J Lipid Res 2003, 44:2374-2381
    [13] von Eckardstein A, Funke H, Schulte M, et al. Nonsynonymous polymorphic sites in the Apolipoprotein (Apo) A-IV gene are associated with changes in the concentration of Apo B- and Apo A-I-containing Iipoproteins in a normal population. Am J Hum Genet 1992; 50:1115-1128.
    
    [14] Saha N, Wang G, Vasisht S, Kamboh MI. Influence of two Apo A4 polymorphisms at codons 347 and 360 on non-fasting plasma lipoprotein-lipids and Apolipoproteins in Asian Indians. Atherosclerosis 1997; 131:249-255.
    
    [15] Pennacchio LA, Rubin EM.Apolipoprotein A5, a newly identified gene that affects plasma triglyceride levels in humans and mice. Arterioscler Thromb Vase Biol 2003; 23:529-534
    
    [16] Seda O, Sedova L. New Apolipoprotein A-V: comparative genomics meets metabolism. Physiol Res 2003; 52:141-146
    
    [17] Wang C, McConathy WJ, Kloer HU, et al. Modulation of lipoprotein lipase activity by Apolipoproteins. J Clin Invest. 1985;75:384—390.
    
    [18] Ginsberg HN, Jones J, Blaner WS, Thomas A, Karmally W, Fields L, Blood D, Begg MD. Association of postprandial triglyceride and retinyl palmitate responses with newly diagnosed exercise-induced myocardial ischemia in middle-aged men and women. Arterioscler Thromb Vase Biol. 1995;15:1829-1838.
    
    [19] Sharrett AR, Chambless LE, Heiss G, Paton CC, Patsch W. Association of postprandial triglyceride and retinyl palmitate responses with asymptomatic carotid artery atherosclerosis in middle-aged men and women. Arterioscler Thromb Vase Biol. 1995;15:2122-2129.
    
    [20] Uiterwaal CSPM, Grobbee DE, Witteman JCM, et al. Postprandial triglyceride response in young adult men and familial risk for coronary atherosclerosis. Ann Intern Med. 1994;121:576-583
    
    [21] Talmud PJ, Hawe E, Martin S, et al.Olivier M,Relative contribution of variation within the APOC3/A4/A5 gene cluster in determining plasma triglycerides.HumMol Genet. 2002 ;11:3039-3046.
    
    [22] Waterworth DM, Talmud PJ,et al. Bujac SR, Contribution of Apolipoprotein C-III gene variants to determination of triglyceride levels and interaction with smoking in middle-aged men. Arterioscler Thromb Vase Biol. 2000 ;20:2663-2669.
    [23] Jeenah M, Kessling A, Miller N,et al. G to A substitution in the promoter region of the Apolipoprotein A-I gene is associated with elevated A-I and high density lipoprotein cholesterol concentrations. Mol Biol Med, 1990;7: 233-241
    
    [24] Pagani F, Sidoli A, Giudici GA, et al.Human Apolipoprotein A-I gene promoter polymorphism: association with hyperalphalipoproteinemia. J Lipid Res,1990;31: 1371-1377
    
    [25] Sigurdsson G Jr, Gudnason V, Sigurdsson G, et al. Interaction between a polymorphism of the Apo A-I promoter region and smoking determines plasma levels of HDL and Apo A-I. Arterioscler Thromb, 1992; 12: 1017-1022
    
    [26] Saha N, Tay JSH, Low PS, et al. Guanidine to adenine (G/A) substitution in the promoter region of the Apolipoprotein AI gene is associated with elevated serum Apolipoprotein AI levels in Chinese non-smokers. Genet Epidemiol ,1994;11:255-264
    
    [27] Xu C-F, Angelico F, Del Ben M, et al. Role of genetic variation at the ApoA-I-C-III-A-IV gene cluster in determining plasma Apo A-I levels in boys and girls. Genet Epidemiol, 1993; 10: 113-122
    
    [28] Humphries S, Gudnason V, Paul-Hayse H, et al. Identification of common genetic polymorphism that determine plasma levels of Apo A-I and HDL-C. In: Sirtori CR, Franceschini G, Brewer BH Jr (eds) Human Apolipoprotein Mutants III: Diagnosis and Treatment. Springer-Verlag, Berlin, pp, 1993, 247-260
    
    [29] Talmud PJ, Ye S, Humphries, et al. Polymorphism in the promoter region of the Apolipoprotein AI gene associated with differences in Apolipoprotein AI levels. The European Atherosclerosis Research Study. Genet Epidemiol, 1994; 11:265-280
    
    [30] Paul-Hayase H, Rosseneu M, Robinson D, et al. Polymorphisms in the Apolipoprotein (Apo) A-I-CIII-AIV gene cluster: detection of genetic variation determining plasma Apo A-I, Apo C-III and Apo A-IV concentrations. Hum Genet, 1992;88: 439-446
    
    [31] Juo SH, Wyszynski DF, Beaty TH, et al. Mild association between the A/G polymorphism in the promoter of the Apolipoprotein A-I gene and Apolipoprotein A-1 levels: a meta-analysis. Am J Med Genet,1999; 82: 235-241
    
    [32] Plump AS, Scott CJ, Breslow JL. Human Apolipoprotein A-I gene expression increases high density lipoprotein and suppresses atherosclerosis in the Apolipoprotein E-deficient mouse.Proc Natl Acad Sci USA. 1994 ;91:9607-11.
    [33] 中华神经科学会、中华神经外科学会.脑血管疾病分类(1995).中华神经科杂志.1996;29:376-380.
    [34] 杨期东主编.神经病学.北京:人民卫生出版社,2002,118-127
    [35] Grundy SM, Vega GL. Role of Apolipoprotein levels in clinical practice. Arch Inten Med. 1990;150:1579-1582.
    [36] Mezdour H, Larigauderie G, Castro G, et al.Characterization of a new mouse model for human ApoA-Ⅰ/C-Ⅲ/A-Ⅳ deficiency.J Lipid Res. 2006 ;23:1-23
    [37] de Franca E, Alves JG, Hutz MH. APOA1/C3/A4 gene cluster variability and lipid levels in Brazilian children.Braz J Med Biol Res. 2005;38:535-41.
    [38] Lai CQ, Parnell LD, Ordovas JM. The APOA1/C3/A4/A5 gene cluster, lipid metabolism and cardiovascular disease risk.Curt Opin Lipidol. 2005 ;16:153-66.
    [39] Fullerton SM, Buchanan AV, Sonpar VA, et al.The effects of scale: variation in the APOA1/C3/A4/A5 gene cluster.Hum Genet. 2004; 115:36-56
    [40] Wang QF, Liu X, O'Connell J, et al.Haplotypes in the APOA1-C3-A4-A5 gene cluster affect plasma lipids in both humans and baboons.Hum Mol Genet. 2004 ;13:1049-56.
    [41] Plump, A.S., Azrolan, N., Odaka, H., et al. ApoA-I knockout mice: characterization of HDL metabolism in homozygotes and identification of a post-RNA mechanism of ApoA-I up-regulation in heterozygotes. J. Lipid Res., 1997;38:1033-1047.
    [42] Maeda, N., Li, H., Lee, D., et al. Targeted disruption of the Apolipoprotein C-Ⅲ gene in mice results in hypotriglyceridemia and protection from postprandial hypertriglyceridemia. J. Biol. Chem., 1994 269:23610-23616
    [43] A.Abdul Ajees, G.M. Anantharamaiah, Vinod K. Mishra et al.Crystal structure of human Apolipoprotein A-Ⅰ: insights into its protective effect against cardiovascular diseases. Proc Natl Acad Sci U S A. 2006 14;103:2126-31.
    [44] Jahangir Iqbal ,M. Mahmood Hussain Evidence for multiple omplementary pathways for efficient cholesterol absorption in mice J. Lipid Res, 2005; 46: 1491-1501
    [45] Barter, P. J., Nicholls, S., Rye, K. A et al. Antiinflammatory Properties of HDL Circulation Research. 2004; 95:764-772
    [46] Ordovas JM, Schaefer EJ, Salem D, et al. Karathanasis SK Apolipoprotein A-I gene polymorphism associated with premature coronary artery disease and familial hypoalphalipoproteinaemia. N Engl J Med ,1986 ;314: 671-677
    
    [47] Wile DB, Barbir M, Gallagher J, et al. Apolipoprotein A-I gene polymorphisms: frequency in patients with coronary artery disease and healthy controls and association with serum Apo A-I and HDL-cholesterol concentration, Atherosclerosis, 1989;78: 9-18
    
    [48] Moll PP, Michels W, Weidman WH, et al.Genetic determination of plasma Apolipoprotein A-I in a population-based sample. Am J Hum Genet, 1989; 44: 124-139
    
    [49] Prenger VL, Beaty TH, Kwiterovich PO . Genetic determination of high density lipoprotein-cholesterol and Apolipoprotein A-I plasma levels in a family study of cardiac catheterization patients. Am J Hum Genet, 1992;51: 1047-1057
    
    [50] Hasstedt SJ, Albers JJ, Cheung MC, et al. The inheritance of high density lipoprotein cholesterol and Apolipoproteins A-I and A-II. Atherosclerosis, 1984;85: 21-29
    
    [51] Borecki IB, Rao DC, Third JL,et al. A major gene for primary hyperalphalipoproteinemia. Am J Hum Genet 1986; 38: 373-381
    
    [52] van Dijk KW, Rensen PC, Voshol PJ,et al.The role and mode of action of Apolipoproteins CIII and AV: synergistic actors in triglyceride metabolism?Curr OpinLipidol. 2004 ;15:239-46.
    
    [53] Baroukh N, Bauge E, Akiyama J,et al. Analysis of Apolipoprotein A5, c3, and plasma triglyceride concentrations in genetically engineered mice.Arterioscler Thromb Vase Biol. 2004 ;24:1297-302
    
    [54] Heng CK, Low PS, Saha N Variations in the Promoter Region of the Apolipoprotein A-1 Gene Influence Plasma Lipoprotein(a) Levels in Asian Indian Neonates from SingApore Pediatr Res. 2001 ;49:514-8.
    [1]. Davison PJ, Norton P, Wallis SC, et al. There are two gene sequences for human Apolipoprotein C1 (APO C1) on chromosome 19, one of which is 4 kb from the gene for ApoE. Biochem Biophys Res Commun. 1986; 136:876-884.
    
    [2]. Smit M, van der Kooij-Meijs E, Frants RR,et al.Apolipoprotein gene cluster on chromosome 19: definite localization of the APOC2 gene and the polymorphic HpaI site associated with type III hyperlipoproteinemia. Hum Genet. 1988;78:90-93.
    
    [3]. Lauer S, Walker D, Elshourbagy NA, et al. Two copies of the human Apolipoprotein C-I gene are linked closely to the Apolipoprotein E gene. J Biol Chem. 1988;263:7277-7286.
    
    [4]. Wei C-F, Tsao Y-K, Robberson DL,et al.The structure of the human Apolipoprotein C-II gene. J Biol Chem.l985;260:15211-15221.
    
    [5]. Zannis VI, Kardassis D, Cardot P, et al. Molecular biology of the human Apolipoprotein genes: gene regulation and structure/function relationship. Curr Opin Lipidol. 1992;3:96-113.
    
    [6]. Simonet WS, Bucay N, Lauer SJ, et al. A far-downstream hepatocyte-specific control region directs expression of the linked human Apolipoprotein E and C-I genes in transgenic mice. J Biol Chem. 1993; 268:8221-8229.
    
    [7]. Allan CM, Taylor S, Taylor JM. Two hepatic enhancers, HCR.1 and HCR.2, coordinate the liver expression of the entire human Apolipoprotein E/C-I/C-IV/CII gene cluster. J Biol Chem. 1997;272:29113-29119.
    
    [8]. Elshourbagy NA Walker DN, Boguski MS, Get al. The nucleotide and derived amino acid sequence of human ApolipoproteinA-IV mRNA and the close linkage of its gene to the genes of Apolipoproteins A-I and C-III. J Biol Chem. 1986;261:1998-2002.
    
    [9]. Vergnes L, Taniguchi T, Omori K, et al. The Apolipoprotein A-I/C-III/A-IV gene cluster: ApoC-III and ApoA-IV expression is regulated by two common enhancers. Biochim Biophys Acta. 1997;1348:299-310.
    
    [10]. Walsh AM, Azrolan N, Wang K, et al. Intestinal expression of the human ApoA-I gene in transgenic mice is controlled by a DNA region 39 to the gene in the promoter of the adjacent convergently transcribed ApoC-III gene. J Lipid Res. 1993;34:617-623.
    [11]. Allan CM, Walker D, Segrest JP, et al. Identification and characterization of a new human gene (AP0C4) in the Apolipoprotein E, C-I,and C-II gene locus. Genomics. 1995;28:291-300.
    
    [12]. Kardassis D, Roussou A, Papakosta P,et al. Synergism between nuclear receptors bound to specific hormone response elements of the hepatic control region-1 and the proximal Apolipoprotein C-II promoter mediate Apolipoprotein C-II gene regulation by bile acids and retinoids. 2003;372:291-304.
    
    [13].Zhang, L-H., L. Kotite, et al.Identification, characterization, cloning, and expression of ApoC-IV, a novel sialoglycoprotein of rabbit plasma lipoproteins. J. Biol. Chem. 1996 ;271: 1776-1783
    
    [14]. Kotite L, Zhang LH, Yu Z, et al. Human ApoC-IV: isolation, characterization, and immunochemical quantification in plasma and plasma lipoproteins. J Lipid Res. 2003 ;44:1387-94.
    
    [15]. Kamboh, M. I., E. Aston, et al. DNA sequence variation in human Apolipoprotein C4 gene and its effect on plasma lipid profile. Atherosclerosis. 2000;152: 193-201.
    
    [16]. Dumon MF, Clerc M. Preliminary report on a case of Apolipoprotein CI and CII deficiency. Clin Chim Acta. 1986;157:239 -248.
    
    [17]. Glomset JA, Janssen ET, Kennedy R, et al. Role of plasma lecithin:cholesterol acyltransferase in the metabolism of high density lipoproteins. J Lipid Res. 1966;7:638-648.
    
    [18]. Groenendijk M, Cantor RM, Blom NH, et al. Association of plasma lipids and Apolipoproteins with the insulin response element in the ApoC-III promoter region in familial combined hyperlipidemia. J Lipid Res 1999; 40:1036-1044
    
    [19]. Fojo SS, Brewer HB Jr. Hypertriglyceridaemia due to genetic defects in lipoprotein lipase and Apolipoprotein C-II. J Intern Med. 1992;231:669-677.
    
    [20], Parrot CL, Alsayed N, Rebourcet R, et al. ApoC-IIParis2: a premature termination mutation in the signal peptide of ApoC-II resulting in familial chylomicronemia syndrome. J Lipid Res. 1992;33:361-367.
    
    [21]. Okubo M, Hasegawa Y, Aoyama Y, et al. A G11 to C mutation in a donor splice site of intron 2 in the Apolipoprotein (Apo) C-II gene in a patient with Apo C-II deficiency: a possible interaction between Apo C-II deficiency and Apo E4 in a severely hypertriglyceridemic patient. Atherosclerosis. 1997;130:153-160.
    
    [22]. Fojo SS, Gennes JL, Chapman J, et al. An initiation codon mutation in the ApoC-II gene (ApoC-IIParis) of a patient with a deficiency of Apolipoprotein C-II. J Biol Chem. 1989;264:20839 -20842.
    
    [23]. Inadera H, Hibino A, Kobayashi J, et al. A missense mutation (Trp 263Arg) in exon 3 of the Apolipoprotein CII gene in a patient with Apolipoprotein CII deficiency (Apo CII-Wakayama). Biochem Biophys Res Commun. 1993;193:1174-1183.
    
    [24]. Zysow BR, Pullinger CR, Hennessy LK, et al. The Apolipoprotein C-II variant ApoC-IILys193Thr is not associated with dyslipidemia in affected kindred. Clin Genet. 1994;45:292-297.
    
    [25]. Wilson CJ, Oliva CP, Maggi F,et al. Apolipoprotein C-II deficiency presenting as a lipid encephalopathy in infancy. Ann Neurol. 2003;53:807-10.
    
    [26]. Le N-A, Gibson JC, Ginsberg HN. Independent regulation of plasma Apolipoprotein C-II and C-III concentrations in very low density and high density lipoproteins: implications for the regulation of the catabolism of these lipoproteins. J Lipid Res. 1988;29:669-677.
    
    [27]. Jabs H-U, Assmann G. Characterization of an Apolipoprotein C-III mutant by high performance liquid chromatography and time-of-flight secondary ion mass spectrometry. J Chromatogr. 1987;414:323-333.
    
    [28]. Maeda H, Hashimoto R, Ogura T,et al. Molecula rcloning of a human ApoC-III variant: Thr 743Ala 74 mutation prevents O-glycosylation. J Lipid Res. 1987;28:1405-1409.
    
    [29]. von Eckardstein A, Holz H, Sandkamp M, et al. Apolipoprotein C-III(1ys58 3 Glu): identification of an Apolipoprotein C-III variant in a family with hyperalphalipoproteinemia.J Clin Invest. 1991;87:1724 -1731.
    
    [30]. Liu H, Labeur C, Xu CF, et al. Characterization of the lipid-binding properties and lipoprotein lipase inhibition of a novel Apolipoprotein C-III variant Ala23Thr. J Lipid Res. 2000 ;41:1760-71.
    
    [31]. Ginsberg HN, Le NA, Goldberg IJ, et al. Apolipoprotein B metabolism in subjects with deficiency of Apolipoproteins CIII and AI: evidence that Apolipoprotein CIII inhibits catabolism of triglyceride-rich lipoproteins by lipoprotein lipase in vivo. J Clin Invest. 1986;78:1287-1295.
    
    [32]. Takahashi M, Saibara T, Nemoto Y,et al. A novel type hypertriglyceridemia observed in FLS mice. Lipids. 2003 ;38:687-92.
    
    [33]. Klasen EC, Talmud PJ, Havekes L, et al. A common restriction fragment length polymorphism of the human Apolipoprotein E gene and its relationship to type III hyperlipoproteinemia. Hum Genet. 1987;75: 244-247.
    
    [34]. Smit M, van der Kooij-Meijs E, Woudt LP,et al.Exact localization of the familial dysbetalipoproteinemia associated HpaI restriction site in the promoter region of the AP0C1 gene. Biochem Biophys Res Commun. 1988;152:1282-1288.
    
    [35]. Xu Y, Leff T, Shachter N. A common polymorphism in the ApoC1 promoter significantly increases ApoC1 gene expression. Circulation. 1996; 94(suppl I): 1-274.
    
    [36] Arai H, Yamamoto A, Matsuzawa Y, et al. Polymorphisms in four genes related to triglyceride and HDL-cholesterol levels in the general Japanese population in 2000. J Atheroscler Thromb, 2005;12:240-50.
    
    [37]. Ordovas JM, Civeira F, Genest J Jr,et al. Restriction fragment length polymorphisms of the Apolipoprotein A-I, C-III, A-IV gene locus: relationships with lipids,Apolipoproteins and premature coronary artery disease. Atherosclerosis. 1991;87:75- 86.
    
    [38]. Shoulders CC, Ball MJ, Baralle FE. Variation of the ApoA1/CIII/AIVgene complex: its association with hyperlipidaemia. Atherosclerosis. 1989;80:111—118.
    
    [39]. Hong SH, Park WH, Lee CC, et al. Association between genetic variations of ApoAI-CIII-AIV cluster gene and hypertriglyceridemic subjects. Clin Chem. 1997;43:13-17.
    
    [40]. Helio T, Paliotie A, Sane T, Tikkanen MJ, Kontula K. No evidence for linkage between familial hypertriglyceridemia and Apolipoprotein B, Apolipoprotein C-III or lipoprotein lipase genes. Hum Genet. 1994;94: 271-278.
    
    [41]. Paul-Hayase H, Rosseneu M, Robinson D, Biervliet JPV, Deslypere JP,Humphries SE. Polymorphisms in the Apolipoprotein A-I/C-III/AIV gene cluster: detection of genetic variation determining plasma ApoA-I, ApoC-III and ApoA-IV concentrations. Hum Genet. 1992;88:439-446.
    
    [42]. Shoulders CC, Harry PJ, Lagrost L, et al. Variation at the ApoA1/CIII/AIV gene complex is associated with elevated plasma levels of ApoCIII. Atherosclerosis. 1991;87:239 -247.
    
    [43]. Li GP, Wang JY, Yan SK, et al. Genetic effect of two polymorphisms in the Apolipoprotein A5 gene and Apolipoprotein C3 gene on serum lipids and lipoproteins levels in a Chinese population.. Clin Genet. 2004 ;65:470-6.
    
    [44]. Kee F, Amouyel P, Fumeron F, et al. Lack of association between genetic variations of Apo A-I-C-III-A-IV gene cluster and myocardial infarction in a sample of European male: ECTIM study. Atherosclerosis 1999; 145:187-195.
    
    [45]. Dallinga-Thie GM, van Linde-Sibenius Trip M, Rotter JI, et al. Complex genetic contribution of the Apo AI-CIII-AIV gene cluster to familial combined hyperlipidemia. Identification of different susceptibility haplotypes. J Clin Invest 1997; 99:953-961.
    
    [46]. Sijbrands EJG, Hoffer MJV, Meinders AE, et al. Severe hyperlipidemia in Apolipoproteins E2 homozygotes due to a combined effect of hyperinsulinemia and an SstI polymorphism. Arterioscler Thromb Vase Biol 1999; 19:2722-2729.
    
    [47]. Woo SK, Kang HS. Apolipoprotein C-III SstI genotypes modulate exercise-induced hypotriglyceridemia. Med Sci Sports Exerc. 2004;36:955-9
    
    [48].Garenc C, Couillard C, Laflamme N, et al. Effect of the APOC3 Sst I SNP on fasting triglyceride levels in men heterozygous for the LPL P207L deficiency Eur J Hum Genet 2005 ;13:1159-65
    
    [49]. Xu CF, Talmud P, Humphries S. Three new polymorphisms of the ApoAI-CIII-AIV gene cluster. Mol Cell Probes. 1994;8:331-332.
    
    [50]. Dallongeville J, Meirhaeghe A, Cottel D, et al. Polymorphisms in the insulin response element of APOC-III gene promoter influence the correlation between insulin and triglycerides or triglyceride-rich lipoproteins in humans. Int J Obes Relat Metab Disord. 2001;25:1012-7
    
    [51]. Waterworth DM, Hubacek JA, Pitha J,et al. Plasma levels of remnant particles are determined in part by variation in the APOC3 gene insulin response element and the APOCI-APOE cluster. J Lipid Res 2000; 41:1103-1109
    
    [52] Waterworth DM, Ribalta J, Nicaud V, et al., on behalf of the EARS Group. ApoCIII gene variants modulate postprandial response to both glucose and fat tolerance tests. Circulation 1999; 99:1872-1877
    
    [53]..Esterbauer H, Hell E, Krempler F, et al. Allele-specific differences in Apolipoproteins C-III mRNA expression in human liver. Clin Chem 1999; 45:331-339.
    
    [54] de Franca E, Alves JG, Hutz MH. APOA1/C3/A4 gene cluster variability and lipid levels in Brazilian children. Braz J Med Biol Res. 2005 ;38:535-41.
    
    [55]. Zheng Q, Dammerman M, Takada Y,et al. An Apolipoprotein CHI marker associated with hypertriglyceridemia in Caucasians also confers increased risk in a west Japanese population.Hum Genet. 1994;95:371—375.
    [56]. Mar R, Pajukanta P, Allayee H, et al. Association of the APOLIPOPROTEIN A1/C3/A4/A5 gene cluster with triglyceride levels and LDL particle size in familial combined hyperlipidemia. Circ Res. 2004 ;94:993-9.
    
    [57]. Kessling AM, Berg J, Mockleby E, et al. DNA polymorphisms around the Apo AI gene in normal and hyperlipidaemic individuals selected for a twin study. Clin Genet. 1986;29:485- 490.
    
    [58]. Ordovas JM, Schaefer EJ, Salem D,et al. Apolipoprotein A-I gene polymorphism associated with premature coronary artery disease and familial hypoalphalipoproteinemia.N Engl J Med. 1986;314:671-677.
    
    [59]. Wojciechowski AP, Farall M, Cullen P, et al.Familial combined hyperlipidemia linked to the Apolipoprotein A-I/CIII/A-IV gene cluster on chromosome 11q23-q24. Nature. 1991;349:161-164.
    
    [60]. Marcil M, Boucher B, Gagne E,et al..Lack of association of the Apolipoprotein A-I-CIII-A-IV gene XmnI and SstI polymorphisms and of the lipoprotein lipase gene mutations in familial combined hyperlipoproteinemia in French Canadian subjects. J Lipid Res. 1996;37:309 -319.
    
    [61]. Venkatesan S, Cullen P, Pacy P, et al. Stable isotopes show a direct relation between VLDL ApoB overproduction and serum triglyceride levels and indicate a metabolically and biochemically coherent basis for familial combined hyperlipidemia. Arterioscler Thromb. 1993;13:1110 —1118.
    
    [62]. Dallinga-Thie GM, Bu X-D, van Linde-Sibenius Trip M, et al. Apolipoprotein A-I/C-III/A-IV gene cluster in familial combined hyperlipidemia: effects on LDL-cholesterol and Apolipoproteins B and C-III. J Lipid Res. 1996;37:136-147.
    
    [63]. Dallinga-Thie GM, van Linde-Sibenius Trip M, Rotter JI, et al. Complex genetic contribution of the Apo AI-CIII-AIV gene cluster to familial combined hyperlipidemia.J Clin Invest. 1997;99:953-961.
    
    [64]. Ribalta J, La Ville AE, Vallve JC, et al.A variation in the Apolipoprotein C-III gene is associated with an increased number of circulating VLDL and IDL particles in familial combined hyperlipidemia. J Lipid Res. 1997;38:1061-1069.
    
    [65]. Coon H, Myers RH, Borecki IB, et al. Replication of linkage of familial combined hyperlipidemia to chromosome 1q with additional heterogeneous effect of Apolipoprotein A-I/C-III/A-IV locus. The NHLBI Family Heart Study. Arterioscler Thromb Vase Biol. 2000;20:2275-80.
    [66]. Curry MD, McConathy WJ, Fesmire JD, et al. Quantitative determination of Apolipoproteins C-I and C-II in human plasma by separate electroimmunoassays. ClinChem. 1981;27:543-548.
    
    [67]. Bouchard C, Dubuc G, Davignon J, et al. Post-transcriptional regulation of ApoC-I synthesis and secretion in human HepG2 cells. Atherosclerosis. 2005;178:257-64.
    
    [68]. Wassef H, Bernier L, Davignon J, et al. Synthesis and secretion of ApoC-I and ApoE during maturation of human SW872 liposarcoma cells. J Nutr. 2004;134:2935-41
    
    [69]. Cheng Q, Blackett P, Jackson KW,et al. C-terminal domain of Apolipoprotein CII as both activator and competitive inhibitor of lipoprotein lipase. Biochem J. 1990;269:403-407.
    
    [70]. Nestel PJ, Fidge NH. Apoprotein C metabolism in man. Adv Lipid Res. 1982;19:55-83.
    
    [71].Herbert PN, Assmann G, Gotto AM Jr, et al. Disorders of the lipoprotein and lipid metabolism. In: Stanbury JB, Wyngaarden JB,Frederickson DS, Goldstein JL, Brown MS, eds. The Metabolic Basis of Inherited Diseases. 5th ed. New-York, NY: McGraw-Hill; 1983:589-651.
    
    [72]. Trieu VN, McConathy WJ. APOC-III-b-Galactosidase hybrid distinguishes between VLDL and LDL phospholipids. Biochem Biophys Res Commun. 1995;211:754-760.
    
    [73], Lins L, Flore C, Chapelle L, et al. Lipid-interacting properties of the N-terminal domain of human Apolipoprotein C-III. Protein Eng. 2002 ;15:513-20.
    
    [74]. Mauger JF, Couture P, Bergeron N, et al. Apolipoprotein C-III isoforms: kinetics and relative implication in lipid metabolism. J Lipid Res. 2006 ;22:
    
    [75]. Zhang L-H, Kotite L, Havel RJ. Identification, characterization, cloning and expression of Apolipoprotein C-IV, a novel sialoglycoprotein of rabbit plasma lipoproteins. J Biol Chem. 1996;271:1776-1783.
    
    [76]. Oswald B, Quarfordt S. Effect of ApoE on triglyceride emulsion interaction with hepatocytes and hepatoma G2 cells. J Lipid Res. 1987;28:798-809.
    
    [77]. Sehayek E, Eisenberg S. Mechanisms of inhibition by Apolipoprotein C of Apolipoprotein E-dependent cellular metabolism of human triglyceride-rich lipoproteins through the low density lipoprotein receptor pathway. J Biol Chem. 1991;266:18259-18267.
    [78]. Clavey V, Lestavel-Delattre S, Copin C, et al. Modulation of lipoprotein B binding to the LDL receptor by exogenous lipids and Apolipoproteins CI, CII, CII and E. Arterioscler Thromb Vase Biol.1995; 15:963-971.
    
    [79]. Jong MC, Dahlmans VEH, van Gorp PJJ, et al. The binding of VLDL to the VLDL receptor is inhibited by an excess of ApoC1. Circulation. 1996; 94(suppl I):I-698.
    
    [80]. Mann CJ, Troussard AA, Yen FT, et al. Inhibitory effects of specific Apolipoprotein C-III isoforms on the binding of triglyceride-rich lipoproteins to the lipolysis-stimulated receptor. J Biol Chem. 1997;272:31348-31354.
    
    [81]. Goldberg IJ, Scheraldi CA, Yacaoub LK, et al. Lipoprotein ApoC-II activation of lipoprotein lipase. J Biol Chem. 1990; 265: 4266-4272.
    
    [82]. McIlhargey TL, Yang Y, Wong H, et al.Identification of a lipoprotein lipase cofactor-binding site by chemical cross-linking and transfer of Apolipoprotein C-II-responsive lipolysis from lipoprotein lipase to hepatic lipaseJ Biol Chem. 2003;278:23027-35.
    
    [83]. Olivecrona G, Beisiegel U. Lipid binding of Apolipoprotein CII is required for stimulation of lipoprotein lipase activity against Apolipoprotein CII-deficient chylomicrons. Arterioscler Thromb Vase Biol. 1997;17:1545-1549.
    
    [84]. Shen Y, Lookene A, Nilsson S,et al. Functional analyses of human Apolipoprotein CII by site-directed mutagenesis: identification of residues important for activation of lipoprotein lipase. J Biol Chem. 2002;277:4334-42.
    
    [85]. Zdunek J, Martinez GV, Schleucher J,et al. Global structure and dynamics of human Apolipoprotein CII in complex with micelles: evidence for increased mobility of the helix involved in the activation of lipoprotein lipase. Biochemistry. 2003 ;42:1872-89.
    
    [86]. Wang C, McConathy WJ, Kloer HJ, et al. Modulation of lipoprotein lipase activity by Apolipoproteins: effect of ApolipoproteinC-III. J Clin Invest. 1985; 75:384 -390.
    
    [87]. McConathy WJ, Gesquiere JC, Bass H, et al. Inhibition of lipoprotein lipase activity by synthetic peptides of Apolipoprotein C-III. J Lipid Res. 1992;33:995-1003.
    
    [88]. Lambert DA, Smith LC, Pownall H, et al. Hydrolysis of phospholipids by purified milk lipoprotein lipase. Effect of Apoprotein CII, CIII, A and E, and synthetic fragments. Clin Chim Acta 2000; 291:19-33.
    [89]. Kim SY, Park SM, Lee ST. Apolipoprotein C-II is a novel substrate for matrix metalloproteinases. Biochem Biophys Res Commun. 2006 ;339:47-54. Epub 2005 Nov 8.
    
    [90]. Kinnunen PKJ, Ehnholm C. Effect of serum and C Apoproteins from very low density lipoproteins on human postheparin plasma hepatic lipase. Fed Eur Biochem Soc Lett. 1976;65:354 -357.
    
    [91]. Landis BA, Rotolo FS, Meyers WC,et al. Influence of Apolipoprotein E on soluble and heparin immobilized hepatic lipase. Am J Physiol. 1987;252(Gastrointest: Liver Physiol 15):G805-G810.
    
    [92]. Steyrer E, Kostner GM. Activation of lecithin-cholesterol acyltransferase by Apolipoprotein E: comparison of proteoliposomes containing Apolipoprotein D, A-I or C-I. Biochim Biophys Acta. 1988;958:484-491.
    
    [93]. Subbaiah PV, Albers JJ, Chen CH, et al. Low density lipoprotein-activated lysolecithin acylation by human plasma lecithincholesterol acyltransferase. J Biol Chem. 1980;255:9275-9280.
    
    [94]. Liu M, Subbaiah PV. Activation of plasma lysolecithin acyltransferase reaction by Apolipoproteins A-I, C-I and E. Biochim Biophys Acta. 1993;1168:144 -152.
    
    [95]. Huard K, Bourgeois P, Rhainds D, et al. Apolipoproteins C-II and C-III inhibit selective uptake of low- and high-density lipoprotein cholesteryl esters in HepG2 cellsInt J Biochem Cell Biol. 2005 ;37:1308-18
    
    [96]. Kushwaha RS, Hasan SQ, McGill HC Jr, et al. Characterization of cholesteryl ester transfer protein inhibitor from plasma of baboons (Papio sp). J Lipid Res. 1993;34:1288-1297.
    
    [97], Gautier T, Masson D, Jong MC,et al. Apolipoprotein CI deficiency markedly augments plasma lipoprotein changes mediated by human cholesteryl ester transfer protein (CETP) in CETP transgenic/ApoCI-knocked out mice. J Biol Chem. 2002;277:31354-63.
    
    [98]. Dumont L, Gautier T, de Barros JP, et al. Molecular mechanism of the blockade of plasma cholesteryl ester transfer protein by its physiological inhibitor Apolipoprotein CI. J Biol Chem.2005 ;280:38108-16.
    
    [99]. Gerber Y, Goldbourt U, Cohen H, et al. Association between serum Apolipoprotein C(II) concentration and coronary heart disease. Prev Med. 2002;3 5:42-7.
    
    [100]. Kolmakova A, Kwiterovich P, Virgil D, et al. Apolipoprotein C-I induces Apoptosis in human aortic smooth muscle cells via recruiting neutral sphingomyelinase. Arterioscler Thromb Vase Biol. 2004 ;24:264-9.
    
    [101]. Kawakami A, Aikawa M, Libby P, et al. Apolipoprotein CIII in Apolipoprotein B lipoproteins enhances the adhesion of human monocytic cells to endothelial cells. Circulation. 2006 ; 113:691-700.
    
    [102]. Islam MS, Raitakari OT, Juonala M, et al. Apolipoprotein A-I/C-III/A-IV SstI and Apolipoprotein B XbaI polymorphisms and their association with carotid artery intima-media thickness in the Finnish population. The Cardiovascular Risk in Young Finns Study. Atherosclerosis. 2005 ;180:79-86.
    
    [103]. Olivieri O, Stranieri C, Bassi A,et al. ApoC-III gene polymorphisms and risk of coronary artery disease. J Lipid Res. 2002 ;43:1450-7.
    
    [104]. Ruiz-Narvaez EA, Yang Y, Nakanishi Y, et al. APOC3/A5 haplotypes, lipid levels, and risk of myocardial infarction in the Central Valley of Costa Rica. J Lipid Res. 2005 ;46:2605-13.
    
    [105], Relvas WG, Izar MC, Helfenstein T,et al. Relationship between gene polymorphisms and prevalence of myocardial infarction among diabetic and non-diabetic subjects. Atherosclerosis. 2005;178:101-5.
    
    [106]. Chhabra S, Narang R, Lakshmy R, et al. Apolipoprotein C3 SstI polymorphism in the risk assessment of CAD. Mol Cell Biochem. 2004;259:59-66.
    
    [107]. Moberly JB, Attman P-O, Samuelsson O, et al. Apolipoprotein C-III, hypertriglyceridemia and triglyceride-rich lipoproteins in uremia. Miner Electrolyte Metab 1999; 25:258-262.
    
    [108]. Gervaise N, Garrigue MA, Lasfargues G, et al. Triglycerides, Apo C3 and Lp B:C3 and cardiovascular risk in type II diabetes. Diabetologia 2000; 43:703-708.
    
    [109]. Sacks FM, Alaupovic P, Moye LA, et al. VLDL, Apolipoproteins B, CIII, and E, and risk of recurrent coronary events in the Cholesterol and Recurrent Events (CARE) trial. Circulation 2000; 102:1886-1892.
    
    [110] Tiret L, Gerdes C, Murphy MJ, et al, on behalf of the EARS Group. Postprandial response to a fat tolerance test in young adults with a paternal history of premature coronary heart disease-the EARS II study. Eur J Clin Invest 2000; 30:578-585.
    
    [111]. Batal R, Tremblay M, Barrett PHR, et al. Plasma kinetics of ApoC-III and ApoE in normolipidemic and hypertriglyceridemic subjects. J Lipid Res 2000; 41:706-718.
    
    [112]. Kwiterovich PO Jr, Cockrill SL, Virgil DG,et al. A large high-density lipoprotein enriched in Apolipoprotein C-I: a novel biochemical marker in infants of lower birth weight and younger gestational age. JAMA. 2005; 293: 1891-9.
    
    [113]. Araki S, Okazaki M, Goto S. Impaired lipid metabolism in aged mice as revealed by fasting-induced expression of Apolipoprotein mRNAs in the liver and changes in serum lipids. Gerontology. 2004; 50: 206-15.
    
    [114]. Onat A, Hergenc G, Sansoy V, et al. Apolipoprotein C-III, a strong discriminant of coronary risk in men and a determinant of the metabolic syndrome in both genders. Atherosclerosis. 2003; 168: 81-9
    
    [115]. Waterworth DM, Talmud PJ,Luan J, et al. Variants in the APOC3 promoter insulin responsive element modulate insulin secretion and lipids in middle-aged men. Biochim Biophys Acta 2003; 1637: 200-206.
    
    [116]. Couillard C, Vohl MC, Engert JC, et al. Effect of ApoC-III gene polymorphisms on the lipoprotein-lipid profile of viscerally obese men. J Lipid Res 2003; 44:986-993.
    
    [117]. Klein RL, McHenry MB, Lok KH, et al. Apolipoprotein C-III protein concentrations and gene polymorphisms in Type 1 diabetes: associations with microvascular disease complications in the DCCT/EDIC cohort. J Diabetes Complications. 2005; 19: 18-25.
    
    [118]. Klein RL, McHenry MB, Lok KH, et al. Apolipoprotein C-III protein concentrations and gene polymorphisms in type 1 diabetes: associations with lipoprotein subclasses. Metabolism. 2004; 53: 1296-304.
    
    [119]. Shi J, Zhang S, Ma C, et al. Association between Apolipoprotein CI HpaI polymorphism and sporadic Alzheimer's disease in Chinese. Acta Neurol Scand. 2004,109:140-5.
    
    [120]. Ki CS, Na DL, Kim DK,et al. Genetic association of an Apolipoprotein C-I (APOC1) gene polymorphism with late-onset Alzheimer's disease. Neurosci Lett. 2002;319:75-8.
    
    [121]. Petit-Turcotte C, Stohl SM, Beffert U, et al. Apolipoprotein C-I expression in the brain in Alzheimer's disease. Neurobiol Dis. 2001 ;8:953-63.
    
    [122]. Hatters, D. M., C. E. MacPhee, L. J. Lawrence, et al.Human Apolipoprotein C-II forms twisted amyloid ribbons and closed loops.Biochemistry. 2000; 39: 8276-8283.
    
    [123]. Medeiros, L. A., T. Khan, et al.Fibrillar amyloid protein present inatheroma activates CD36 signal transduction. J. Biol. Chem. 2004;279: 10643-10648.
    
    [124]. Wilson LM, Pham CL, Jenkins AJ,et al. High density lipoproteins bind Abeta and Apolipoprotein C-II amyloid fibrils. J Lipid Res. 2006 23;
    
    [125]. Clavey V, Copi C, Mariotte MC, et al. Cell culture conditions determine Apolipoproteins CIII secretion and regulation by fibrates in human hepatoma HepG2 cells. Cell Physiol Biochem 1999; 9:139-149. Describes effects of fibrates on ApoC-III expression in a cell culture system, while documenting its complexities.
    
    [126]. Hughes TA, Stentz F, Gettys T, et al.Combining beta-adrenergic and peroxisome proliferator-activated receptor gamma stimulation improves lipoprotein composition in healthy moderately obese subjects. Metabolism. 2006 ;55:26-34.
    
    [127]. Dallinga-Thie GM, Berk-Planken II, Bootsma AH, et al. Atorvastatin decreases Apolipoprotein C-III in Apolipoprotein B-containing lipoprotein and HDL in type 2 diabetes: a potential mechanism to lower plasma triglycerides. Diabetes Care.2004 ;27:1358-64.
    
    [128]. Lemieux I, Salomon H, Despres JP. Contribution of Apo CIII reduction to the greater effect of 12-week micronized fenofibrate than atorvastatin therapy on triglyceride levels and LDL size in dyslipidemic patients. Ann Med.2003;35:442-8.
    
    [129]. Arehart E, Giasson G, Walsh MT, et al. Dioxin alters the human low-density and very low-density lipoprotein structure with evidence for specific quenching of Trp-48 in Apolipoprotein C-II. Biochemistry. 2004 6;43:8503-9.
    
    [130]. Claudel T, Inoue Y, Barbier O, et al. Farnesoid X receptor agonists suppress hepatic Apolipoprotein CIII expression. Gastroenterology. 2003;125:544-55.
    
    [131]. Chiuve SE, Martin LA, Campos H, et al. Effect of the combination of methyltestosterone and esterified estrogens compared with esterified estrogens alone on Apolipoprotein CIII and other Apolipoproteins in very low density, low density, and high density lipoproteins in surgically postmenopausal women. J Clin Endocrinol Metab.2004;89:2207-13.
    
    [132]. Lee H, Gonzalez FJ, Yoon M. Ginsenoside Rf, a component of ginseng, regulates lipoprotein metabolism through peroxisome proliferat Synergism between nuclear receptors boundor-activated receptor alpha. Biochem Biophys Res Commun. 2006;339:196-203.
    [133]. Del Bas JM, Fernandez-Larrea J, Blay M,et al. Grape seed procyanidins improve atherosclerotic risk index and induce liver CYP7A1 and SHP expression in healthy rats. FASEB J. 2005; 19:479-81.
    
    [134]. Wood RJ, Volek JS, Liu Y, et al.Carbohydrate restriction alters lipoprotein metabolism by modifying VLDL, LDL, and HDL subfraction distribution and size in overweight men. JNutr.2006; 136:384-9.
    
    [135]. Araki S, Goto S. Dietary restriction in aged mice can partially restore impaired metabolism of Apolipoprotein A-IV and C-III. Biogerontology. 2004;5:445-50.
    
    [136]. Brown S, Ordovas JM, Campos H. Interaction between the APOC3 gene promoter polymorphisms, saturated fat intake and plasma lipoproteins. Atherosclerosis. 2003 ;170:307-13.
    
    [137]. Grinspoon S, Carr A. Cardiovascular risk and body-fat abnormalities in HIV-infected adults. N Engl J Med. 2005;352:48-62
    
    [138]. Fontas E, van Leth F, Sabin CA, et al. Lipid profiles in HIV-infected patients receiving combination antiretroviral therapy: Are different antiretroviral drugs associated with different lipid profiles? J Infect Dis. 2004;189:1056-1074.
    
    [139]. Rimland D, Guest JL, Hernandez I, et al.Antiretroviral therapy in HIV-positive men is associated with increased Apolipoprotein CIII in triglyceride-rich lipoproteins.. HIV Med. 2005;6:326-33.
    
    [140]. Tarr PE, Taffe P, Bleiber G, et al. Modeling the influence of APOC3, APOE, and TNF polymorphisms on the risk of antiretroviral therapy-associated lipid disorders. J Infect Dis. 2005 ;191:1419-26.
    
    [141]. Fauvel J, Bonnet E, Ruidavets JB, et al. An interaction between Apo C-III variants and protease inhibitors contributes to high triglyceride/low HDL levels in treated HIV patients. AIDS. 2001;15:2397-2406.
    
    [142]. Tarr PE, Taffe P, Bleiber G, et al. Modeling the influence of APOC3, APOE, and TNF polymorphisms on the risk of antiretroviral therapy-associated lipid disorders. J Infect Dis. 2005;191:1419-1426.
    
    [143]. Foulkes AS, Wohl DA, Frank I, et al. Associations among Race/Ethnicity, ApoC-III Genotypes, and Lipids in HIV-1-Infected Individuals on Antiretroviral Therapy. PLoS Med. 2006 24;3:e52
    
    [144]. Jong MC, Dahlmans VEH, van Gorp PJJ, et al. Both lipolysis and hepatic uptake of VLDL are impaired in transgenic mice coexpressing human Apolipoprotein :E~*3Leiden and human Apolipoprotein C1. Arterioscler Thromb Vase Biol. 1996;16:934-940.
    
    [145]. Shachter NS, Ebara T, Ramakrishnan R, et al. Combined hyperlipidemia in transgenic mice overexpressing human Apolipoprotein Cl. J Clin Invest. 1996;98:846-855.
    
    [146]. Jong MC, Dahlmans VEH, van Gorp PJJ, et al. In the absence of the low density lipoprotein receptor, human Apolipoprotein Cl overexpression in transgenic mice inhibits the hepatic uptake of very low density lipoproteins via a receptor-associated protein-sensitive pathway. J Clin Invest. 1996;98:2259 -2267.
    
    [147]. Conde-Knape K, Bensadoun A, Sobel JH, et al. Overexpression of ApoC-I in ApoE-null mice: severe hypertriglyceridemia due to inhibition of hepatic lipase. J Lipid Res. 2002;43:2136-45.
    
    [148]. Koopmans SJ, Jong MC, Que I, et al. Hyperlipidaemia is associated with increased insulin-mediated glucose metabolism, reduced fatty acid metabolism and normal blood pressure in transgenic mice overexpressing human Apolipoprotein C1.Diabetologia. 2001;44:437-43.
    
    [149]. Muurling M, van den Hoek AM, Mensink RP, et al. Overexpression of AP0C1 in obob mice leads to hepatic steatosis and severe hepatic insulin resistance.J LipidRes. 2004;45:9-16.
    
    [150]. Gautier T, Masson D, Jong MC, et al. Apolipoprotein CI overexpression is not a relevant strategy to block cholesteryl ester transfer protein (CETP) activity in CETP transgenic mice. Biochem J. 2005 ;385:189-95.
    
    [151]. Vaisman BL, Klein H-G, Rouis M, et al. Overexpression of human lecithin:cholesterol acyltransferase leads to hyperalphalipoproteinemia in transgenic mice. J BiolChem. 1995;270:12269-12275.
    
    [152]. Mehlum A, Staels B, Duverger N, et al. Tissuespecific expression of the human gene for lecithin:cholesterol acyl transferase alters blood lipids, lipoproteins and lipases towards a less atherogenic profile. Eur J Biochem. 1995;230:567-575.
    
    [153]. Francone OL, Gong EL, Ng DS, et al. Expression of human lecithin-cholesterol acyltransferase in transgenic mice. J ClinInvest. 1995;96:1440 -1448.
    
    [154]. Jong MC, Gijbels MJJ, Dahlmans VEH, et a. Hyperlipidemia and cutaneous abnormalities in transgenic mice overexpressing human Apolipoprotein C1. J Clin Invest. 1998; 101:145-152.
    [155]. van Ree JH, Hofker MH, van den Broek WJAA, et al. Increased response to cholesterol feeding in Apolipoprotein C1-deficient mice. Biochem J.1995;305:905-911.
    
    [156]. Jong MC, van Ree JH, Dahlmans VEH, et al. Reduced very-low-density lipoprotein fractional catabolic rate in Apolipoprotein C1-deficient mice. Biochem J. 1997;321:445-450.
    
    [157]. Shachter NS, Hayek T, Leff T, et al. Overexpression of Apolipoprotein C-II causes hypertriglyceridemia in transgenic mice. J Clin Invest. 1994;93:1683-1690.
    
    [158]. Ito Y, Azrolan N, O'Connell A, et al. Hypertriglyceridemia as a result of human Apo CIII gene expression in transgenic mice. Science. 1990;249:790 -793.
    
    [159]. de Silva HV, Lauer SJ, Wang J, et al. Overexpression of human Apolipoprotein C-III in transgenic mice results in an accumulation of Apolipoprotein B48 remnants that is corrected by excess Apolipoprotein E. J Biol Chem. 1994;269:2324-2335.
    
    [160]. Aalto-Seta"la" K, Weinstock PH, Bisgaier CL,et al. Further characterization of the metabolic properties of triglyceride-rich lipoproteins from human and mouse ApoC-III transgenic mice.J Lipid Res. 1996;37:1802-1811.
    
    [161]. Aalto-Seta'la" K, Fisher EA, Chen X, et al. Mechanism of hypertriglyceridemia in human Apolipoprotein (Apo) CIII transgenic mice: diminished very low density lipoprotein fractional catabolic rate associated with increased ApoCIII and reduced ApoE on the particles.J Clin Invest. 1992;90:1889-1900.
    
    [162]. Ebara T, Ramakrishnan R, Steiner G, et al. Chylomicronemia due to Apolipoprotein CIII overexpression in ApolipoproteinE-nullmice: ApolipoproteinCIII-induced hypertriglyceridemia is not mediated by effects on Apolipoprotein E. J Clin Invest. 1997;99:2672-2681
    
    [163]. Jong MC, Rensen PC, Dahlmans VE, et al. Apolipoprotein C-III deficiency accelerates triglyceride hydrolysis by lipoprotein lipase in wild-type and ApoE knockout mice. J Lipid Res. 2001 ;42:1578-85.
    
    [164]. Gerritsen G, Rensen PC, Kypreos KE, et al. ApoC-III deficiency prevents hyperlipidemia induced by ApoE overexpression. J Lipid Res. 2005 ;46:1466-73.
    
    [165]. Duivenvoorden I, Teusink B, Rensen PC, et al. Apolipoprotein C3 deficiency results in diet-induced obesity and aggravated insulin resistance in mice. Diabetes. 2005;54:664-71.
    
    [166]. Maeda N, Li H, Lee D, et al. Targeted disruption of the Apolipoprotein C-III gene in mice results in hypotriglyceridemia and protection from postprandial hypertriglyceridemia.J Biol Chem. 1994 ;269:23610 -23616.
    
    [167]. Kamboh MI, Aston CE, Hamman RF. DNA sequence variation in human Apolipoprotein C4 gene and its effect on plasma lipid profile. Atherosclerosis. 2000; 152:193-201

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700