煤焦油提取酚生产废水的处理与资源化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通过研究国产的ND-99树脂、日本的SP-825树脂、美国的XAD-16树脂对苯酚和间甲酚的吸附行为,吸附热力学和吸附动力学,以指导树脂吸附法处理煤焦油废水实验。实验结果表明:在同一温度下,对同种吸附质的吸附能力呈现ND-99>SP-825>XAD-16的趋势;Freundlich吸附等温方程可以很好的解释298K、308K、318K时ND-99、SP-825和XAD-16三种树脂对苯酚和间甲酚的吸附行为;在研究的温度范围内,吸附焓变均为负值,即三种树脂对苯酚和间甲酚的吸附为放热反应;吸附自由能变均为负值,即三种树脂对苯酚和间甲酚的吸附均是自发反应,且ND-99树脂的吸附自由能变比SP-825树脂和XAD-16树脂大;三种树脂的熵变均为负值,这是由于吸附质分子运动的自由度由溶液的三维空间限制于吸附剂的二维表面,运动混乱度降低导致了熵值减少;298K、308K、318K时ND-99、SP-825和XAD-16三种树脂对苯酚和间甲酚的吸附动力学符合准一级动力学方程;达到吸附平衡所需时间XAD-16     酚类(苯酚及其衍生物)是工业废水中常见的高毒性、难降解有机物,同时又是有机化工的基本原料,在经济上具有重要意义。采用树脂吸附法处理废水容易实现废水的有效治理和污染物的资源化,因此,采用树脂吸附法处理煤焦油提取酚生产废水,将对社会效益、环境效益、经济效益产生重大意义。通过对ND-99树脂的吸附-脱附最佳工艺的研究,得出:ND-99树脂处理效果良好,出水无色透明,可生化性较处理前明显提高。最佳吸附-脱附工艺条件是:pH值为4.0~5.0,吸附流量为2BV/h,吸附温度为20~30℃,单柱处理量:15BV/批,双柱串联处理量:25BV/批;脱附剂采用1BV8%NaOH+1BV4%NaOH+3BVH2O,脱附温度为50℃,脱附流量为1BV/h;采用异丙醚萃取法可回收高浓度脱附液中的粗酚;多批次小试和放大稳定性实验表明,ND-99树脂的吸附-脱附性能稳定。
It is aimed to guide the treatment and resource reuse of wastewater of phenol extraction from coal tar by studying adsorption behavior, adsorption thermodynamics and adsorption kinetics of the three kinds of resin to phenol and m-crenol, macroporous resin of ND-99 resin made in our nation, SP-825 resin produced in United States, XAD-16 resin made in Japan, and results show that: at the same temperature, adsorption capacities rendering ND-99>SP-825>XAD-16 trend to be the same kind of adsorbate; Freundlich isotherm equation can be a very good explanation of adsorption behaviors of phenol and m-cresol on ND-99, SP-825 and XAD-16 resin at 298K, 308K, and 318K; in the study temperature range, the adsorption enthalpies are negative, indicating that adsorptions of phenol and m-cresol on three kinds of resin are exothermic reaction; the adsorption free energy changes are all negative, indicating that adsorptions of phenol and m-cresol on three kinds of resin are spontaneous, the adsorption free energy change of ND-99 resin is larger than SP-825 and XAD-16 resin; the entropy change of the resins are negative, because freedom degrees of molecular movement of adsorbates are limited from three-dimensional space in solution to two-dimensional surface of adsorbents, the lower degree of movement disorder will lead to entropy reduction; adsorption kinetics of phenol and m-cresol on ND-99, SP-825 and XAD-16 resin at 298K, 308K, and 318K conform to the first-level dynamic equation; time for reaching adsorption equilibrium rendering XAD-16     Phenols (phenol and its derivatives) are common high toxic and difficultly biodegradable organic matter in industrial wastewater, but they are also basic raw materials of organic chemical and of economically significance. It will treat the wastewater and resource reusing the waste by resin adsorption. Accordingly, treating and resource reusing wastewater of phenol extraction from coal car will have significance for social, environmental and economical benefit. By the studies of the best adsorption-desorption process of ND-99 resin, it’s found that: the treatment result of ND-99 resin is good, the adsorbed water is colorless and transparent, biodegradability is markedly improved compared with pretreatment. The best adsorption-desorption process conditions are list as follows: pH is 4.0~5.0; adsorption flow is 2BV/h; adsorption temperature is 20~30℃; processing capacity of single-column is 15BV/batch; processing capacity of double-column by series is 25BV/batch; desorption temperature is 50℃; desorption agent is 1BV8%NaOH+1BV4%NaOH+3BVH2O; desorption flow is 1BV/h; crude phenol in high concentration desorption fluid can be recovered by isopropyl ether extraction; many small-scale and larger-batches of experiments show that the properties of adsorption-desorption of ND-99 resin is stable, and treating result of water is stable and reliable.
引文
[1]张锦,李圭白.含酚废水的危害及处理方法的应用特点[J].化学工程师,2001,83(2):36-37.
    [2]沈慧芳.间甲酚臭氧氧化反应动力学研究[J].化学工业与工程,2004,21(3):157-160.
    [3]杨群,宁平.煤焦油在含酚废水治理上的应用[J].云南化工,2007,32(4):159-161.
    [4]王晓军.用萃取法处理含酚废水[J].甘肃化工,2004,18(1):43-44.
    [5]张海涛.我国含酚废水处理技术研究进展[J].环境与开发,1997,12(2):29-34.
    [6]姜金华,王勇.从煤焦油酚水中回收粗酚的研究[J].煤炭技术,2002,12(2):29-34.
    [7] Banat F A, Bashir B. Adsorption of phenol by bentonite[J]. Environmental pollution, 2000, 107(3): 391-398.
    [8]于萍.高浓度含酚废水处理的新工艺[J].工业水处理,2002,22(9):5-8.
    [9] Legrini O, Oliveros E, Braun A M. Photochemical processes for water treatment[J]. Chem. Rev. 199(33): 671-698.
    [10]周日新,许昭怡.树脂吸附法处理对氨基苯酚生产废水的研究[J].离子交换与吸附,1995,11(5):402-405.
    [11]丁军委.超临界水氧化法处理含酚废水[J].环境污染与防治,2000,22(1):1-3.
    [12]张天声.日用化工废水处理技术及工程实例[M].北京:化学工业出版社,2002.
    [13]雷乐成.水处理高级氧化技术[M].北京:化学工业出版社,2001.
    [14]张乃东,黄君礼,郑威.强化UV/Fenton法降解水中苯酚的研究[J].环境污染治理技术与设备,2002,3(2):20-22.
    [15]陈拥军,窦和瑞,杨氏.催化湿式氧化法在苯酚废水预处理中的应用研究[J].工业水处理,2002,22(6):19-22.
    [16] Barner H E , Huang C Y, Johnson T. Supercritical Water Oxidation: an Emerging Technology, J. of Hazardous Materials[J], 1992,15(31): 1-5.
    [17] Modell M. Processing methods for the oxidation of organics in supercritical water. US patent: 4338199[P], 1982.
    [18]朱艳清.活性污泥法处理含酚废水[J].工业水处理,2004(1):122-123.
    [19]刘相伟.工业含酚废水处理技术的现状与进展[J].工业水处理,1998,18(2):4-6.
    [20]张金利,李韦华,袁兵.生物流化床法处理高浓度含酚废水的研究[J].化学反应工程与工艺,2001,17(2):148-152.
    [21]刘相伟.工业含酚废水处理技术的现状与进展[J].工业水处理,1999,18(3):4-6.
    [22]丁军委.超临界水氧化法处理含酚废水[J].环境污染与防治,2005,27(1):4-9.
    [23]章燕豪.吸附作用[M].上海:上海科学文献出版社,1998.
    [24]张海涛.我国含酚废水处理技术研究进展[J].环境与开发,1999,15(2):29-341.
    [25] Leong W Y. Teo E H Efficiency of adsorbents for removal organosulphur compounds in water[J]. Water Science and Technology, 1998, 38(6): 139-142.
    [26] Delgado R A, Minguez L M. Equilibrium study of single-solute adsorption of anionic surfactants with polymeric XAD resins[J]. Sep. Sci. Technol., 1996, 28(7): 975-978.
    [27] Banat F A, Bashir B. Adsorption of phenol by bentonite[J]. Environmental pollution, 2005, 107(5): 391-398.
    [28] Barner H E , Huang C Y, Johnson T. Supercritical Water Oxidation: an Emerging Technology, J. of Hazardous Materials[J], 1999,18(31): 1-5.
    [29]李学忠.炉渣过滤-树脂吸附法处理焦化废水的研究[J].湘潭师范学院学报(自然科学版),2005,29(1):61-63.
    [30]陈金龙.树脂吸附法处理五氯酚钠生产废水[J].离子交换与吸附,1996,12(2): 1-3.
    [31] Delgado R A, Minguez L M. Equilibrium study of single-solute of anionic surfactants with polymeric XAD resins[J]. Sep. Sci. Technol., 1997, 29(7): 975-978.
    [32]赵振国.吸附作用应用原理[M].北京:化学工业出版社,2005.
    [33]近藤精.吸附科学[M].北京:化学工业出版社,2006.
    [34]张全兴,刘天华.我国应用树脂吸附法处理有机废水的进展[J].化工环保,1995,15(1):24-26.
    [35]项远.树脂吸附法处理含酚工业废水[J].环境污染与防治,1994,16(5):19-21.
    [36] Leong W Y. Efficiency of adsorbents for removal organosulphur compounds in water[J]. Water Science and Technology, 1998, 38(6): 139-142.
    [37]郭秀斌.树脂吸附法处理D-对羟基苯甘氨酸生产中含酚废水的研究[J].精细化工,2000,17(10):584-585.
    [38]李学忠.炉渣过滤-树脂吸附法处理焦化废水的研究[J].湘潭师范学院学报(自然科学版),2007,29(1):61-63.
    [39]王志良.树脂吸附法处理对氨基苯酚废水[J].化工环保,2008,28(2):137-140.
    [40]张炜铭.树脂吸附法处理色酚AS生产废水的研究[J].工业水处理,2005,25(4):49-52.
    [41]陈金龙.树脂吸附法处理高浓度混甲酚生产废水的研究[J].南京大学学报(自然科学版),1995,31(4):598-605.
    [42]陈金龙,许昭怡.树脂吸附法处理五氯酚钠生产废水[J].离子交换与吸附,1996,12(2):129-131.
    [43]陈连龙.煤气洗涤废水除酚脱氮技术研究[J].水处理技术,2005,31(3):129-130.
    [44]马海云,韩永忠.盐析-树脂吸附法处理D-对羟基苯甘氨酸生产废水[J].工业水处理,2008,15(2):139-142.
    [45] Delgado R A, Minguez L M. Equilibrium study of single-solute adsorption of anionic surfactants with polymeric XAD resins[J]. Sep. Sci. Technol., 1992, 27(7): 975-978.
    [46] Satya V S, Gupta A K, Jain R K. Adsorption of naringin on nonionic(neutral) macroporus adsorbent resin from its aqueous solutions[J]. Journal of Food Engineering, 2008, 86: 259-271.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700